## MATH 101: ALGEBRA I WORKSHEET, DAY \#4

Fill in the blanks.
Let $F$ be a field. An $F$-module $V$ is also known as a $F$-vector space over $F$, and an $F$-module homomorphism $\phi: V \rightarrow W$ is called a $\qquad$ .

Let $V$ be a vector space over $F$. Let $v_{1}, \ldots, v_{n} \in V$. A linear combination of $v_{1}, \ldots, v_{n}$ is

The set of all vectors $w$ which are linear combinations of $v_{1}, \ldots, v_{n}$ forms a $\qquad$ $W \subset V$, and we say that $W$ is $\qquad$ by $v_{1}, \ldots, v_{n}$.

A linear relation among vectors $v_{1}, \ldots, v_{n}$ is a linear combination which is equal to zero, i.e.,

The vectors $v_{1}, \ldots, v_{n}$ are called $\qquad$ if there is no nonzero linear relation among the vectors, i.e., if $c_{1} v_{1}+\cdots+c_{n} v_{n}=0$ then $\qquad$ ; otherwise $v_{1}, \ldots, v_{n}$ are called $\qquad$ . By convention, the empty set is considered to be $\qquad$ , and the span of the empty set is $\qquad$ .

Two vectors $v_{1}, v_{2}$ have no nonzero linear relation if and only if either
$\qquad$ or $\qquad$ .

An ordered set $B=\left\{v_{1}, \ldots, v_{n}\right\}$ of vectors that is linearly independent and spans $V$ is called a $\qquad$ of $V$; for example, for $F^{n}=\left\{\left(a_{1}, \ldots, a_{n}\right): a_{i} \in F\right\}$ we
may take

Lemma. The set $B$ is a basis for $V$ if and only if every $w \in V$ can be written uniquely as $a$
$\qquad$

Proposition. Let $L=\left\{v_{1}, \ldots, v_{n}\right\} \subset V$ be a linearly independent ordered set, and let $v \in V$. Then the ordered set $\left\{v_{1}, \ldots, v_{n}, v\right\}$ is linearly independent if and only if

Proposition. For any finite set $S$ which spans $V$, there exists a subset $B \subset S$ which is a basis for $V$.

Proof. Suppose that $S=\left\{v_{1}, \ldots, v_{n}\right\}$ and that $S$ is not linearly independent. Then
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Lemma. Let $V$ be a vector space with a finite basis. Then any spanning set of $V$ contains $a$ basis, and any $\qquad$ set $L$ can be extended by adding elements of $V$ to get a basis.

Corollary. Suppose $V$ has a finite basis $B$ with $\# B=n$. Then any set of linearly independent vectors has at most $\qquad$ elements, and any spanning set has
$\qquad$ elements.

Proof. Let $L$ be a linearly independent set of vectors. By the lemma,
$\qquad$
$\qquad$
$\qquad$

Corollary. If $V$ has a finite basis then any two bases of $V$ have the same cardinality.

Proof. $\qquad$
$\qquad$
$\qquad$
$\qquad$

Let $V$ be a vector space with a finite basis. Then the dimension of $V$ is defined to be
$\qquad$ and is denoted $\operatorname{dim}_{F} V$, and $V$ is said to
be $\qquad$ over $F$.

If $F$ is a finite field with $\# F=q$, then a vector space of dimension $n$ over $F$ has
$\qquad$ elements.

Theorem. Let $V$ be a vector space of dimension $n$. Then $V \simeq F^{n}$. In particular, any two vector spaces of the same finite dimension are isomorphic.

Proof. Let $v_{1}, \ldots, v_{n}$ be a basis for $V$. Define the map

$$
\begin{aligned}
\phi: F^{n} & \rightarrow V \\
\phi\left(a_{1}, \ldots, a_{n}\right) & =a_{1} v_{1}+\cdots+a_{n} v_{n} .
\end{aligned}
$$

Theorem. Let $V$ be a finite-dimensional vector space over $F$ and let $W$ be a subspace of $V$.
Then the quotient $V / W$ is a vector space with

$$
\operatorname{dim}(V / W)=
$$

$\qquad$

Proof. Since $V$ is finite-dimensional, so is $W$ because
$\qquad$ . Let $W$ have dimension $m$ and let $w_{1}, \ldots, w_{m}$
be a basis for $W$. We extend this basis to a basis $w_{1}, \ldots, w_{m}, v_{m+1}, \ldots, v_{n}$ of $V$. Then the projection map $V \rightarrow V / W$ maps each $w_{i}$ to $\qquad$ and therefore has image spanned
by $v_{m+1}+W, \ldots, v_{n}+W$; these vectors are linearly independent because
$\qquad$ . So
$\operatorname{dim}(V / W)=$ $\qquad$ .

Corollary. Let $\phi: V \rightarrow W$ be a linear transformation. Then

$$
\operatorname{dim} V=\operatorname{dim} \operatorname{ker} \phi+\operatorname{dim} \operatorname{img} \phi
$$

We also say that $\operatorname{ker} \phi$ is the $\qquad$ of $\phi$ and $\operatorname{dim} \operatorname{ker} \phi$ is the
$\qquad$ . The dimension of $\operatorname{img} \phi=\phi(V)$ is called the
$\qquad$ .

Corollary. Let $\phi: V \rightarrow W$ be a linear transformation of vector spaces of the same finite dimension $n$. Then the following are equivalent:
(a) $\phi$ is an isomorphism;
(b) $\phi$ is injective;
(c) $\phi$ is surjective.

Proof.

