
MATH 101: ALGEBRA I
WORKSHEET, DAY #3

Fill in the blanks as we finish our first pass on prerequisites of group theory.

1. Subgroups, cosets

Let G be a group. Recall that a subgroup H ≤ G is a subset that is a group under the

binary operation of G. The subgroup criterion says that H ⊆ G is a subgroup if and only

if . It shows that if φ : G → G′ is a group

homomorphism, then φ(G) ≤ G′ is a subgroup: .

Let H ≤ G be a subgroup. Define an equivalence relation on G by a ∼ b if and only if

a−1b ∈ H. This is an equivalence relation because

.

The equivalence classes are aH = {ah : h ∈ H} for a ∈ G; note aH = bH if and only if

H = a−1bH. Let G/H be the set of equivalence classes.

We similarly define equivalence on the other side, with classes Ha for a ∈ G, and write

H\G for the set of equivalence classes.

Lagrange’s theorem states:

.

It implies Fermat’s little theorem:

because

.
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2. Centralizer, normalizer, stabilizer

Let A ⊆ G be a subset. The centralizer of A in G is CA(G) = ,

consisting of the elements of G . The cen-

tralizer CA(G) ≤ G is a subgroup: .

The center of G is Z(G) = CG(G).

Similarly, the normalizer of A in G is NA(G) = . Note that

CG(A) ≤ NG(A). The normalizer NA(G) ≤ G is a subgroup.

Let G � X act on a set X. Let x ∈ X. The stabilizer of x ∈ G is the set StabG(x) =

Gx = {g ∈ G : gx = x}. We verify that Gx ≤ G is a subgroup. Recall that the kernel of the

action is the subgroup .

(1) Let G � X = G act on itself by conjugation, so that .

Then the centralizer of A in terms of the group action is

.

(2) LetX = P(G) be the power set ofG, consisting of

. Then G � X acts on X by conjugation via (g, A) 7→

gAg−1 = {gag−1 : a ∈ A}. Under this action, NG(A) is .

(3) Let the group NG(A) � A act on A by conjugation. Then CG(A) ≤ NG(A) is

.
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3. Cyclic groups

A group G is cyclic if , and we write

. In this case, we have an isomorphism

Consequently, any two cyclic groups of the same order are isomorphic.

Lemma. Let G be a cyclic group, generated by x, and let a ∈ Z.

(a) If x has infinite order, then G = 〈xa〉 if and only if .

(b) If x has order n <∞, then G = 〈xa〉 if and only if ; in particular, the

number of generators of G is .

Every subgroup of a cyclic group is cyclic:

.

In fact, the subgroups of a finite cyclic group correspond bijectively with

via .
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4. Generating subgroups

Let G be a group. Given any nonempty collection {Hi}i∈I of subgroups of G, the inter-

section
⋂

i∈I Hi ≤ G is a subgroup.

Let A ⊆ G. The subgroup generated by A, written 〈A〉 ⊆ G, is

〈A〉 =
⋂
A⊆H
H≤G

H.

The subgroup generated by A is the smallest subgroup of G containing A in the sense that

.

A more concrete way of thinking about 〈A〉 is that it consists of all elements of G that

can be written as words in elements of A ∪ A−1, where A−1 = {a−1 : a ∈ A}: this means

.

A subgroup H ≤ G is finitely generated if

.

Example. The subgroup of GL2(C) generated by

A =

(
0 1
−1 0

)
, B =

(
0 i
i 0

)
is

.

Example. The subgroup of GL2(Q) generated by

S =

(
0 1
−1 0

)
, T =

(
0 1
−1 −1

)
is infinite even though S, T have orders because

.
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5. Kernels, normal subgroups, quotient groups

Let φ : G→ G′ be a group homomorphism. The kernel of φ is the subgroup

kerφ = ≤ G.

Lemma. φ is injective if and only if kerφ = {1}.

Proof.

. �

Lemma. Let K ≤ G be a subgroup. Then the following conditions are equivalent:

(i) For all a ∈ G, we have aK = Ka;

(ii) For all a ∈ G, we have aKa−1 ⊆ K; and

(iii) For all a ∈ G, we have aKa−1 = K.

Proof. Proves itself. �

A subgroup K ≤ G is normal if the equivalent conditions (i)–(iii) hold, and we write

K E G.

Example. Every subgroup of an abelian group is normal.

Proposition. If K ≤ G, then G/K is a group under (aK)(bK) = abK if and only if K E G.

Proof.

.

�
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If K E G, then the group G/K is the quotient group. Kernels of surjective group homomor-

phisms are the same as normal subgroups in the sense that

.

In general, if φ : G→ G′ is a group homomorphism, then it factors:

Theorem (First isomorphism theorem).

There are also three more isomorphism theorems, concerning intersections, quotients, and

lattices.

Example. The group Q/Z looks like

.
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6. Composition series

A (finite or infinite) group is simple if #G > 1 and

.

A composition series for G is a sequence of subgroups

1 = N0 ≤ N1 ≤ · · · ≤ Nk−1 ≤ Nk = G

such that Ni E Ni+1 and Ni+1/Ni is a simple group for all 0 ≤ i ≤ k − 1; we then call the

set of groups Ni+1/Ni the composition factors.

Example. A composition series for S3 is:

A composition series for D8 is:

A composition series for A4 is:

Example. Let F be a field with #F = p. A composition series for the Heisenberg group H(F )

is:

Theorem (Jordan–Hölder). Every nontrivial finite group has a composition series and the

composition factors in any composition series are unique (up to reordering).

To classify all finite groups, we classify all finite simple groups and then try to “put them

back together” to get all finite groups.
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Theorem. Every finite simple group is isomorphic to either one in a list of 18 infinite

families of simple groups or one of 26 sporadic simple groups.

Examples of simple groups include:

•

•

•
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