MATH 101: ALGEBRA I
 WORKSHEET, DAY \#1

We review the prerequisites for the course in set theory and beginning a first pass on group theory. Fill in the blanks as we go along.

1. SETS

A set is a "collection of objects". (Our set theory is naive, and we do not go into super important foundational issues. Please take a logic class, it is amazingly cool!)

Basic sets:

- \emptyset, the empty set containing no elements;
- $\mathbb{Z}=\{\ldots,-1,0,1, \ldots\}$, the integers;
- $\mathbb{Z}_{\geq 0}=\{x \in \mathbb{Z}: x \geq 0\}$, the nonnegative integers; similarly, positive integers, etc.;
- $\mathbb{N}=$ \qquad , the natural numbers;
- \mathbb{Q}, the rational numbers;
- \mathbb{R}, the real numbers;
- \mathbb{C}, the complex numbers.

A set X is a subset of a set Y if $x \in X$ implies $x \in Y$, and we write $X \subseteq Y$. (Some write $X \subset Y$.) Two sets are equal, and we write $X=Y$, if they contain precisely the same elements, which can also be written \qquad .

Operations on two sets X, Y :

- $X \cup Y$, union: we have $x \in X \cup Y$ if and only if $x \in X$ or $x \in Y$;

Date: Monday, 12 September 2016.

- $X \cap Y$, intersection: we have $x \in X \cap Y$ if and only if \qquad ;
- $X \backslash Y$, set minus: we have $x \in X \backslash Y$ if and only if \qquad ;
- $X \sqcup Y$, disjoint union: we write disjoint union instead of union when
\qquad
- $X \times Y=\{(x, y): x \in X, y \in Y\}$, the Cartesian product.

A relation R on a set X is \qquad . For example, equality is a relation on any set, defined by \qquad . An equivalence relation is a relation \sim that is:

- reflexive, \qquad ,
\qquad , \qquad , and
\qquad , \qquad .

An equivalence relation \sim partitions X into a disjoint union of equivalence classes, where the equivalence class of $x \in X$ is \qquad . The set of equivalence classes X / \sim is the quotient of X by \sim, and we have a projection map

$$
\begin{aligned}
\pi: X & \rightarrow X / \sim \\
& x \mapsto[x]
\end{aligned}
$$

Let $n \in \mathbb{Z}_{>0}$. We define an equivalence relation on \mathbb{Z} by $x \equiv y(\bmod n)$ if $n \mid(x-y)$. The set of equivalence classes is denoted $\mathbb{Z} / n \mathbb{Z}$.

2. Functions

A function or map from a set X to Y is denoted $f: X \rightarrow Y$: the precise definition is via its graph $\{(x, f(x)): x \in X\} \subseteq X \times Y$.

The collection of all functions from X to Y is denoted Y^{X}, and this is sensible notation because

Let $f: X \rightarrow Y$ be a function. Then X is the domain and Y is the \qquad . We write $f(X)=\operatorname{img} f$ for the image of f. The identity map on X is denoted $\operatorname{id}_{X}: X \rightarrow X$ and defined by \qquad .

Given another function $g: Y \rightarrow Z$, we can compose to get $g \circ f: X \rightarrow Z$ defined by $(g \circ f)(x)=g(f(x))$. Sometimes we will have more elaborate diagrams:

We say a diagram like the above is commutative if we start from one set and travel to any other, we get the same answer regardless of the path chosen: in the above example, this reads \qquad . Similarly, the diagram

is commutative if and only if \qquad .

We say that f factors through a map $g: X \rightarrow Z$ if there exists a map $h: Z \rightarrow Y$ such that
commutes.

The function f is:

- injective (or one-to-one) if \qquad and if so we write $X \hookrightarrow Y$;
- surjective (or onto) if \qquad , and if so we write $X \rightarrow Y$; and
- bijective (or a one-to-one correspondence), if f is both injective and surjective, and we write $X \xrightarrow{\sim} Y$.

Lemma. Define the relation \sim on X by $x \sim x^{\prime}$ if $f(x)=f\left(x^{\prime}\right)$. Then the following hold.
(a) \sim is an equivalence relation.
(b) factors uniquely through the projection $\pi: X \rightarrow X / \sim$. If f is surjective, then the $\operatorname{map}(X / \sim) \rightarrow Y$ is bijective.

In a picture:

Proof. First, part (a). \qquad
\qquad

Next, part (b). \qquad
\qquad

Example. If I is a set, and for each $i \in I$ we have a set X_{i}, we can form the product $X_{I}=\prod_{i \in I} X_{i}$. The set X_{i} has projection maps $\pi_{i}: X_{I} \rightarrow X_{i}$ for $i \in I$. The product X_{I} is uniquely determined up to bijection by the following property: for any set Y and maps $f_{i}: Y \rightarrow X_{i}$, there is a unique map $f: Y \rightarrow \prod_{i \in I} X_{i}$ such that $\pi_{i} \circ f=f_{i}$. In a diagram:

A left inverse to f is a function $g: Y \rightarrow X$ such that $g \circ f=\mathrm{id}_{X}$, and similarly a right inverse. The function f has a left inverse if and only if \qquad . In a picture:

Similarly, f has a right inverse if and only if \qquad .

If $y \in Y$, we will write $f^{-1}(y)=\{x \in X: f(x)=y\}$ for the fiber of y, and if this fiber consists of one element, we will abuse notation and also write this for the single element.

An inverse to f is a common left and right inverse. The function f has an inverse if and only if \qquad ; if this inverse exists, it is unique, denoted $f^{-1}: Y \rightarrow X$ in line with the above.

The cardinality of a set X is either:

- finite, if there is a bijection $X \xrightarrow{\sim}\{1, \ldots, n\}$ for some $n \in \mathbb{Z}_{\geq 0}$, and in this case we write $\# X=n$;
- countable, if there is a bijection $X \xrightarrow{\sim} \mathbb{Z}$; or
- uncountable, otherwise.

If X is finite, we sometimes write $\# X<\infty$ and in the latter two cases, we write $\# X=\infty$. (This is just the beginning of a more advanced theory of cardinal numbers.)

3. Groups

Let X be a set. A binary operation on X is \qquad .

Let $*$ be a binary operation on X. The definition is still too general, and some binary operations are better than others!

- * is associative if \qquad .
- * has an identity if \qquad .

Lemma. A binary operation can have at most one identity element. Proof. \qquad

Definition. A monoid is a set X equipped with an associative binary operation $*$ that has an identity. (We will never use them, but a semigroup is a nonempty set with an associative binary operation.)

Example. The set of positive integers $\mathbb{Z}_{>0}$ is a monoid under multiplication.
The set of nonnegative integers $\mathbb{Z}_{\geq 0}$ is a monoid under addition.

Monoids exist everywhere in mathematics, but they are still too general to study: their structure theory combines all the complications of combinatorics with algebra.

Let X be a monoid. An element $x \in X$ is invertible if there exists $y \in X$ such that ; the element y is unique if it exists because
so it is denoted x^{-1} and is called the inverse of x.

Definition. A group is a monoid in which every element is invertible.

The group axioms for a group G can be recovered from the requirement that $a * x=b$ has a unique solution $x \in G$ for every $a, b \in G$.

Example. The smallest group is \qquad , with the binary operation \qquad . Examples of groups include:
\bullet
-
-

Example. My favorite group is the quaternion group of order 8, defined by

Example. Let $n \in \mathbb{Z}_{>0}$. The dihedral group of order $2 n$, denoted $D_{2 n}$ (or sometimes D_{n}) is
\qquad
\qquad

In a group, the (left or right) cancellation law holds:

A group is:

- abelian (or commutative) if \qquad .
- finite if \qquad .
- dihedral if \qquad .

From now on, let G be a group.

Lemma. If $x^{2}=1$ for all $x \in G$, then G is abelian.

Proof. \qquad .

The order of an element $x \in G$ is \qquad , and
is denoted \qquad .

Example. Important examples are matrix groups. Let F be a field, a set with \qquad

We write $F^{\times}=F \backslash\{0\}$. For $n \in \mathbb{Z}_{\geq 1}$, let

$$
\operatorname{GL}_{n}(F)=\left\{A \in \mathrm{M}_{n}(F): \operatorname{det}(A) \neq 0\right\}
$$

be the general linear group (of rank n) over F. Then $\mathrm{GL}_{n}(F)$ is a group.

A homomorphism of groups $\phi: G \rightarrow G^{\prime}$ is a map such that \qquad .

Let $\phi: G \rightarrow G^{\prime}$ be a group homomorphism. Then we say ϕ is a(n):

- isomorphism if \qquad ;
- automorphism if \qquad ;
- endomorphism if \qquad ;
- monomorphism if \qquad ;
- epimorphism if \qquad .

A subgroup $H \leq G$ is a subset that is a group under the binary operation of G (closed under the binary operation and inverses).

