MATH 101: ALGEBRA I
 WORKSHEET, DAY \#6
 "LINEAR ALGEBRA EXTRAVANGANZA"

Throughout, let F be a field.
Problem 1. Suppose char $F \neq 2$. Let V be an F-vector space, and let $\phi, \psi: V \rightarrow V$ be projection maps.
(a) Show that $\phi+\psi$ is a projection if and only if $\phi \psi=\psi \phi=0$ if and only if $\operatorname{img} \phi \subseteq \operatorname{ker} \psi$ and $\operatorname{img} \psi \subseteq \operatorname{ker} \phi$.
(b) If $\phi+\psi$ is a projection, show that $\operatorname{img}(\phi+\psi)=\operatorname{img}(\phi) \oplus \operatorname{img}(\psi)$ and $\operatorname{ker}(\phi+\psi)=$ $\operatorname{ker}(\phi) \cap \operatorname{ker}(\psi)$.

Problem 2. Let V be an F-vector space with $n=\operatorname{dim}_{F} V<\infty$. Let $A, B \subseteq V$ be F-subspaces with $a=\operatorname{dim}_{F} A$ and $b=\operatorname{dim}_{F} B$ and suppose $V=A+B$. Let

$$
S=\left\{f \in \operatorname{End}_{F}(V): f(A) \subseteq A, f(B) \subseteq B\right\}
$$

Observe that $S \subseteq \operatorname{End}_{F}(V)$ is an F-subspace, and then express $\operatorname{dim}_{F} S$ in terms of n, a, b.
Problem 3. Let V, W be finite-dimensional F-vector spaces, let $X \subseteq W$ be an F-subspace, and let $\phi: V \rightarrow W$ be F-linear. Prove that $\operatorname{dim} \phi^{-1}(X)$ is at least $\operatorname{dim} V-\operatorname{dim} W+\operatorname{dim} X$.
Problem 4. Let $A \in \mathrm{M}_{n}(\mathbb{R})$, and let A^{\top} be its matrix transpose. Show that $A^{\top} A$ and A^{\top} have the same range.

