MATH 101: ALGEBRA I WORKSHEET, DAY #1

We review the prerequisites for the course in set theory and beginning a first pass on group theory. Fill in the blanks as we go along.

1. Sets

A set is a "collection of objects". (Our set theory is naive, and we do not go into super important foundational issues. Please take a logic class, it is amazingly cool!)

Basic sets:

- \emptyset , the empty set containing no elements;
- $\mathbb{Z} = \{ \dots, -1, 0, 1, \dots \}$, the integers;
- $\mathbb{Z}_{\geq 0} = \{x \in \mathbb{Z} : x \geq 0\}$, the nonnegative integers; similarly, positive integers, etc.;
- $\mathbb{N} =$ _____, the natural numbers;
- \mathbb{Q} , the rational numbers;
- \mathbb{R} , the real numbers;
- \mathbb{C} , the complex numbers.

A set X is a subset of a set Y if $x \in X$ implies $x \in Y$, and we write $X \subseteq Y$. (Some write $X \subset Y$.) Two sets are equal, and we write X = Y, if they contain precisely the same elements, which can also be written _____.

Operations on two sets X, Y:

• $X \cup Y$, union: we have $x \in X \cup Y$ if and only if $x \in X$ or $x \in Y$;

Date: Monday, 12 September 2016.

• $X \cap Y$, intersection: we have $x \in X \cap Y$ if and only if ______; • $X \smallsetminus Y$, set minus: we have $x \in X \smallsetminus Y$ if and only if ______; • $X \sqcup Y$, disjoint union: we write disjoint union instead of union when ______. • $X \sqcup Y$ = { $(x, y) : x \in X, y \in Y$ }, the Cartesian product. A relation R on a set X is ______. For example, equality is a relation on any set, defined by ______. For example, equality is a relation \sim that is: • reflexive, ______, ____, and • ______, and • ______, and • ______, The set the equivalence relation \sim partitions X into a disjoint union of equivalence classes, where the equivalence class of $x \in X$ is ______. The set

of equivalence classes X/\sim is the quotient of X by \sim , and we have a projection map

$$\pi: X \to X/\sim$$
$$x \mapsto [x]$$

Let $n \in \mathbb{Z}_{>0}$. We define an equivalence relation on \mathbb{Z} by $x \equiv y \pmod{n}$ if $n \mid (x-y)$. The set of equivalence classes is denoted $\mathbb{Z}/n\mathbb{Z}$.

2. Functions

A function or map from a set X to Y is denoted $f: X \to Y$: the precise definition is via its graph $\{(x, f(x)) : x \in X\} \subseteq X \times Y.$

The collection of all functions from X to Y is denoted Y^X , and this is sensible notation because

Let $f: X \to Y$ be a function. Then X is the **domain** and Y is the _____. We write $f(X) = \operatorname{img} f$ for the image of f. The identity map on X is denoted $\operatorname{id}_X : X \to X$ and defined by _____.

Given another function $g: Y \to Z$, we can compose to get $g \circ f: X \to Z$ defined by $(g \circ f)(x) = g(f(x))$. Sometimes we will have more elaborate diagrams:

We say a diagram like the above is **commutative** if we start from one set and travel to any other, we get the same answer regardless of the path chosen: in the above example, this reads _____. Similarly, the diagram

$$\begin{array}{cccc} X & \stackrel{f}{\longrightarrow} & Y \\ g & & & & \downarrow g' \\ X' & \stackrel{f'}{\longrightarrow} & Y' \end{array}$$

is commutative if and only if _____

We say that f factors through a map $g: X \to Z$ if there exists a map $h: Z \to Y$ such that

 $\underline{}$, i.e. the diagram

commutes.

The function f is:

- injective (or one-to-one) if ______, and if so we write X ↔ Y;
 surjective (or onto) if ______, and if so we
- surjective (or onto) in _____, and it so write $X \rightarrow Y$; and
- bijective (or a one-to-one correspondence), if f is both injective and surjective, and we write X → Y.

Lemma. Define the relation \sim on X by $x \sim x'$ if f(x) = f(x'). Then the following hold.

- (a) \sim is an equivalence relation.
- (b) f factors uniquely through the projection π : X → X/~. If f is surjective, then the map (X/~) → Y is bijective.

In a picture:

Proof. First, part (a).

Next, part (b). _____

Example. If I is a set, and for each $i \in I$ we have a set X_i , we can form the product $X_I = \prod_{i \in I} X_i$. The set X_i has projection maps $\pi_i : X_I \to X_i$ for $i \in I$. The product X_I is uniquely determined up to bijection by the following property: for any set Y and maps $f_i : Y \to X_i$, there is a unique map $f : Y \to \prod_{i \in I} X_i$ such that $\pi_i \circ f = f_i$. In a diagram:

A left inverse to f is a function $g: Y \to X$ such that $g \circ f = id_X$, and similarly a right inverse. The function f has a left inverse if and only if ______. In a picture:

Similarly, f has a right inverse if and only if _____.

If $y \in Y$, we will write $f^{-1}(y) = \{x \in X : f(x) = y\}$ for the fiber of y, and if this fiber consists of one element, we will abuse notation and also write this for the single element.

An inverse to f is a common left and right inverse. The function f has an inverse if and only if ______; if this inverse exists, it is unique, denoted $f^{-1}: Y \to X$ in line with the above. The cardinality of a set X is either:

- finite, if there is a bijection $X \xrightarrow{\sim} \{1, \ldots, n\}$ for some $n \in \mathbb{Z}_{\geq 0}$, and in this case we write #X = n;
- countable, if there is a bijection $X \xrightarrow{\sim} \mathbb{Z}$; or
- uncountable, otherwise.

If X is finite, we sometimes write $\#X < \infty$ and in the latter two cases, we write $\#X = \infty$. (This is just the beginning of a more advanced theory of cardinal numbers.)

3. Groups

Let X be a set. A binary operation on X is _____

Let * be a binary operation on X. The definition is still too general, and some binary operations are better than others!

- * is associative if ______.
- * has an identity if _____

Lemma. A binary operation can have at most one identity element.

Proof. _____

Definition. A monoid is a set X equipped with an associative binary operation * that has an identity. (We will never use them, but a semigroup is a nonempty set with an associative binary operation.)

Example. The set of positive integers $\mathbb{Z}_{>0}$ is a monoid under multiplication.

The set of nonnegative integers $\mathbb{Z}_{\geq 0}$ is a monoid under addition.

Monoids exist everywhere in mathematics, but they are still too general to study: their structure theory combines all the complications of combinatorics with algebra.

Let X be a monoid. An element $x \in X$ is invertible if there exists $y \in X$ such that ; the element y is unique if it exists because

so it is denoted x^{-1} and is called the inverse of x.

Definition. A group is a monoid in which every element is invertible.

The group axioms for a group G can be recovered from the requirement that a * x = b has a unique solution $x \in G$ for every $a, b \in G$.

<i>Example.</i> The smallest group is		, with the binary opera-
tion	. Examples of groups include:	
•		
•		
•		

Example. My favorite group is the quaternion group of order 8, defined by

Example. Let $n \in \mathbb{Z}_{>0}$. The dihedral group of order 2n, denoted D_{2n} (or sometimes D_n) is

In a group, the (left or right) cancellation law holds:

A group is:

- abelian (or commutative) if ______.
- finite if _____.
- dihedral if _____.

From now on, let G be a group.

Lemma. If $x^2 = 1$ for all $x \in G$, then G is abelian.

Proof. _____

The order of an element $x \in G$ is ______, and is denoted ______.

.

Example. Important examples are matrix groups. Let F be a field, a set with _____

We write $F^{\times} = F \setminus \{0\}$. For $n \in \mathbb{Z}_{\geq 1}$, let

$$\operatorname{GL}_n(F) = \{ A \in \operatorname{M}_n(F) : \det(A) \neq 0 \}$$

be the general linear group (of rank n) over F. Then $GL_n(F)$ is a group.

A homomorphism of groups $\phi : G \to G'$ is a map such that _____.

Let $\phi: G \to G'$ be a group homomorphism. Then we say ϕ is a(n):

- isomorphism if _____;
- automorphism if _____;
- endomorphism if _____;
- monomorphism if _____;
- epimorphism if ______.

A subgroup $H \leq G$ is a subset that is a group under the binary operation of G (closed under the binary operation and inverses).