
MATH 101: ALGEBRA I

MIDTERM EXAM SOLUTIONS

Problem 1. Let G be a group. Indicate if the following statements are true or false. If true, give a proof;
if false, give an explicit counterexample.

(a) If H,H ′ E G and G/H ' G/H ′, then H ' H ′.
(b) If H,H ′ E G and H ' H ′, then G/H ' G/H ′.
(c) If K,K ′ are groups and G×K ' G×K ′, then K ' K ′.

Solution. Part (a) is false. Take G = Z/4Z × Z/2Z, H = 〈(0, 1)〉 ' Z/2Z and H ′ = 〈(2, 0)〉 ' Z/2Z. Then
G/H ' Z/4Z and G/H ′ ' Z/2Z× Z/2Z.

Part (b) is also false. Take G = Z and H = Z and H ′ = 2Z ' Z; then G/H = {1} 6' Z/2Z ' G/H ′.
Part (c) is also also false. Take G to be a countable product of copies of Z/2Z, and K = Z/2Z and

K ′ = Z/2Z × Z/2Z. Then K 6' K ′, but G ' G × K ' G × K ′ are all isomorphic. (It turns out that if
G,K,K ′ are finite, then the result becomes true, but this is not easy to prove.)

Problem 2. Let R be a Euclidean domain with norm N .

(a) Let
m = min({N(a) : a ∈ R, a 6= 0}).

Show that every nonzero a ∈ R with N(a) = m is a unit in R.
(b) Deduce that a nonzero element of norm zero in R is a unit; show by an example that the converse

of this statement is false.
(c) Let F be a field and let R = F [[x]]. Show that R is Euclidean. What does part (a) tell you about

R×? What are the irreducibles in R, up to associates?

Solution. Let a be a nonzero element of norm m. Then we can write 1 = qa + r with r = 0 or N(r) <
N(a) = m. We cannot have the latter, since m is the smallest such, hence r = 0 so 1 = qa and hence a ∈ R∗,
which proves (a). For (b), if there is an element of norm zero then m = 0 so by (a) every nonzero element
of norm zero is a unit. The converse of this statement is false, namely, that every unit has norm zero: the
ring Z[i] is a Euclidean domain and a ∈ Z[i] is a unit with respect to the complex norm if and only it has
norm 1.

Finally, part (c). For α = anx
n + · · · ∈ F [[x]] with an 6= 0, we define the norm N(α) = n ≥ 0. Then

R is Euclidean under this norm as follows. Let α, β ∈ R with β 6= 0. If N(α) < N(β), then we can
write α = 0β + α. Otherwise N(α) ≥ N(β), and we claim β | α, i.e., α = (α/β)α + 0 with α/β ∈ F [[x]].
Indeed, write α = xN(α)α0(x) and β = xN(β)β0(x) with β0(x) = b0 + . . . and b0 6= 0; we showed in class
that β0(x) ∈ F [[x]]× by solving linear equations, so α/β = xn−mα0(x)β0(x)−1 ∈ F [[x]]. Therefore F [[x]]
is Euclidean under this norm. Then part (a) reminds us that R× = F [[x]]× consists of the elements with
nonzero constant term, reading off the definition of the norm. The only irreducible, up to associates, is x.
Indeed, we know that F [[x]] is a UFD so irreducibles are the same as primes, and F [[x]]/(x) ' F so x is
irreducible; and any α(x) = xN(α)α0(x) 6= 0 with α0(x) ∈ F [[x]]× is then a factorization of α(x) as a power
of the irreducible x (times a unit).

Problem 3. Let F be a field and let V = Mat2×3(F ) be the F -vector space of 2× 3-matrices.

(a) The group GL2(F ) acts on V by left multiplication. For M,M ′ ∈ V , the relation M ∼ M ′ if and
only if M ′ = AM for some A ∈ GL2(F ) defines an equivalence relation on V .

What are the equivalence classes (i.e., the orbits of the action)?
(b) Show that this action GL2(F ) � V induces an injective group homomorphism

φ : GL2(F ) ↪→ AutF (V ).
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(c) Under the isomorphism AutF (V ) ' GL6(F ) given by the basis of matrix units, describe φ explicitly.

Solution. For (a), a matrix A ∈ GL2(F ) acts on the left by row operations. So every M ∈ V can be put into
reduced row echelon form by this action. By linear algebra, the reduced row echelon form is unique. The
possible forms (choosing pivots) are(

1 0 ∗
0 1 ∗

)
,

(
1 ∗ 0
0 0 1

)
,

(
1 ∗ ∗
0 0 0

)
,

(
0 1 0
0 0 1

)
,

(
0 1 ∗
0 0 0

)
,

(
0 0 1
0 0 0

)
,

(
0 0 0
0 0 0

)
where ∗ denotes an arbitrary element of F .

For (b), we get a map φ : GL2(F )→ EndF (V ) because matrix multiplication map is F -linear:

A(M + cM ′) = AM + cAM ′ for all A ∈ GL2(F ), M,M ′ ∈ V , and c ∈ F .
The map is a homomorphism because this holds for matrix multiplication:

φ(AB)(M) = (AB)M = A(B(M)) = (φ(A) ◦ φ(B))(M)

for all A,B ∈ GL2(F ) and M ∈ V . In a group action, we always have the image landing in the symmetric
group on the set (acting bijectively), and indeed the inverse to A is A−1, so the image lands in AutF (V ).

Finally, the map is injective: take M =

(
1 0 0
0 1 0

)
to see that AM = M implies A = 1.

For (c), taking the basis e11, e21, e12, e22, e13, e23, and noting that matrix multiplication acts independently
on column vectors, we compute that φ(A) is the block diagonal matrix with three copies of A down the
diagonal, for each A ∈ GL2(F ).

Problem 4. For the purposes of this exercise, we say that an isomorphism of F -vector spaces is natural if
it does not depend on a choice of basis.

Let F be a field and let V,W be finite-dimensional vector spaces over F . Show that there is a (well-defined)
natural isomorphism of F -vector spaces

φ : V ∗ ⊗F W
∼−→ HomF (V,W ).

Solution. To start, note that

dimF (V ⊗F W ∗) = dimF (V ) dimF (W ∗) = dimF (V ) dimF (W ) = dimF HomF (V,W )

so there certainly is an isomorphism. By this dimension count, it is enough to exhibit a natural injective
F -linear map.

There is really only one thing we could write down: given a simple tensor f ⊗ w ∈ V ∗ ⊗W , we define
φ(f ⊗ w) ∈ HomF (V,W ) by φ(f ⊗ w)(v) = f(v)w, and we extend the map to a sum of simple tensors by
linearity. The map φ(f ⊗ w) is indeed F -linear, since

φ(f ⊗ w)(v + cv′) = f(v + cv′)w = f(v)w + cf(v′)w = φ(f ⊗ w)(v) + cφ(f ⊗ w)(v′).

To show tjat φ is well-defined, we observe first that

φ((f + cf ′)⊗ w)(v) = (f + cf ′)(v)w = f(v)w + cf ′(v)w = φ(f ⊗ w)(v) + cφ(f ′ ⊗ w)(v)

for all f, f ′ ∈ V ∗, c ∈ F , v ∈ V , and w ∈W , so we conclude that

φ((f + cf ′)⊗ w) = φ(f ⊗ w) + cφ(f ′ ⊗ w).

In a similar fashion, one can show that

φ(f ⊗ (w + cw′)) = φ(f ⊗ w) + cφ(f ⊗ w′).
and immediately we see that the map φ is F -linear.

To show that φ is injective, we may choose a basis v1, . . . , vn of V and w1, . . . , wm of W . Let v∗i be the
dual basis of V ∗. Then v∗i ⊗ wj is an F -basis of V ∗ ⊗W . Let

∑
i,j cijv

∗
i ⊗ wj ∈ kerφ. Then for all v ∈ V ,

we have

φ

(∑
i,j

cijv
∗
i ⊗ wj

)
(v) =

∑
i,j

cijv
∗
i (v)wj =

∑
j

(∑
i

cijv
∗
i (v)

)
wj = 0.

Since the wj are linearly independent, we have
∑
i cijv

∗
i (v) = 0 for all j and all v ∈ V , which means∑

i cijv
∗
i = 0; but the v∗i are linearly independent, so cij = 0 for all i, j.
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