MATH 101: ALGEBRA I WORKSHEET, DAY #4

Fill in the blanks.

Let F be a field. An F-module V is also known as a <u>F-vector space</u> over F, and an F-module homomorphism $\phi: V \to W$ is called a ______.

Let V be a vector space over F. Let $v_1, \ldots, v_n \in V$. A linear combination of v_1, \ldots, v_n is

The set of all vectors w which are linear combinations of v_1, \ldots, v_n forms a _____

 $W \subset V$, and we say that W is _____ by v_1, \ldots, v_n .

A linear relation among vectors v_1, \ldots, v_n is a linear combination which is equal to zero, i.e.,

The vectors v_1, \ldots, v_n are called ______ if there is no nonzero linear relation among the vectors, i.e., if $c_1v_1 + \cdots + c_nv_n = 0$ then ______; otherwise v_1, \ldots, v_n are called ______. By convention, the empty set is considered to be ______, and the span of the empty set is ______. Two vectors v_1, v_2 have no nonzero linear relation if and only if either

_____ or _____

An ordered set $B = \{v_1, \ldots, v_n\}$ of vectors that is linearly independent and spans V is called a ______ of V; for example, for $F^n = \{(a_1, \ldots, a_n) : a_i \in F\}$ we

Date: Friday, 16 September 2016.

Lemma. The set B is a basis for V if and only if every $w \in V$ can be written uniquely as a

Proposition. Let $L = \{v_1, \ldots, v_n\} \subset V$ be a linearly independent ordered set, and let $v \in V$. Then the ordered set $\{v_1, \ldots, v_n, v\}$ is linearly independent if and only if

Proposition. For any finite set S which spans V, there exists a subset $B \subset S$ which is a basis for V.

Proof. Suppose that $S = \{v_1, \ldots, v_n\}$ and that S is not linearly independent. Then

Lemma. Let V be a vector space with a finite basis. Then any spanning set of V contains a basis, and any ______ set L can be extended by adding elements of V to get a basis.

Corollary. Suppose V has a finite basis B with #B = n. Then any set of linearly independent vectors has at most ______ elements, and any spanning set has

_____ elements.

Proof. Let L be a linearly independent set of vectors. By the lemma,

Corollary. If V has a finite basis then any two bases of V have the same cardinality.

Proof. _____

Let V be a vector space with a finite basis. Then the <u>dimension</u> of V is defined to be ______ and is denoted $\dim_F V$, and V is said to be ______ over F.

If F is a finite field with #F = q, then a vector space of dimension n over F has elements.

Theorem. Let V be a vector space of dimension n. Then $V \simeq F^n$. In particular, any two vector spaces of the same finite dimension are isomorphic.

Proof. Let v_1, \ldots, v_n be a basis for V. Define the map

 $\phi: F^n \to V$

$$\phi(a_1,\ldots,a_n) = a_1v_1 + \cdots + a_nv_n.$$

Theorem. Let V be a finite-dimensional vector space over F and let W be a subspace of V. Then the quotient V/W is a vector space with

 $\dim(V/W) = _____,$

Proof. Since V is finite-dimensional, so is W because

Let W have dimension m and let w_1, \ldots, w_m be a basis for W. We extend this basis to a basis $w_1, \ldots, w_m, v_{m+1}, \ldots, v_n$ of V. Then the projection map $V \to V/W$ maps each w_i to ______ and therefore has image spanned by $v_{m+1} + W, \ldots, v_n + W$; these vectors are linearly independent because . So

 $\dim(V/W) = _____.$

Corollary. Let $\phi: V \to W$ be a linear transformation. Then

 $\dim V = \dim \ker \phi + \dim \operatorname{img} \phi.$

We also say that ker ϕ is the ______ of ϕ and dim ker ϕ is the

_____. The dimension of $\operatorname{img} \phi = \phi(V)$ is called the

Corollary. Let $\phi : V \to W$ be a linear transformation of vector spaces of the same finite dimension n. Then the following are equivalent:

- (a) ϕ is an isomorphism;
- (b) ϕ is injective;
- (c) ϕ is surjective.

Proof.
