MATH 101: ALGEBRA I HOMEWORK, DAY \#31

Problem JV31.A. Let R be a PID and let M be a finitely generated torsion R-module. Show that there exists $y \in M$ such that $\operatorname{Ann}(y)=\operatorname{Ann}(M)$.
Problem JV31.B. Let M be the \mathbb{Z}-module generated by $x_{1}, x_{2}, x_{3}, x_{4}$ subject to the relations

$$
\begin{aligned}
x_{1}+3 x_{2}-9 x_{3} & =0 \\
x_{1}+3 x_{2}+3 x_{3}+12 x_{4} & =0 \\
2 x_{1}+4 x_{2}+2 x_{3}+24 x_{4} & =0
\end{aligned}
$$

Give an explicit isomorphism of M to a direct sum of cyclic abelian groups. What are the invariant factors and elementary divisors of $\operatorname{Tor}(M)$?

