MATH 101: ALGEBRA I WORKSHEET, DAY \# 9

Problem JV9.A. Show that $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$ and $\mathbb{C} \otimes_{\mathbb{C}} \mathbb{C}$ are both \mathbb{R}-vector spaces, and compute their dimensions. Are they isomorphic as \mathbb{R}-vector spaces?
Problem JV9.B. Let F be a field, let V be a finite-dimensional F-vector space, and let $T: V \times V \rightarrow F$ be a nondegenerate symmetric bilinear form. Let $W \subseteq V$ be a F-subspace. Define $W^{\perp}=\{v \in V: T(v, W)=0\}$.
(a) Show that the map $V \rightarrow V^{*}$ by $v \mapsto T(v,-)$ maps W^{\perp} isomorphically to ann (W).
(b) Deduce that $\operatorname{dim} V=\operatorname{dim} W+\operatorname{dim} W^{\perp}$.
(c) Suppose that $\left.T\right|_{W \times W}$ is nondegenerate (accordingly, we say that W is a nondegenerate subspace under T). Show that $V=W \oplus W^{\perp}$. In this case, we say W^{\perp} is the orthogonal complement of the nondegenerate subspace W.
(d) Define the orthogonal projection onto W. Then let $V=\mathbb{R}^{3}$ have the standard inner product and let

$$
W=\left\{(x, y, z) \in \mathbb{R}^{3}: x+y+z=0\right\}
$$

and compute its matrix with respect to the standard basis.

