MATH 101: ALGEBRA I WORKSHEET, DAY #6 "LINEAR ALGEBRA EXTRAVANGANZA"

Throughout, let F be a field.

Problem 1. Suppose char $F \neq 2$. Let V be an F-vector space, and let $\phi, \psi : V \to V$ be projection maps.

- (a) Show that $\phi + \psi$ is a projection if and only if $\phi \psi = \psi \phi = 0$ if and only if $\operatorname{img} \phi \subseteq \ker \psi$ and $\operatorname{img} \psi \subseteq \ker \phi$.
- (b) If $\phi + \psi$ is a projection, show that $\operatorname{img}(\phi + \psi) = \operatorname{img}(\phi) \oplus \operatorname{img}(\psi)$ and $\operatorname{ker}(\phi + \psi) = \operatorname{ker}(\phi) \cap \operatorname{ker}(\psi)$.

Problem 2. Let V be an F-vector space with $n = \dim_F V < \infty$. Let $A, B \subseteq V$ be F-subspaces with $a = \dim_F A$ and $b = \dim_F B$ and suppose V = A + B. Let

$$S = \{ f \in \operatorname{End}_F(V) : f(A) \subseteq A, \ f(B) \subseteq B \}.$$

Observe that $S \subseteq \operatorname{End}_F(V)$ is an *F*-subspace, and then express $\dim_F S$ in terms of n, a, b.

Problem 3. Let V, W be finite-dimensional F-vector spaces, let $X \subseteq W$ be an F-subspace, and let $\phi : V \to W$ be F-linear. Prove that dim $\phi^{-1}(X)$ is at least dim $V - \dim W + \dim X$.

Problem 4. Let $A \in M_n(\mathbb{R})$, and let A^{T} be its matrix transpose. Show that $A^{\mathsf{T}}A$ and A^{T} have the same range.

Date: Tuesday, 20 September 2016.