
MATH 101: ALGEBRA I

FINAL EXAM SOLUTIONS

Problem 1. Let F be a field. For a group G written multiplicatively, recall that the group algebra F [G] is
the F -vector space with basis G and multiplication induced by the group law in G, extended F -linearly.

Let G = S3, let τ = (1 2), and let α = 1 + τ ∈ F [G].

(a) The element α acts F -linearly by left multiplication on F [G]:

T : F [G]→ F [G]

β 7→ αβ

Compute the matrix of T with respect to a basis of elements of G.
(b) Compute the minimal polynomial and characteristic polynomial of T .
(c) Let B = F [G], let I = {αβ : β ∈ B} be the right ideal of B generated by α. Observe that I and

B/I are F -vector spaces, and compute dimF I and dimF (B/I).

Solution. For (a), let σ = (1 2 3). Then τσ = (1 2)(1 2 3) = (2 3) and τσ2 = (1 2)(1 3 2) = (1 3). Therefore
in the basis

1, τ, σ, τσ, σ2, τσ2 = (), (1 2), (1 2 3), (2 3), (1 3 2), (1 3)

we compute

α1 = α = 1 + τ

ατ = (1 + τ)τ = τ + τ2 = 1 + τ

ασ = (1 + τ)σ = σ + τσ

. . .

which gives the matrix

[T ] =


1 1 0 0 0 0
1 1 0 0 0 0
0 0 1 1 0 0
0 0 1 1 0 0
0 0 0 0 1 1
0 0 0 0 1 1

 .

For (b), because [T ] is a block matrix, the minimal polynomial of T is the same as the minimal polynomial

of a block B =

(
1 1
1 1

)
; this matrix satisfies f(x) = x2 − 2x = x(x− 2) and is not a scalar matrix, so f(x)

is the minimal polynomial. The characteristic polynomial is f(x)3 = x3(x− 2)3.
For (c), it is clear that I is a right ideal; and from above, we see that the image of multiplication by α has

dimension 3, so dimF I = 3, and by rank-nullity dimF F [G]/I = dimF F [G]− dimF I = 6− 3 = 3 as well.

Problem 2. Let n ∈ Z≥1. Let A ∈ GLn(C) have n distinct eigenvalues λ1, . . . , λn. Let V = Mn(C). Find
the eigenvalues of the C-linear map

T : V → V

M 7→ AMA−1.

Date: Tuesday, 22 November 2016.

1



Solution. Note A ∈ GLn(C) implies λi ∈ C×. Since A has n distinct eigenvalues, it is diagonalizable, and
there is a matrix P ∈ GLn(C) such that PAP−1 = diag(λ1, . . . , λn) = D. Let Eij be the matrix unit with
1 in the ith row and jth column; then Eij is a basis for V , with 1 ≤ i, j ≤ n. We compute

DEijD
−1 = λiλ

−1
j Eij

so for A = D we have n2 eigenvalues λiλ
−1
j with 1 ≤ i, j ≤ n. But these are also the n2 eigenvalues for T by

taking the basis P−1EijP instead (check directly still a basis): since

AMA−1 = P−1D(PMP−1)D−1P

we have

AP−1EijPA
−1 = P−1DEijD

−1P = λiλ
−1
j P−1EijP.

Problem 3. Let p be an odd prime, and let G = GL2(Fp).

(a) Prove that a p-Sylow subgroup of G is cyclic, and exhibit a p-Sylow subgroup of G.
(b) Give two different reasons why every p-Sylow subgroup of G is conjugate to the one given in (a), at

least one of which implies that any two generators of two p-Sylow subgroups are conjugate.
(c) Show that there are exactly p+ 1 distinct p-Sylow subgroups in G.

Solution. For (a), we have # GL2(Fp) = (p2 − 1)(p2 − p) = p(p − 1)2(p + 1), so p ‖ #G, and a group of
prime order is cyclic. To exhibit a p-Sylow subgroup, we need only find an element of order p: the matrix

J =

(
1 1
0 1

)
will do.

For (b): the first reason is Sylow’s theorem, which says that all Sylow p-subgroups are conjugate; the
second reason is because any generator of a p-Sylow subgroup is not scalar and satisfies xp = 1 so xp − 1 =
(x− 1)p = 0, so its minimal polynomial is (x− 1)2 (it cannot a scalar matrix, since such a matrix has order
dividing p− 1) and therefore is conjugate to the matrix J .

Now (c). First proof. The p-Sylow subgroups of GL2(Fp) are the same as the p-Sylow subgroups of
SL2(Fp): an element of order p necessarily has determinant 1. By Sylow’s theorem we know that the number
np of p-Sylow subgroups has np ≡ 1 (mod p) and np | # SL2(Fp)/p = (p − 1)(p + 1). We can see that
np > 1, since we could also take the lower triangular subgroup in place of J , so np ≥ p + 1. Now Write
np = 1 + kp ≥ 1 + p so that (1 + kp)d = p2 − 1 for some d ∈ Z>0; then d ≡ −1 (mod p), so d ≥ p− 1. But
that already maxes us out: we must have d = p− 1 and np = p+ 1.

Second proof: by (b), the group GL2(Fp) acts transitively by conjugation on the set X of elements of
order p. By the orbit-stabilizer formula, we have #X = #G/# StabG(J). The linear algebra calculation
AJ = JA shows that

A ∈ StabG(J) =

{(
a b
0 a

)
: a ∈ F×

p , b ∈ Fp

}
with # StabG(J) = p(p− 1), so #X = (p− 1)(p+ 1). There are p− 1 generators of each p-Sylow subgroup,
so the total number is p+ 1.

Third proof (really the same as second proof): by the first part of (b), as for any group, G acts transitively
by conjugation on Sylp(G); the stabilizer of a subgroup H ∈ Sylp(G) is the normalizer NG(H), so np(G) =

#G/#NG(H). Now compute AJ =

(
1 ∗
0 1

)
A to see that

NG(H) =

{(
a b
0 c

)
: a, c ∈ F×

p , b ∈ Fp

}
of order p(p− 1)2, and conclude again that np(G) = p+ 1.

Problem 4. Let k be a field and let R = k[x, y] be the polynomial ring over k in the variables x, y.

(a) Show that the ideal (x) ⊆ R generated by x is a projective R-module.
(b) Show that the ideal (x, y) generated by both x, y is not a projective R-module. [Hint: Show that

the surjective R-module homomorphism φ : R2 → (x, y) defined by φ(e1) = x and φ(e2) = y does not
split, where e1, e2 is the standard basis for R2.]
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Solution. For (a), (x) = xR is free, so projective.
For (b), we take the hint and the map φ. Let I = (x, y). Suppose that µ : I → R2 is a splitting, so µ is

an R-module homomorphism with φµ = idI . Let µ(x) = ae1 + be2 ∈ R2 and µ(y) = ce1 + de2 ∈ R2. Then

x = (φµ)(x) = φ(ae1 + be2) = ax+ by

(and similarly y = cx+ dy). But also

µ(xy) = xµ(y) = yµ(x) = aye1 + bye2 = cxe1 + dxe2.

Thus by = dx and ay = cx. Since R is a UFD and x, y are nonassociate irreducibles (by degree), we have
x | a and x | b; therefore x = (a/x)x2 + (b/x)xy, and since R is a domain, we conclude 1 = (a/x)x+ (b/x)y.
Therefore 1 ∈ (x, y), a contradiction. Since there is no splitting, (x, y) cannot be a projective R-module.

Problem 5. Let R = Z[i] where i2 = −1.

(a) Compute a generator of the ideal (3 + 11i, 1 + 3i).
(b) Let M be the R-module generated by x1, x2, x3 subject to the relations

(i+ 1)x2 + (i− 1)x3 = 0

6x1 + (3i− 1)x2 − (i+ 9)x3 = 0

Compute the rank of M and the invariant factors of the torsion submodule Tor(M).

Proof. For (a), we use the Euclidean algorithm for Z[i]: we have (3+11i)/(1+3i) = (18+ i)/5 which rounds
to 4, and 3 + 11i− 4(1 + 3i) = −i− 1, and (1 + 3i)/(1 + i) = i+ 2 so 1 + i is a generator.

We compute the Smith normal form using row and column operations over Z[i] to get(
1 + i 0 0

0 6 0

)
which implies that M ' R/(1 + i) ⊕ R/(6) ⊕ R (adding a superfluous zero relation); the rank is 1 and the
invariant factors are (1 + i) | (6). �

Problem 6. Let R be a commutative ring and let M,N be R-modules.

(a) State the universal property of M ⊗R N .
(b) Suppose that R is a domain with field of fractions F , and that N ⊆ M is an R-submodule such

that M/N is a torsion R-module. Show that the inclusion N ↪→ M induces an F -vector space
isomorphism

N ⊗R F
∼−→M ⊗R F.

Solution. Part (a) is standard. For (b), we define a map N × F → M ⊗R F by (y, a) 7→ y ⊗ a; this map is
R-bilinear, so by the universal property we have an R-module homomorphism N⊗RF →M⊗RF . This map
is further an F -vector space map: it is still linear, and we can just as easily scale in the F -component. We
can then argue with linear algebra over F to show it is an isomorphism; we find it easier to define an inverse
map as follows. We define a map ψ : M ×F → N ⊗RF in the following way: let (x, a) ∈M ×F . Then M/N
is torsion, so there exists nonzero r ∈ R such that rx ∈ N ; we define ψ(x, a) = (rx) ⊗ (ar−1) ∈ N ⊗R F .
This map is well-defined: if sx ∈ N , then

rs(sx⊗ as−1) = sx⊗ ar = rsx⊗ a = rx⊗ as = rs(rx⊗ ar−1)

so since N ⊗R F is a vector space and rs 6= 0, we have sx ⊗ as−1 = rx ⊗ ar−1. By the universal property,
we get an R-module homomorphism ψ and then an F -vector space map. It is routine then to check that the
composition of these two maps in either direction is the identity.

If you’re willing to take for granted things some things we proved in class, this can be made a bit faster,
at least when M,N are finitely generated: when M/N is torsion, we showed that M and N have the same
rank (maximal cardinality of a linearly independent set), and that rkRM = dimF (M ⊗R F ), indeed, the
linearly independent over R (and spanning) implies linearly independent over F (and spanning). See the
next paragraph for the fast proof that the map is surjective; it is then an isomorphism by dimensions.
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(Final, more ‘advanced’ proof: F is flat over R, so the inclusion φ gives an injection φ ⊗ 1 : N ⊗R F ↪→
M ⊗R F . The map is surjective: it is enough to show this on simple tensors, and just as above, given x⊗ a
and rx ∈ N , we have r(x⊗ a) = rx⊗ a ∈ img φ, so since img φ is an F -vector space, we have x⊗ a ∈ img φ.)
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