MATH 101: ALGEBRA I MIDTERM EXAM SOLUTIONS

Problem 1. Let G be a group. Indicate if the following statements are true or false. If true, give a proof; if false, give an explicit counterexample.
(a) If $H, H^{\prime} \unlhd G$ and $G / H \simeq G / H^{\prime}$, then $H \simeq H^{\prime}$.
(b) If $H, H^{\prime} \unlhd G$ and $H \simeq H^{\prime}$, then $G / H \simeq G / H^{\prime}$.
(c) If K, K^{\prime} are groups and $G \times K \simeq G \times K^{\prime}$, then $K \simeq K^{\prime}$.

Solution. Part (a) is false. Take $G=\mathbb{Z} / 4 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}, H=\langle(0,1)\rangle \simeq \mathbb{Z} / 2 \mathbb{Z}$ and $H^{\prime}=\langle(2,0)\rangle \simeq \mathbb{Z} / 2 \mathbb{Z}$. Then $G / H \simeq \mathbb{Z} / 4 \mathbb{Z}$ and $G / H^{\prime} \simeq \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$.

Part (b) is also false. Take $G=\mathbb{Z}$ and $H=\mathbb{Z}$ and $H^{\prime}=2 \mathbb{Z} \simeq \mathbb{Z}$; then $G / H=\{1\} \nsucceq \mathbb{Z} / 2 \mathbb{Z} \simeq G / H^{\prime}$.
Part (c) is also also false. Take G to be a countable product of copies of $\mathbb{Z} / 2 \mathbb{Z}$, and $K=\mathbb{Z} / 2 \mathbb{Z}$ and $K^{\prime}=\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$. Then $K \nsimeq K^{\prime}$, but $G \simeq G \times K \simeq G \times K^{\prime}$ are all isomorphic. (It turns out that if G, K, K^{\prime} are finite, then the result becomes true, but this is not easy to prove.)

Problem 2. Let R be a Euclidean domain with norm N.
(a) Let

$$
m=\min (\{N(a): a \in R, a \neq 0\})
$$

Show that every nonzero $a \in R$ with $N(a)=m$ is a unit in R.
(b) Deduce that a nonzero element of norm zero in R is a unit; show by an example that the converse of this statement is false.
(c) Let F be a field and let $R=F[[x]]$. Show that R is Euclidean. What does part (a) tell you about R^{\times}? What are the irreducibles in R, up to associates?

Solution. Let a be a nonzero element of norm m. Then we can write $1=q a+r$ with $r=0$ or $N(r)<$ $N(a)=m$. We cannot have the latter, since m is the smallest such, hence $r=0$ so $1=q a$ and hence $a \in R^{*}$, which proves (a). For (b), if there is an element of norm zero then $m=0$ so by (a) every nonzero element of norm zero is a unit. The converse of this statement is false, namely, that every unit has norm zero: the ring $\mathbb{Z}[i]$ is a Euclidean domain and $a \in \mathbb{Z}[i]$ is a unit with respect to the complex norm if and only it has norm 1.

Finally, part (c). For $\alpha=a_{n} x^{n}+\cdots \in F[[x]]$ with $a_{n} \neq 0$, we define the norm $N(\alpha)=n \geq 0$. Then R is Euclidean under this norm as follows. Let $\alpha, \beta \in R$ with $\beta \neq 0$. If $N(\alpha)<N(\beta)$, then we can write $\alpha=0 \beta+\alpha$. Otherwise $N(\alpha) \geq N(\beta)$, and we claim $\beta \mid \alpha$, i.e., $\alpha=(\alpha / \beta) \alpha+0$ with $\alpha / \beta \in F[[x]]$. Indeed, write $\alpha=x^{N(\alpha)} \alpha_{0}(x)$ and $\beta=x^{N(\beta)} \beta_{0}(x)$ with $\beta_{0}(x)=b_{0}+\ldots$ and $b_{0} \neq 0$; we showed in class that $\beta_{0}(x) \in F[[x]]^{\times}$by solving linear equations, so $\alpha / \beta=x^{n-m} \alpha_{0}(x) \beta_{0}(x)^{-1} \in F[[x]]$. Therefore $F[[x]]$ is Euclidean under this norm. Then part (a) reminds us that $R^{\times}=F[[x]]^{\times}$consists of the elements with nonzero constant term, reading off the definition of the norm. The only irreducible, up to associates, is x. Indeed, we know that $F[[x]]$ is a UFD so irreducibles are the same as primes, and $F[[x]] /(x) \simeq F$ so x is irreducible; and any $\alpha(x)=x^{N(\alpha)} \alpha_{0}(x) \neq 0$ with $\alpha_{0}(x) \in F[[x]]^{\times}$is then a factorization of $\alpha(x)$ as a power of the irreducible x (times a unit).
Problem 3. Let F be a field and let $V=\operatorname{Mat}_{2 \times 3}(F)$ be the F-vector space of 2×3-matrices.
(a) The group $\mathrm{GL}_{2}(F)$ acts on V by left multiplication. For $M, M^{\prime} \in V$, the relation $M \sim M^{\prime}$ if and only if $M^{\prime}=A M$ for some $A \in \mathrm{GL}_{2}(F)$ defines an equivalence relation on V.

What are the equivalence classes (i.e., the orbits of the action)?
(b) Show that this action $\mathrm{GL}_{2}(F) \circlearrowright V$ induces an injective group homomorphism

$$
\phi: \mathrm{GL}_{2}(F) \hookrightarrow \operatorname{Aut}_{F}(V)
$$

(c) Under the isomorphism $\operatorname{Aut}_{F}(V) \simeq \mathrm{GL}_{6}(F)$ given by the basis of matrix units, describe ϕ explicitly.

Solution. For (a), a matrix $A \in \mathrm{GL}_{2}(F)$ acts on the left by row operations. So every $M \in V$ can be put into reduced row echelon form by this action. By linear algebra, the reduced row echelon form is unique. The possible forms (choosing pivots) are

$$
\left(\begin{array}{lll}
1 & 0 & * \\
0 & 1 & *
\end{array}\right),\left(\begin{array}{lll}
1 & * & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{lll}
1 & * & * \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{lll}
0 & 1 & * \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

where $*$ denotes an arbitrary element of F.
For (b), we get a map $\phi: \mathrm{GL}_{2}(F) \rightarrow \operatorname{End}_{F}(V)$ because matrix multiplication map is F-linear:

$$
A\left(M+c M^{\prime}\right)=A M+c A M^{\prime} \quad \text { for all } A \in \mathrm{GL}_{2}(F), M, M^{\prime} \in V, \text { and } c \in F .
$$

The map is a homomorphism because this holds for matrix multiplication:

$$
\phi(A B)(M)=(A B) M=A(B(M))=(\phi(A) \circ \phi(B))(M)
$$

for all $A, B \in \mathrm{GL}_{2}(F)$ and $M \in V$. In a group action, we always have the image landing in the symmetric group on the set (acting bijectively), and indeed the inverse to A is A^{-1}, so the image lands in $\operatorname{Aut}_{F}(V)$. Finally, the map is injective: take $M=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$ to see that $A M=M$ implies $A=1$.

For (c), taking the basis $e_{11}, e_{21}, e_{12}, e_{22}, e_{13}, e_{23}$, and noting that matrix multiplication acts independently on column vectors, we compute that $\phi(A)$ is the block diagonal matrix with three copies of A down the diagonal, for each $A \in \mathrm{GL}_{2}(F)$.
Problem 4. For the purposes of this exercise, we say that an isomorphism of F-vector spaces is natural if it does not depend on a choice of basis.

Let F be a field and let V, W be finite-dimensional vector spaces over F. Show that there is a (well-defined) natural isomorphism of F-vector spaces

$$
\phi: V^{*} \otimes_{F} W \xrightarrow{\sim} \operatorname{Hom}_{F}(V, W) .
$$

Solution. To start, note that

$$
\operatorname{dim}_{F}\left(V \otimes_{F} W^{*}\right)=\operatorname{dim}_{F}(V) \operatorname{dim}_{F}\left(W^{*}\right)=\operatorname{dim}_{F}(V) \operatorname{dim}_{F}(W)=\operatorname{dim}_{F} \operatorname{Hom}_{F}(V, W)
$$

so there certainly is an isomorphism. By this dimension count, it is enough to exhibit a natural injective F-linear map.

There is really only one thing we could write down: given a simple tensor $f \otimes w \in V^{*} \otimes W$, we define $\phi(f \otimes w) \in \operatorname{Hom}_{F}(V, W)$ by $\phi(f \otimes w)(v)=f(v) w$, and we extend the map to a sum of simple tensors by linearity. The map $\phi(f \otimes w)$ is indeed F-linear, since

$$
\phi(f \otimes w)\left(v+c v^{\prime}\right)=f\left(v+c v^{\prime}\right) w=f(v) w+c f\left(v^{\prime}\right) w=\phi(f \otimes w)(v)+c \phi(f \otimes w)\left(v^{\prime}\right)
$$

To show tjat ϕ is well-defined, we observe first that

$$
\phi\left(\left(f+c f^{\prime}\right) \otimes w\right)(v)=\left(f+c f^{\prime}\right)(v) w=f(v) w+c f^{\prime}(v) w=\phi(f \otimes w)(v)+c \phi\left(f^{\prime} \otimes w\right)(v)
$$

for all $f, f^{\prime} \in V^{*}, c \in F, v \in V$, and $w \in W$, so we conclude that

$$
\phi\left(\left(f+c f^{\prime}\right) \otimes w\right)=\phi(f \otimes w)+c \phi\left(f^{\prime} \otimes w\right)
$$

In a similar fashion, one can show that

$$
\phi\left(f \otimes\left(w+c w^{\prime}\right)\right)=\phi(f \otimes w)+c \phi\left(f \otimes w^{\prime}\right) .
$$

and immediately we see that the map ϕ is F-linear.
To show that ϕ is injective, we may choose a basis v_{1}, \ldots, v_{n} of V and w_{1}, \ldots, w_{m} of W. Let v_{i}^{*} be the dual basis of V^{*}. Then $v_{i}^{*} \otimes w_{j}$ is an F-basis of $V^{*} \otimes W$. Let $\sum_{i, j} c_{i j} v_{i}^{*} \otimes w_{j} \in \operatorname{ker} \phi$. Then for all $v \in V$, we have

$$
\phi\left(\sum_{i, j} c_{i j} v_{i}^{*} \otimes w_{j}\right)(v)=\sum_{i, j} c_{i j} v_{i}^{*}(v) w_{j}=\sum_{j}\left(\sum_{i} c_{i j} v_{i}^{*}(v)\right) w_{j}=0
$$

Since the w_{j} are linearly independent, we have $\sum_{i} c_{i j} v_{i}^{*}(v)=0$ for all j and all $v \in V$, which means $\sum_{i} c_{i j} v_{i}^{*}=0$; but the v_{i}^{*} are linearly independent, so $c_{i j}=0$ for all i, j.

