
MATH 101: ALGEBRA I
WORKSHEET, DAY #1

We review the prerequisites for the course in set theory and beginning a first pass on group

theory. Fill in the blanks as we go along.

1. Sets

A set is a “collection of objects”. (Our set theory is naive, and we do not go into super

important foundational issues. Please take a logic class, it is amazingly cool!)

Basic sets:

• ∅, the empty set containing no elements;

• Z = {. . . ,−1, 0, 1, . . . }, the integers;

• Z≥0 = {x ∈ Z : x ≥ 0}, the nonnegative integers; similarly, positive integers, etc.;

• N = , the natural numbers;

• Q, the rational numbers;

• R, the real numbers;

• C, the complex numbers.

A set X is a subset of a set Y if x ∈ X implies x ∈ Y , and we write X ⊆ Y . (Some

write X ⊂ Y .) Two sets are equal, and we write X = Y , if they contain precisely the same

elements, which can also be written .

Operations on two sets X, Y :

• X ∪ Y , union: we have x ∈ X ∪ Y if and only if x ∈ X or x ∈ Y ;
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• X ∩ Y , intersection: we have x ∈ X ∩ Y if and only if ;

• X r Y , set minus: we have x ∈ X r Y if and only if ;

• X t Y , disjoint union: we write disjoint union instead of union when

.

• X × Y = {(x, y) : x ∈ X, y ∈ Y }, the Cartesian product.

A relation R on a set X is . For exam-

ple, equality is a relation on any set, defined by . An

equivalence relation is a relation ∼ that is:

• reflexive, ,

• , , and

• , .

An equivalence relation ∼ partitions X into a disjoint union of equivalence classes, where

the equivalence class of x ∈ X is . The set

of equivalence classes X/∼ is the quotient of X by ∼, and we have a projection map

π : X → X/∼

x 7→ [x]

Let n ∈ Z>0. We define an equivalence relation on Z by x ≡ y (mod n) if n | (x− y). The

set of equivalence classes is denoted Z/nZ.
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2. Functions

A function or map from a set X to Y is denoted f : X → Y : the precise definition is via

its graph {(x, f(x)) : x ∈ X} ⊆ X × Y .

The collection of all functions from X to Y is denoted Y X , and this is sensible notation

because

.

Let f : X → Y be a function. Then X is the domain and Y is the . We

write f(X) = img f for the image of f . The identity map on X is denoted idX : X → X and

defined by .

Given another function g : Y → Z, we can compose to get g ◦ f : X → Z defined by

(g ◦ f)(x) = g(f(x)). Sometimes we will have more elaborate diagrams:

X
f
//

h   

Y

g
��

Z

We say a diagram like the above is commutative if we start from one set and travel to any

other, we get the same answer regardless of the path chosen: in the above example, this

reads . Similarly, the diagram

X
f
//

g
��

Y

g′

��

X ′
f ′

// Y ′

is commutative if and only if .

We say that f factors through a map g : X → Z if there exists a map h : Z → Y such that

, i.e. the diagram
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commutes.

The function f is:

• injective (or one-to-one) if , and if

so we write X ↪→ Y ;

• surjective (or onto) if , and if so we

write X � Y ; and

• bijective (or a one-to-one correspondence), if f is both injective and surjective, and we

write X
∼−→ Y .

Lemma. Define the relation ∼ on X by x ∼ x′ if f(x) = f(x′). Then the following hold.

(a) ∼ is an equivalence relation.

(b) f factors uniquely through the projection π : X → X/∼. If f is surjective, then the

map (X/∼)→ Y is bijective.

In a picture:

Proof. First, part (a).

Next, part (b).

4



�

Example. If I is a set, and for each i ∈ I we have a set Xi, we can form the product

XI =
∏

i∈I Xi. The set Xi has projection maps πi : XI → Xi for i ∈ I. The product XI

is uniquely determined up to bijection by the following property: for any set Y and maps

fi : Y → Xi, there is a unique map f : Y →
∏

i∈I Xi such that πi ◦ f = fi. In a diagram:

A left inverse to f is a function g : Y → X such that g ◦ f = idX , and similarly a right

inverse. The function f has a left inverse if and only if .

In a picture:

Similarly, f has a right inverse if and only if .

If y ∈ Y , we will write f−1(y) = {x ∈ X : f(x) = y} for the fiber of y, and if this fiber

consists of one element, we will abuse notation and also write this for the single element.

An inverse to f is a common left and right inverse. The function f has an inverse if and

only if ; if this inverse exists, it is unique, denoted f−1 : Y → X

in line with the above.
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The cardinality of a set X is either:

• finite, if there is a bijection X
∼−→ {1, . . . , n} for some n ∈ Z≥0, and in this case we

write #X = n;

• countable, if there is a bijection X
∼−→ Z; or

• uncountable, otherwise.

If X is finite, we sometimes write #X <∞ and in the latter two cases, we write #X =∞.

(This is just the beginning of a more advanced theory of cardinal numbers.)
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3. Groups

LetX be a set. A binary operation onX is .

Let ∗ be a binary operation on X. The definition is still too general, and some binary

operations are better than others!

• ∗ is associative if .

• ∗ has an identity if .

Lemma. A binary operation can have at most one identity element.

Proof. �

Definition. A monoid is a set X equipped with an associative binary operation ∗ that has

an identity. (We will never use them, but a semigroup is a nonempty set with an associative

binary operation.)

Example. The set of positive integers Z>0 is a monoid under multiplication.

The set of nonnegative integers Z≥0 is a monoid under addition.

Monoids exist everywhere in mathematics, but they are still too general to study: their

structure theory combines all the complications of combinatorics with algebra.

Let X be a monoid. An element x ∈ X is invertible if there exists y ∈ X such that

; the element y is unique if it exists because

so it is denoted x−1 and is called the inverse of x.

Definition. A group is a monoid in which every element is invertible.
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The group axioms for a group G can be recovered from the requirement that a ∗x = b has

a unique solution x ∈ G for every a, b ∈ G.

Example. The smallest group is , with the binary opera-

tion . Examples of groups include:

•

•

•

Example. My favorite group is the quaternion group of order 8, defined by

Example. Let n ∈ Z>0. The dihedral group of order 2n, denoted D2n (or sometimes Dn) is

In a group, the (left or right) cancellation law holds:

A group is:

• abelian (or commutative) if .

• finite if .

• dihedral if .

From now on, let G be a group.

Lemma. If x2 = 1 for all x ∈ G, then G is abelian.
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Proof. . �

The order of an element x ∈ G is , and

is denoted .

Example. Important examples are matrix groups. Let F be a field, a set with

.

We write F× = F r {0}. For n ∈ Z≥1, let

GLn(F ) = {A ∈ Mn(F ) : det(A) 6= 0}

be the general linear group (of rank n) over F . Then GLn(F ) is a group.

A homomorphism of groups φ : G → G′ is a map such that .

Let φ : G→ G′ be a group homomorphism. Then we say φ is a(n):

• isomorphism if ;

• automorphism if ;

• endomorphism if ;

• monomorphism if ;

• epimorphism if .

A subgroup H ≤ G is a subset that is a group under the binary operation of G (closed

under the binary operation and inverses).
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