MATH 101: ALGEBRA I

 HOMEWORK, DAY \#19Let R be a ring and let M be a (left) R-module.
Problem JV19.A. An element $m \in M$ is called a torsion element if $r m=0$ for some nonzero $r \in R$. The set of torsion elements is denoted $\operatorname{Tor}(M)$.
(a) Prove that if R is an integral domain, then $\operatorname{Tor}(M)$ is a submodule of M.
(b) Give an example of a ring R and an R-module M such that $\operatorname{Tor}(M)$ is not a submodule.
(c) Show that if R has a zerodivisor then every nonzero R-module M has $\operatorname{Tor}(M) \neq\{0\}$.
(d) M is called a torsion module if $M=\operatorname{Tor}(M)$. Prove that every finite abelian group is a torsion \mathbb{Z}-module. Give an example of an infinite abelian group that is a torsion \mathbb{Z}-module.

