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Preface

Goal

Quaternion algebras sit prominently at the intersection of many mathematical subjects.
They capture essential features of noncommutative ring theory, number theory, K-
theory, group theory, geometric topology, Lie theory, functions of a complex variable,
spectral theory of Riemannian manifolds, arithmetic geometry, representation theory,
the Langlands program—and the list goes on. Quaternion algebras are especially
fruitful to study because they often reflect some of the general aspects of these subjects,
while at the same time they remain amenable to concrete argumentation. Moreover,
quaternions often encapsulate unique features that are absent from the general theory
(even as they provide motivation for it).

With this in mind, the main goal in writing this text is to introduce a large subset
of the above topics to graduate students interested in algebra, geometry, and number
theory. To get the most out of reading this text, readers will likely want to have
been exposed to some algebraic number theory, commutative algebra (e.g., module
theory, localization, and tensor products), as well as the fundamentals of linear algebra,
topology, and complex analysis. For certain sections, further experience with objects in
differential geometry or arithmetic geometry (e.g., Riemannian manifolds and elliptic
curves), may be useful. With these prerequisites in mind, I have endeavored to present
the material in the simplest, motivated version—full of rich interconnections and
illustrative examples—so even if the reader is missing a piece of background, it can be
quickly filled in.

Unfortunately, this text only scratches the surface of most of the topics covered
in the book! In particular, some appearances of quaternion algebras in arithmetic
geometry that are dear to me are absent, as they would substantially extend the length
and scope of this already long book. I hope that the presentation herein will serve as a
foundation upon which a detailed and more specialized treatment of these topics will
be possible.

I have tried to maximize exposition of ideas and minimize technicality: sometimes
I allow a quick and dirty proof, but sometimes the “right level of generality” (where
things can be seen most clearly) is pretty abstract. So my efforts have resulted in a level
of exposition that is occasionally uneven jumping between sections. I consider this a
feature of the book, and I hope that the reader will agree and feel free to skip around
(see How to use this book below). I tried to “reboot” at the beginning of each part
and again at the beginning of each chapter, to refresh our motivation. For researchers
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working with quaternion algebras, I have tried to collect results otherwise scattered
in the literature and to provide some clarifications, corrections, and complete proofs
in the hopes that this text will provide a convenient reference. In order to provide
these features, to the extent possible I have opted for an organizational pattern that is
“horizontal” rather than “vertical”: the text has many chapters, each representing a
different slice of the theory.

I tried to compactify the text as much as possible, without sacrificing completeness.
There were a few occasions when I thought a topic could use further elaboration or has
evolved from the existing literature, but did not want to overburden the text; I collected
these in a supplementary text Quaternion algebras companion, available at the website
for the text at http://quatalg.org.

As usual, each chapter also contains a number of exercises at the end, ranging
from checking basic facts used in a proof to more difficult problems that stretch the
reader. Exercises that are used in the text are marked by ». For a subset of exercises
(including many of those marked with »), there are hints, comments, or a complete
solution available online.

How to use this book

With apologies to Whitman, this book is large, it contains multitudes—and hopefully,
it does not contradict itself!

There is no obligation to read the book linearly cover to cover, and the reader is
encouraged to find their own path, such as one the following.

1. For an introductory survey course on quaternion algebras, read just the introduc-
tory sections in each chapter, those labelled with >, and supplement with sections
from the text when interested. These introductions usually contain motivation
and a summary of the results in the rest of the chapter, and I often restrict the
level of generality or make simplifying hypotheses so that the main ideas are
made plain. The reader who wants to quickly and gently grab hold of the basic
concepts may digest the book in this way. The instructor may desire to fill in
some further statements or proofs to make for a one semester course: chapters
1,2, 11, 25, and 35 could be fruitfully read in their entirety.

2. For a mini-course in noncommutative algebra with emphasis on quaternion
algebras, read just part I. Such an early graduate course would have minimal
prerequisites and in a semester could be executed at a considered pace; it would
provide the foundation for further study in many possible directions.

3. For quaternion algebras and algebraic number theory, read parts I and II. This
course would be a nice second-semester addition following a standard first-
semester course in algebraic number theory, suitable for graduate students in
algebra and number theory who are motivated to study quaternion algebras as
“noncommutative quadratic fields”. For a lighter course, chapters 6, 20, and
21 could be skipped, and the instructor may opt to cover only the introductory
section of a chapter for reasons of time and interest. To reinforce concepts from
algebraic number theory, special emphasis could be placed on chapter 13 (where
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local division algebras are treated like local fields) and 18 (where maximal orders
are treated like noncommutative Dedekind domains).

There are also more specialized options, beginning with the introductory sections
in part [ and continuing as follows.

4. For quaternion algebras and analytic number theory, continue with the intro-
ductory sections in part II (just chapters 9—17), and then cover part III (at least
through Chapter 29). This course could follow a first-semester course in an-
alytic number theory, enriching students’ understanding of zeta functions and
L-functions (roughly speaking, beginning the move from GL; to GL;). The
additional prerequisite of real analysis (measure theory) is recommended. Op-
tionally, this course could break after chapter 26 to avoid adeles, and perhaps
resume in an advanced topics course with the remaining chapters.

5. For quaternionic applications to geometry (specifically, hyperbolic geometry
and low-dimensional topology), continue with the introductory sections in part
II (through chapter 14), and then cover part IV (optionally skipping Chapter 32).

6. For an advanced course on quaternion algebras and arithmetic geometry, con-
tinue with part I, the introductory sections in part IV, and part V. Chapter 41
could be read immediately after part II. This path is probably most appropriate
for an advanced course for students with some familiarity with modular forms
and some hyperbolic geometry, and chapter 42 is probably only meaningful for
students with a background in elliptic curves (though the relevant concepts are
reviewed at the start).

7. Finally, for the reader who is studying quaternion algebras with an eye to appli-
cations with supersingular elliptic curves, the reader may follow chapters 2—4,
9-10, 13-14, 16 =17, 23, then the main event in chapter 42. For further reading
on quaternion orders and ternary quadratic forms, I suggest chapters 5, 22, and
24.

Sections of the text that are more advanced (requiring more background) or those
may be omitted are labeled with *. The final chapter (Chapter 43) is necessarily
more advanced, and additional prerequisites in algebraic and arithmetic geometry are
indicated.

Itis a unique feature of quaternion algebras that topics overlap and fold together like
this, and so I hope the reader will forgive the length of the book. The reader may find
the symbol definition list at the end to help in identifying unfamiliar notation. Finally,
to ease in location I have chosen to number all objects (theorem-like environments,
equations, and figures) consecutively.

Companion reading
Several general texts can serve as companion reading for this monograph:

* The lecture notes of Vignéras [Vig80a] have been an essential reference for the
arithmetic of quaternion algebras since their publication.
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* The seminal text by Reiner [Rei2003] on maximal orders treats many introduc-
tory topics that overlap this text.

e The book of Maclachlan—Reid [MR2003] gives an introduction to quaternion
algebras with application to the geometry of 3-manifolds.

* The book by Deuring [Deu68] (in German) develops the theory of algebras over
fields, culminating in the treatment of zeta functions of division algebras over
the rationals, and may be of historical interest as well.

* Finally, Pizer [Piz76a] and Alsina—Bayer [AB2004] present arithmetic and al-
gorithmic aspects of quaternion algebras over Q.
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Chapter 1

Introduction

We begin following the historical arc of quaternion algebras and tracing their impact
on the development of mathematics. Our account is selective: for further overview,
see Lam [Lam2003] and Lewis [Lew2006a].

1.1 Hamilton’s quaternions

In perhaps the “most famous act of mathematical vandalism” [GMcN2012, p. 86], on
October 16, 1843, Sir William Rowan Hamilton (1805-1865, Figure 1.1.2) carved the
following equations into the Brougham Bridge (now Broom Bridge) in Dublin:

2= =k?=ijk=-1. (1.1.1)

His discovery was a defining moment in the history of algebra (Figure 1.1.3).

Figure 1.1.2: William Rowan Hamilton
(public domain; scan by Wellesley College Library)

1



2 CHAPTER 1. INTRODUCTION

For at least ten years (on and off), Hamilton had been attempting to model (real)
three-dimensional space with a structure like the complex numbers, whose addition
and multiplication occur in two-dimensional space. Just like the complex numbers had
a “real” and “imaginary” part, so too did Hamilton hope to find an algebraic system
whose elements had a “real” and two-dimensional “imaginary” part. In the early part
of the month of October 1843, his sons Archibald Henry and William Edwin Hamilton,
while still very young, would ask their father at breakfast [Ham67, p. xv]: “Well, papa,
can you multiply triplets?” To which Hamilton would reply, “with a sad shake of the
head, ‘No, I can only add and subtract them’” [Ham67, p. xv]. For a history of the
“multiplying triplets” problem—the nonexistence of division algebra over the reals of
dimension 3—see May [May66, p. 290].

A

Figure 1.1.3: William Rowan Hamilton, a sand sculpture by Daniel Doyle,
part of the 2012 Dublin castle exhibition, Irish Science
(reproduced with permission)

Then, on the dramatic day in 1843, Hamilton’s had a flash of insight [Ham67,
p- xv—xvi], which he described in a letter to Archibald (written in 1865):

On the 16th day of [October]—which happened to be a Monday, and a
Council day of the Royal Irish Academy—I was walking in to attend and
preside, and your mother was walking with me, along the Royal Canal, to
which she had perhaps driven; and although she talked with me now and
then, yet an under-current of thought was going on in my mind, which
gave at last a result, whereof it is not too much to say that I felt at once
the importance. An electric circuit seemed to close; and a spark flashed
forth, the herald (as I foresaw, immediately) of many long years to come
of definitely directed thought and work, by myself if spared, and at all
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events on the part of others, if I should even be allowed to live long
enough distinctly to communicate the discovery. Nor could I resist the
impulse—unphilosophical as it may have been—to cut with a knife on a
stone of Brougham Bridge, as we passed it, the fundamental formula with
the symbols, i, j, k; namely,

i?=jt=k*=ijk=-1

which contains the Solution of the Problem, but of course, as an inscrip-
tion, has long since mouldered away.

In this moment, Hamilton realized that he needed a fourth dimension; he later coined
the term quaternions for the real space spanned by the elements 1,1, j, k, subject to his
multiplication laws. He presented his theory of quaternions to the Royal Irish Academy
in a paper entitled “On a new Species of Imaginary Quantities connected with a theory
of Quaternions” [Ham1843]. Today, we denote this algebra H := R+ Ri+Rj + Rk and
call H the ring of Hamilton quaternions in his honor.

This charming story of quaternionic discovery remains in the popular conscious-
ness, and to commemorate Hamilton’s discovery of the quaternions, there is an annual
“Hamilton walk” in Dublin [OCa2010]. Although his carvings have long since worn
away, a plaque on the bridge now commemorates this significant event in mathematical
history (Figure 1.1.4).

Here as he e
on the 16th of October 1843 \E=
Siv Wil liam Rowan Bafnttron

| inaflash of genius discovered
the fundamental formmla for
quaternion multiplication

ai =) =R = 1R
‘&ct_rﬁ‘t %ﬂ;a stone of thisbrisige

= —— — -

Figure 1.1.4: The Broom Bridge plaque (author’s photo)

For more on the history of Hamilton’s discovery, see the extensive and detailed
accounts of Dickson [Dic19] and Van der Waerden [vdW76]. There are also three
main biographies written about the life of William Rowan Hamilton, a man sometimes
referred to as “Ireland’s greatest mathematician™: by Graves [Grav1882, Grav1885,
Grav1889] in three volumes, Hankins [Hankin80], and O’Donnell [O’Do83]. Numer-
ous other shorter biographies have been written [DM89, Lanc67, OCa2000]. (Certain
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aspects of Hamilton’s private life deserve a more positive portrayal, however: see Van
Weerden—Wepster [WW2018].)

160 ELEMENTS OF QUATERNIONS, [(Book 11.

the laws of i, j, k agree with usual and algebraic laws : namely,
in the Associative Property of Multiplication ; or in the pro-
perty that the new symbols always obey the associative for-
mula (comp. 9),
kA = .,
whichever of them may be substituted for ¢, for «, and for A ;
in virtue of which equality of values we may omit the point, in
any such symbol of a ternary product (whether of equal or of
unequal factors), and write it simply as wA. In particular
we have thus,
ijkmid=ta-1; h=kkeb=-1;

or briefly,
jh=—1.
We may, therefore, by 182, estahlish the following important
Formula :
Pap=b=gk=-1; (A)

to which we shall occasionally refer, as to ¢ Formula A,” and
which we shall find to contain (virtually) all the laws of the
symbols ijk, and therefore to be a sufficient symbolical basis
for the whole Calculus of Quaternions :* because it will be
shown that every quaternion can be reduced to the Quadrino-
mial Form, .
g=w+1Z +jy + k2,
where w, x, y, z compose a system of four scalars, while i, j, &
are the same three right versors as above.

(1.) A direct proof of the equation, ijk =— 1, may be derived from the definitions

of the symbols in Art. 181. In fact, we have only to remember that those defini-
tions were seen to give, .

® This formula (A) was accordingly made the basis of that Calculus in the first
communication on the subject, by the present writer, to the Royal Irish Academy in
1848 ; and the letters, i, j, &, continued to be, for some time, the only pecliar sym-
bols of the calculus in question. But it was gradually found to be useful to incor-
porate with these a few other motations (such as K and U, &c.), for representing
Operations on Quaternions. It was also thought to be instructive to establish the
principles of that Calculus, on a more geometrical (or less exclusively symbolical)
Jfoundation than at first ; which was accordingly afterwards done, in the volame en-
titled : Lectures on Quaternions (Dublin, 1858) ; and is again attempted in the pre-
sent work, although with many diffe in the adopted plan of exposition, and in
the applications brought forward, or suppressed.

Figure 1.1.5: A page from Hamilton’s Elements of quaternions [Ham1866]
(public domain)

There are several precursors to Hamilton’s discovery that bear mentioning. First,
the quaternion multiplication laws are already implicit in the four-square identity of
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Leonhard Euler (1707-1783):

(@+di+a3+al)(DP+ b3+ bi+b) =+ S+ 3 +cl =
(a1b1 —asby —azbsz — a4b4)2 + (Cllbz +ayby +azby — 614]93)2 (1.1.6)

+ (a1b3 —asbg +aszb; + a4b2)2 + (Cllb4 +ayby —aszby + a4b1)2.
Indeed, the full multiplication law for quaternions reads precisely
(ar +azi+asj +ask)(by + bai + b3j + bak) =1 + ol + c3j + cak

with ¢y, ¢, ¢3, c4 as defined in (1.1.6); the four-square identity corresponds to taking
a norm on both sides.

It was perhaps Carl Friedrich Gauss (1777-1855) who first observed this connec-
tion. In a note dated around 1819 [Gau00], he interpreted the formula (1.1.6) as a way
of composing real quadruples: to the quadruples (ay, az, as, aq) and (by, by, b3, by)
in R*, he defined the composite tuple (cy, ¢, ¢3, ¢4) and noted the noncommutativity
of this operation. Gauss elected not to publish these findings (as he chose not to do
with many of his discoveries). In letters to De Morgan [Grav1885, Grav1889, p. 330,
p- 490], Hamilton attacks the allegation that Gauss had discovered quaternions first.

Finally, Olinde Rodrigues (1795—-1851) (of the Rodrigues formula for Legendre
polynomials) gave a formula for the angle and axis of a rotation in R obtained
from two successive rotations—essentially giving a different parametrization of the
quaternions—but had left mathematics for banking long before the publication of his
paper [Rod1840]. The story of Rodrigues and the quaternions is given by Altmann
[Alt89] and Pujol [Puj2012], and the fuller story of his life is recounted by Altmann—
Ortiz [AO2005]. See also the description by Pujol [Puj2014] of Hamilton’s derivation
of the relation between rotations and quaternions from 1847, set in historical context.

In any case, the quaternions consumed the rest of Hamilton’s academic life and
resulted in the publication of two bulky treatises [Ham1853, Ham1866] (see also the
review [Ham1899]). Hamilton’s mathematical writing over these years, an example of
which can be found in Figure 1.1.5, was at times opaque; nevertheless, many physicists
used quaternions extensively and for a long time in the mid-19th century, quaternions
were an essential notion in physics.

Other figures contemporaneous with Hamilton were also developing vectorial
systems, most notably Hermann Grassmann (1809-1877) [Gras1862]. The modern
notion of vectors was developed by Willard Gibbs (1839—-1903) and Oliver Heaviside
(1850-1925), independently. In 1881 and 1884 (in two halves), Gibbs introduced in
a pamphlet Elements of Vector Analysis the now standard vector notation of the cross
product and dot product, with the splendid equality

VW ==V -WH+VXW (1.1.7)

for v,w € Ri + Rj + Rk C H relating quaternionic multiplication on the left to dot
and cross products on the right. (The equality (1.1.7) also appears in Hamilton’s
work, but in different notation.) Gibbs did not consider the quaternion product to be
a “fundamental notion in vector analysis” [Gib1891, p. 512], and argued for a vector
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analysis that would apply in arbitrary dimension; on the relationship between these
works, Gibbs wrote after learning of the work of Grassmann: “I saw that the methods
wh[ich] I was using, while nearly those of Hamilton, were almost exactly those of
Grassmann” [Whe62, p. 108]. For more on the history of quaternionic and vector
calculus, see Crowe [Cro64] and Simons [Sim2010].

The rivalry between physical notations flared into a war in the latter part of the 19th
century between the ‘quaternionists’ and the ‘vectorists’, and for some the preference
of one system versus the other became an almost partisan split. On the side of
quaternions, James Clerk Maxwell (1831-1879), who derived the equations which
describe electromagnetic fields, wrote [Max1869, p. 226]:

The invention of the calculus of quaternions is a step towards the knowl-
edge of quantities related to space which can only be compared, for its
importance, with the invention of triple coordinates by Descartes. The
ideas of this calculus, as distinguished from its operations and symbols,
are fitted to be of the greatest use in all parts of science.

And Peter Tait (1831-1901), Hamilton’s “chief disciple” [Hankin80, p. 316], wrote in
1890 [Tail890] decrying notation and attacking Willard Gibbs (1839-1903):

It is disappointing to find how little progress has recently been made
with the development of Quaternions. One cause, which has been spe-
cially active in France, is that workers at the subject have been more
intent on modifying the notation, or the mode of presentation of the
fundamental principles, than on extending the applications of the Calcu-
lus. ...Even Prof. Willard Gibbs must be ranked as one the retarders of
quaternions progress, in virtue of his pamphlet on Vector Analysis, a sort
of hermaphrodite monster, compounded of the notation of Hamilton and
Grassman.

Game on! On the vectorist side, Lord Kelvin (a.k.a. William Thomson, who formulated
the laws of thermodynamics), said in an 1892 letter to R. B. Hayward about his textbook
in algebra (quoted in Thompson [Tho10, p. 1070]):

Quaternions came from Hamilton after his really good work had been
done; and, though beautifully ingenious, have been an unmixed evil to
those who have touched them in any way, including Clerk Maxwell.

(There is also a rompous fictionalized account by Pynchon in his tome Against the Day
[Pyn2006].) Ultimately, the superiority and generality of vector notation carried the
day, and only certain useful fragments of Hamilton’s quaternionic notation—e.g., the
“right-hand rule” i X j = k in multivariable calculus—remain in modern usage.

1.2 Algebra after the quaternions

The debut of Hamilton’s quaternions was met with some resistance in the mathematical
world: it proposed a system of “numbers” that did not satisfy the usual commutative
rule of multiplication. Quaternions predated even the notion of matrices, introduced in
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1855 by Arthur Cayley (1821-1895). Hamilton’s bold proposal of a noncommutative
multiplication law was the harbinger of a burgeoning array of algebraic structures. In
the words of J.J. Sylvester [Syl1883, pp. 271-272]:

In Quaternions (which, as will presently be seen, are but the simplest
order of matrices viewed under a particular aspect) the example had been
given of Algebra released from the yoke of the commutative principle
of multiplication—an emancipation somewhat akin to Lobachevsky’s of
Geometry from Euclid’s noted empirical axiom; and later on, the Peirces,
father and son (but subsequently to 1858) had prefigured the universal-
ization of Hamilton’s theory, and had emitted an opinion to the effect that
probably all systems of algebraical symbols subject to the associative law
of multiplication would be eventually found to be identical with linear
transformations of schemata susceptible of matriculate representation.

So with the introduction of the quaternions, the floodgates of algebraic possibility had
been opened. See Happel [Hap80] for an overview of the early development of algebra
following Hamilton’s quaternions, as well as the more general history given by Van
der Waerden [vdW85, Chapters 10-11].

The day after his discovery, Hamilton sent a letter [Ham1844] describing the
quaternions to his friend John T. Graves (1806—1870). Graves replied on October 26,
1843, with his compliments, but added:

There is still something in the system which gravels me. I have not yet
any clear views as to the extent to which we are at liberty arbitrarily to
create imaginaries, and to endow them with supernatural properties. ...
If with your alchemy you can make three pounds of gold, why should you
stop there?

Following through on this invitation, on December 26, 1843, Graves wrote to Hamilton
that he had successfully generalized the quaternions to the “octaves”, now called
octonions O, an algebra in eight dimensions, with which he was able to prove that the
product of two sums of eight perfect squares is another sum of eight perfect squares,
a formula generalizing (1.1.6). In fact, Hamilton first invented the term associative in
1844, around the time of his correspondence with Graves. Unfortunately for Graves, the
octonions were discovered independently and published in 1845 by Cayley [Cay1845b],
who often is credited for their discovery. (Even worse, the eight squares identity was
also previously discovered by C. F. Degen.) For a more complete account of this
story and the relationships between quaternions and octonions, see the survey article
by Baez [Bae2002], the article by Van der Blij [vdB60], and the delightful book by
Conway—Smith [CSm2003].

Cayley also studied quaternions themselves [Cay 1845a] and was able to reinterpret
them as arising from a doubling process, also called the Cayley—Dickson construction,
which starting from R produces C then H then O, taking the ordered, commutative,
associative algebra R and progressively deleting one adjective at a time. So algebras
were first studied over the real and complex numbers and were accordingly called
hypercomplex numbers in the late 19th and early 20th century. And this theory
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flourished. Hamilton himself considered the algebra over C defined by his famous
equations (1.1.1), calling them biguaternions. In 1878, Ferdinand Frobenius (1849—
1917) proved that the only finite-dimensional associative real division algebras are R,
C, and H [Fro1878]. This result was also proven independently by C.S. Peirce, the
son of Benjamin Peirce, below. Adolf Hurwitz (1859-1919) later showed that the
only normed finite-dimensional not-necessarily-associative real division algebras are
R, C, H, and O. (The same statement is true without the condition that the algebra
be normed, but currently the proofs use topology, not algebra! Bott—Milnor [BM58]
and Kervaire [Ker58] proved that the (n — 1)-dimensional sphere {x € R" : ||x||* = 1}
has trivial tangent bundle if and only if there is an n-dimensional not-necessarily-
associative real division algebra if and only if n = 1,2,4,8. The solution to the
Hopf invariant one problem by Adams also implies this result; an elegant and concise
proof using K-theory, Adams operations, and elementary number theory was given
by Adams—Atiyah [AA66]. See Hirzebruch [Hir91] or Ranicki [Ran2011] for a more
complete account.)

In another attempt to seek a generalization of the quaternions to higher dimension,
William Clifford (1845-1879) developed a way to build algebras from quadratic forms
in 1876 [Cli1878]. Clifford constructed what we now call a Clifford algebra C(V)
associated to V = R (with the standard Euclidean norm); it is an algebra of dimension
2" containing V with multiplication induced from the relation x> = —||x||? forallx € V.
We have C(R!) = C and C(R?) = H, so the Hamilton quaternions arise as a Clifford
algebra—but C(R?) is not the octonions. The theory of Clifford algebras tightly
connects the theory of quadratic forms and the theory of normed division algebras
and its impact extends in many mathematical directions. For more on the history of
Clifford algebras, see Diek—Kantowski [DK95].

A further physically motivated generalization was pursued by Alexander Macfar-
lane (1851-1913): he developed a theory of what he called hyperbolic quaternions
[Macf00] (a revised version of an earlier, nonassociative attempt [Macf1891]), with
the multiplication laws

2==k2=1,

ij =V=1k = —ji, jk=V—-1li=—kj, ki=V-1j=—ik. (12D
Thought of as an algebra over C = R(V~-1), Macfarlane’s hyperbolic quaternions
are isomorphic to Hamilton’s biquaternions (and therefore isomorphic to M;(C)).
Moreover, the restriction of the norm to the real span of the basis 1,4, j, k in Mac-
farlane’s algebra is a quadratic form of signature (1,3): this gives a quaternionic
version of space-time, something also known as Minkowski space (but with Macfar-
lane’s construction predating that of Minkowski). For more on the history and further
connections, see Crowe [Cro64].

Around this time, other types of algebras over the real numbers were also being
investigated, the most significant of which were Lie algebras. In the seminal work
of Sophus Lie (1842-1899), group actions on manifolds were understood by looking
at this action infinitesimally; one thereby obtains a Lie algebra of vector fields that
determines the local group action. The simplest nontrivial example of a Lie algebra
is the cross product of two vectors, related to quaternion multiplication in (1.1.7): it
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defines, a linear, alternating, but nonassociative binary operation on R3 that satisfies
the Jacobi identity emblematized by

IX(JXk)+kx(@xj)+jx(kxi)=0. (1.2.2)

The Lie algebra “linearizes” the group action and is therefore more accessible. Wilhelm
Killing (1847-1923) initiated the study of the classification of Lie algebras in a series
of papers [Kil1888], and this work was completed by Elie Cartan (1869-1951). We
refer to Hawkins [Haw2000] for a description of this rich series of developments.

In this way, the study of division algebras gradually evolved, independent of
physical interpretations. Benjamin Peirce (1809-1880) in 1870 developed what he
called linear associative algebras [Peil 882]; he provided a decomposition of an algebra
relative to an idempotent (his terminology). The first definition of an algebra over an
arbitrary field seems to have been given by Leonard E. Dickson (1874—1954) [Dic03]:
at first he still called the resulting object a system of complex numbers and only later
adopted the name linear algebra.

The notion of a simple algebra had been discovered by Cartan, and Theodor Molien
(1861-1941) had earlier shown in his terminology that every simple algebra over the
complex numbers is a matrix algebra [Mol1893]. But it was Joseph Henry Maclagan
Wedderburn (1882-1948) who was the first to find meaning in the structure of simple
algebras over an arbitrary field, in many ways leading the way forward. The jewel
of his 1908 paper [Wed08] is still foundational in the structure theory of algebras: a
simple algebra (finite-dimensional over a field) is isomorphic to a matrix ring over a
division ring. Wedderburn also proved that a finite division ring is a field, a result that
like his structure theorem has inspired much mathematics. For more on the legacy of
Wedderburn, see Artin [Art50].

In the early 1900s, Dickson was the first to consider quaternion algebras over
a general field [Dicl2, (8), p. 65]. He began by considering more generally those
algebras in which every element satisfies a quadratic equation [Dic12], exhibited a
diagonalized basis for such an algebra, and considered when such an algebra can be
a division algebra. This led him to multiplication laws for what he later called a
generalized quaternion algebra [Dicl4, Dic23], with multiplication laws

i=a, j*=b, k*=-ab,
(1.2.3)
ij=k=—ji, ik=aj=-ki, kj=0bi=-jk

with a, b nonzero elements in the base field. (To keep track of these, it is helpful
to write , j, k around a circle clockwise.) Today, we no longer employ the adjective
“generalized”—over fields other than R, there is no reason to privilege the Hamiltonian
quaternions—and we can reinterpret this vein of Dickson’s work as showing that every
4-dimensional central simple algebra is a quaternion algebra (a statement that holds
even over a field F with char F' = 2). See Fenster [Fen98] for a summary of Dickson’s
work in algebra, and Lewis [Lew2006b] for a broad survey of the role of involutions
and anti-automorphisms in the classification of algebras.
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1.3 Quadratic forms and arithmetic

Hamilton’s quaternions also fused a link between quadratic forms and arithmetic,
phrased in the language of noncommutative algebra. Indeed, part of Dickson’s interest
in quaternion algebras stemmed from earlier work of Hurwitz [Hur1898], alluded to
above. Hurwitz had asked for generalizations of the composition laws arising from
sum of squares laws like that of Euler (1.1.6) for four squares and Cayley for eight
squares: for which n does there exist an identity

(a%+---+ai)(b%+--~+b,21):c%+---+cﬁ

with each ¢; bilinear in the variables @ and b? He then proved [Hurl898] that over
a field where 2 is invertible, these identities exist only for n = 1, 2,4, 8 variables (so
in particular, there is no formula expressing the product of two sums of 16 squares as
the sum of 16 squares). As Dickson [Dic19] further explained, this result of Hurwitz
is intimately tied to the theory of algebras. For more on compositions of quadratic
forms and their history, including theorems of Hurwitz—Radon and Pfister, see Shapiro
[Sha90].

Thinking along similar lines, Hurwitz gave a new proof of the four-square theorem
of Lagrange, that every positive integer is the sum of four integer squares: he first
wrote about this in 1896 on quaternionic number theory (“Uber die Zahlentheorie
der Quaternionen”) [Hur1896], then published a short book on the subject in 1919
[Hurl9]. To this end, Hurwitz considered Hamilton’s equations over the rational
numbers and said that a quaternion ¢ + xi + yj + zk with t,x, y, z € Q was an infeger
if #,x,y, z all belonged to Z or all to % + Z, conditions for the quaternion to satisfy
a quadratic polynomial with integer coefficients. Hurwitz showed that his ring of
integer quaternions, today called the Hurwitz order, admits a generalization of the
Euclidean algorithm and thereby a factorization theory. He then applied this to count
the number of ways of representing an integer as the sum of four squares, a result
due to Jacobi. The notion of integral quaternions was also explored in the 1920s
by Venkov [Ven22, Ven29] and the 1930s by Albert [Alb34]. Dickson considered
further questions of representing positive integers by integral quaternary quadratic
forms [Dic19, Dic23, Dic24] in the same vein.

So by the end of the 1920s, quaternion algebras were used to study quadratic
forms in a kind of noncommutative algebraic number theory [Lat26, Gri28]. It was
known that a (generalized) quaternion algebra (1.2.3) was semisimple in the sense of
Wedderburn, and thus it was either a division algebra or a full matrix algebra over
the ground field. Indeed, a quaternion algebra is a matrix algebra if and only if a
certain ternary quadratic form has a nontrivial zero, and over the rational numbers this
problem was already studied by Legendre. Helmut Hasse (1898—1979) reformulated
Legendre’s conditions: a quadratic form has a nontrivial zero over the rationals if
and only if it has a nontrivial zero over the real numbers and Hensel’s field of p-adic
numbers for all odd primes p. This result paved the way for many further advances,
and it is now known as the Hasse principle or the local-global principle for quadratic
forms. For an overview of this history, see Scharlau [Scha2009, §1].

Further deep results in number theory were soon to follow. Dickson [Dic14] had
defined cyclic algebras, reflecting many properties of quaternion algebras, and in 1929
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lectures Emmy Noether (1882—-1935) considered the even more general crossed product
algebras. Not very long after, in a volume dedicated to Hensel’s seventieth birthday,
Richard Brauer (1901-1977), Hasse, and Noether proved a fundamental theorem for
the structure theory of algebras over number fields [BHN31]: every central division
algebra over a number field is a cyclic algebra. This crucial statement had profound
implications for class field theory, the classification of abelian extensions of a number
field, with a central role played by the Brauer group of a number field, a group
encoding its division algebras. For a detailed history and discussion of these lines,
see Fenster—Schwermer [FS2007], Roquette [Roq2006], and the history of class field
theory summarized by Hasse himself [Hass67].

At the same time, Abraham Adrian Albert (1905-1972), a doctoral student of Dick-
son, was working on the structure of division algebras and algebras with involution,
and he had written a full book on the subject [Alb39] collecting his work in the area,
published in 1939. Albert had examined the tensor product of two quaternion algebras,
called a biquaternion algebra (not to be confused with Hamilton’s biquaternions), and
he characterized when such an algebra was a division algebra in terms of a senary (six
variable) quadratic form. Albert’s classification of algebras with involution was moti-
vated by understanding possible endomorphism algebras of abelian varieties, viewed
as multiplier rings of Riemann matrices and equipped with the Rosati involution: a
consequence of this classification is that quaternion algebras are the only noncommu-
tative endomorphism algebras of simple abelian varieties. He also proved that a central
simple algebra admits an involution if and only if the algebra is isomorphic to its oppo-
site algebra (equivalently, it has order at most 2 in the Brauer group). For a biography
of Albert and a survey of his work, see Jacobson [Jacn74]. Roquette argues convinc-
ingly [Roq2006, §8] that because of Albert’s contributions to its proof (for example,
his work with Hasse [AH32]), we should refer to the Albert—Brauer—Hasse—Noether
theorem in the previous paragraph.

1.4 Modular forms and geometry

Quaternion algebras also played a formative role in what began as a subfield of complex
analysis and ordinary differential equations and then branched into the theory of
modular forms—and ultimately became a central area of modern number theory.

Returning to a thread from the previous section, the subject of representing numbers
as the sum of four squares saw considerable interest in the 17th and 18th centuries
[Dic71, Chapter VIII]. Carl Jacobi (1804-1851) approached the subject from the
analytic point of view of theta functions, the basic building blocks for elliptic functions;
these were first studied in connection with the problem of the arc length of an ellipse,
going back to Abel. Jacobi studied the series

00

o(r) = Z exp(2min®t) = 1+2q +2¢* +2¢° + . .. (1.4.1)

n=—o0o

where 7 is a complex number with positive imaginary part and ¢ = exp(27it). Jacobi
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proved the remarkable identity

9(7_)4 — Z qu2+b2+c2+d2 —1+8 Z o (l’l)qn, (1.4.2)

a,b,c,dez n=1

where 0*(n) = Y4y4), d is the sum of divisors of n not divisible by 4. In this way,
Jacobi gave an explicit formula for the number of ways of expressing a number as the
sum of four squares. For a bit of history and an elementary derivation in the style of
Gauss and Jacobi, see Ewell [Ewe82].

As a Fourier series, the Jacobi theta function 6 (1.4.1) visibly satisfies 6(7 + 1) =
6(t). Moreover, owing to its symmetric description, Jacobi showed using Poisson
summation that 6 also satisfies the transformation formula

0(-1/1) = \Jt/i (7). (1.4.3)

Felix Klein (1849-1925) saw geometry in formulas like (1.4.3). In his Erlangen
Program (1872), he recast 19th century geometry in terms of the underlying group
of symmetries, unifying Euclidean and non-Euclidean formulations. Turning then to
hyperbolic geometry, he studied the modular group SL,(Z) acting by linear fractional
transformations on the upper half-plane, and interpreted transformation formulas for
elliptic functions: in particular, Klein defined his absolute invariant J(7) [Kle1878],
a function invariant under the modular group. Together with his student Robert Fricke
(1861-1930), this led to four volumes [FK1890-2, FK1897, FK12] on elliptic modular
functions and automorphic functions, combining brilliant advances in group theory,
number theory, geometry, and invariant theory (Figure 1.4.4).

Figure 1.4.4: The (2, 3, 7)-tiling by Fricke and Klein [FK1890-2]
(public domain)
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At the same time, Henri Poincaré (1854-1912) brought in the theory of linear
differential equations—and a different, group-theoretic approach. In correspondence
with Fuchs in 1880 on hypergeometric differential equations, he writes about the
beginnings of his discovery of a new class of analytic functions [Gray2000, p.177]:

They present the greatest analogy with elliptic functions, and can be
represented as the quotient of two infinite series in infinitely many ways.
Amongst those series are those which are entire series playing the role of
Theta functions. These converge in a certain circle and do not exist outside
it, as thus does the Fuchsian function itself. Besides these functions there
are others which play the same role as the zeta functions in the theory
of elliptic functions, and by means of which I solve linear differential
equations of arbitrary orders with rational coefficients whenever there are
only two finite singular points and the roots of the three determinantal
equations are commensurable.

As he reminisced later in his Science et Méthode [Poil1908, p. 53]:

I then undertook to study some arithmetical questions without any great
result appearing and without expecting that this could have the least con-
nection with my previous researches. Disgusted with my lack of success,
I went to spend some days at the sea-side and thought of quite different
things. One day, walking along the cliff, the idea came to me, always with
the same characteristics of brevity, suddenness, and immediate certainty,
that the arithmetical transformations of ternary indefinite quadratic forms
were identical with those of non-Euclidean geometry.

In other words, like Klein, Poincaré launched a program to study complex analytic
functions defined on the unit disc that are invariant with respect to a discrete group
of matrix transformations that preserve a rational indefinite ternary quadratic form.
Today, such groups are called arithmetic Fuchsian groups, and we study them as unit
groups of quaternion algebras. To read more on the history of differential equations
in the time of Riemann and Poincaré, see the history by Gray [Gray2000], as well as
Gray’s scientific biography of Poincaré [Gray2013].

In the context of these profound analytic discoveries, Erich Hecke (1887-1947)
began his study of modular forms. He studied the Dedekind zeta function, a gener-
alization of Riemann’s zeta function to number fields, and established its functional
equation using theta functions. In the study of similarly defined analytic functions
arising from modular forms, he was led to define the “averaging” operators acting on
spaces of modular forms that now bear his name. In this way, he could interpret the
Fourier coefficients a(n) of a Hecke eigenform (normalized, weight 2) as eigenvalues
of his operators: he proved that they satisfy a relation of the form

a(m)a(n) = Z a(mn/d*)d (1.4.5)
d|gcd(m,n)

and consequently a two-term recursion relation. He thereby showed that the Dirichlet
L-series of an eigenform, defined via Mellin transform, has an Euler product, analytic
continuation, and functional equation.



14 CHAPTER 1. INTRODUCTION

Hecke went further, and connected the analytic theory of modular forms and his
operators to the arithmetic theory of quadratic forms. In 1935-1936, he found that
for certain systems of quaternary quadratic forms, the number of representations of
integers by the system satisfied the recursion (1.4.5), in analogy with binary quadratic
forms. He published a conjecture on this subject in 1940 [Hec40, Satz 53, p. 100]:
that the weighted representation numbers satisfy the Hecke recursion, connecting
coefficients to operators on theta series, and further that the columns in a composition
table always result in linearly independent theta series. He verified the conjecture up
to prime level ¢ < 37, but was not able to prove this recursion using his methods of
complex analysis (see his letter [Bra41, Footnote 1]).

The arithmetic part of these conjectures was investigated by Heinrich Brandt
(1886—1954) in the quaternionic context—and so the weave of our narrative is further
tightly sewn. Preceding Hecke’s work, and inspired by Gauss composition of binary
quadratic forms as the product of classes of ideals in a quadratic field, Brandt had
earlier considered a generalization to quaternary quadratic forms and the product of
classes of ideals in a quaternion algebra [Bra28]: he was only able to define a partially
defined product, and so he coined the term groupoid for such a structure [Bra40]. He
then considered the combinatorial problem of counting the ways of factoring an ideal
into prime ideals, according to their classes. In this way, he recorded these counts in
a matrix T'(n) for each positive integer n, and he proved strikingly (sketched in 1941
[Bra41], dated 1939, and proved completely in 1943 [Bra43]) that the matrices T (n)
satisfy Hecke’s recursion (1.4.5). To read more on the life and work of Brandt, see
Hoehnke—Knus [HK2004]. Today we call the matrices T (n) Brandt matrices, and
for certain purposes, they are still the most convenient way to get ahold of spaces of
modular forms.

Martin Eichler (1912-1992) wrote his thesis [Eic36] under the supervision of
Brandt on quaternion orders over the integers, in particular studying the orders that
now bear his name. Later he continued the grand synthesis of modular forms, quadratic
forms, and quaternion algebras, viewing in generality the orthogonal group of a
quadratic form as acting via automorphic transformations [Eic53]. In this vein, he
formulated his basis problem (arising from the conjecture of Hecke) which sought
to understand explicitly the span of quaternionic theta series among classical modu-
lar forms, giving a correspondence between systems of Hecke eigenvalues appearing
in the quaternionic and classical context. He answered the basis problem in affir-
mative for the case of prime level in 1955 [Eic56a] and then for squarefree level
[Eic56b, Eic58, Eic73]. For more on Eichler’s basis problem and its history, see
Hijikata—Pizer—Shemanske [HPS89a].

Having come to recent history, our account now becomes much more abbreviated:
we provide further commentary in sifu in remarks in the rest of this text, and we
conclude with just a few highlights. In the 1950s and 1960s, there was subtantial
work done in understanding zeta functions of certain varieties arising from quaternion
algebras over totally real number fields. For example, Eichler’s correspondence was
generalized to totally real fields by Shimizu [Shz65]. Shimura embarked on a deep and
systematic study of arithmetic groups obtained from indefinite quaternion algebras over
totally real fields, including both the arithmetic Fuchsian groups of Poincaré, Fricke,
and Klein, and the generalization of the modular group to totally real fields studied
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by Hilbert. In addition to understanding their zeta functions, he also formulated a
general theory of complex multiplication in terms of automorphic functions; as a
consequence, he found the corresponding arithmetic quotients can be defined as an
algebraic variety with equations defined over a number field—and so today we refer to
quaternionic Shimura varieties. For an overview of Shimura’s work, see his lectures
at the International Congress of Mathematicians in 1978 [Shi80]. As it turns out,
quaternion algebras over number fields also give rise to arithmetic manifolds that are
not algebraic varieties, and they are quite important in the areas of spectral theory,
low-dimensional geometry, and topology—in particular, in Thurston’s geometrization
program for hyperbolic 3-manifolds and in classifying knots and links.

Just as the Hecke operators determine the coefficients of classical modular forms
and Dirichlet L-series, they may be vastly generalized, replacing modular groups
by other algebraic groups, such as the group of units in a central simple algebra or
the orthogonal group of a quadratic form. Understanding the theory of automorphic
forms in this context is a program that continues today: formulated in the language
of automorphic representations, and seen as a nonabelian generalization of class field
theory, Langlands initiated this program in a letter to Weil in January 1967. It
is indeed fitting that an early success of the Langlands program [Gel84, B+2003]
would be on the subject of quaternion algebras: a generalization of the Eichler—
Shimizu correspondence to encompass arbitrary quaternion algebras over number
fields was achieved in foundational work by Jacquet-Langlands [JL70] in 1970. For
more on the modern arithmetic history of modular forms, see Edixhoven—Van der Geer—
Moonen [EGM2008]; Alsina—Bayer [AB2004, Appendices B—C] also give references
for further applications of quaternion algebras in arithmetic geometry (in particular,
of Shimura curves).

1.5 Conclusion

We have seen how quaternion algebras have threaded mathematical history through to
the present day, weaving together advances in algebra, quadratic forms, number theory,
geometry, and modular forms. And although our history ends here, the story does not!

Quaternion algebras continue to arise in unexpected ways. In the arithmetic setting,
quaternion orders arise as endomorphism rings of supersingular elliptic curves and
have been used in proposed post-quantum cryptosystems and digital signature schemes
(see for example the overview by Galbraith—Vercauteren [GV2018]). In the field of
quantum computation, Parzanchevski—Sarnak [PS2018] have proposed Super-Golden-
Gates built from certain special quaternion algebras and their arithmetic groups that
would give efficient 1-qubit quantum gates. In coding theory, lattices in quaternion
algebras (and more generally central simple algebras over number fields) yield space-
time codes that achieve high spectral efficiency on wireless channels with two transmit
antennas, currently part of certain IEEE standards [BO2013].

Quaternions have also seen a revival in computer graphics, modeling, and anima-
tion [HFK94, Sho85]. Indeed, a rotation in R3 about an axis through the origin can be
represented by a 3 X 3 orthogonal matrix with determinant 1, conveniently encoded in
Euler angles. However, the matrix representation is redundant, as there are only three



16 CHAPTER 1. INTRODUCTION

degrees of freedom in such a rotation. Moreover, to compose two rotations requires the
product of the two corresponding matrices, which requires 27 multiplications and 18
additions in R. Quaternions, on the other hand, represent this rotation with a 4-tuple,
and multiplication of two quaternions takes only 16 multiplications and 12 additions
in R (if done naively). In computer games, quaternion interpolation provides a way
to smoothly interpolate between orientations in space—something crucial for fighting
Nazi zombies. Quaternions are also vital for attitude control of aircraft and spacecraft
[Hans2006]: they avoid the ambiguity that can arise when two rotation axes align,
leading to a potentially disastrous loss of control called gimbal lock.

In quantum physics, quaternions yield elegant expressions for Lorentz transforma-
tions, the basis of the modern theory of relativity [Gir83]. Some physicists are now
hoping to find deeper understanding of these principles of quantum physics in terms
of quaternions. And so, although much of Hamilton’s quaternionic physics fell out of
favor long ago, we have come full circle in our elongated historical arc. The enduring
role of quaternion algebras as a catalyst for a vast range of mathematical research
promises rewards for many years to come.

Exercises
1. Hamilton sought a multiplication * : R? x R?> — R? that preserves length:
2 2 2
VI= - lwll™ = {lv * wll

for v,w € R3. Expanding out in terms of coordinates, such a multiplication
would imply that the product of the sum of three squares over R is again the sum
of three squares in R. (Such a law holds for the sum of four squares (1.1.6).)
Show that such a formula for three squares is impossible as an identity in the
polynomial ring in 6 variables over Z. [Hint: Find a natural number that is the
product of two sums of three squares which is not itself the sum of three squares. |

2. Hamilton originally sought an associative multiplication law on
D =R+Ri+Rj ~R?
where i = —1 and every nonzero element of D has a (two-sided) inverse. Show

this cannot happen in two (not really different) ways.

() Ifij = a+bi+cj witha,b,c € R, multiply on the left by i and derive a
contradiction.

(b) Show that D is a (left) C-vector space, so D has even dimension as an
R-vector space, a contradiction.

3. Show that there is no way to give R the structure of a ring (with 1) in which
multiplication respects scalar multiplication by R, i.e.,

x-(cy)=c(x-y)=(ex)-y forallc eRandx,yeR?

and every nonzero element has a (two-sided) inverse, as follows.
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()

(b)

Suppose B := R? is equipped with a multiplication law that respects scalar
multiplication. Show that left multiplication by @ € B is R-linear and «
satisfies the characteristic polynomial of this linear map, a polynomial of
degree 3.

Now suppose that every nonzero @ € B has an inverse. By consideration
of eigenvalues or the minimal polynomial, derive a contradiction. [Hint:
show that the characteristic polynomial has a real eigenvalue, or that
every a € B satisfies a (minimal) polynomial of degree 1, and derive a
contradiction from either statement. |
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Chapter 2

Beginnings

In this chapter, we define quaternion algebras over fields by giving a multiplication
table, following Hamilton; we then consider the classical application of understanding
rotations in R3.

2.1 » Conventions

Throughout this text (unless otherwise stated), we let ' be a (commutative) field with
algebraic closure F&!.

When G is a group, and H C G is a subset, we write H < G when H is a subgroup
and H < G when H is a normal subgroup; if G is abelian (written multiplicatively),
we write G" 1= {g" : g € G} < G for the subgroup of nth powers for n € Z.

We suppose throughout that all rings are associative, not necessarily commutative,
with multiplicative identity 1, and that ring homomorphisms preserve 1. In particular, a
subring of a ring has the same 1. For aring A, we write A* for the multiplicative group
of units of A. An algebra over the field F is a ring B equipped with a homomorphism
F — B such that the image of F lies in the center Z(B) of B, defined by

Z(B) :={a € B: af = Ba for all B € B}, 2.1.1)

if Z(B) = F, we say B is central (as an F-algebra). We write M,, (F) for the F-algebra
of n X n-matrices with entries in F.

One may profitably think of an F-algebra as being an F-vector space that is also
compatibly aring. If the F-algebra B is not the zero ring, then its structure map F — B
is necessarily injective (since 1 maps to 1) and we identify F with its image; keeping
track of the structure map just litters notation. The dimension dimg B of an F-algebra
B is its dimension as an F-vector space.

A homomorphism of F-algebras is a ring homomorphism which restricts to
the identity on F. An F-algebra homomorphism is necessarily F-linear. An F-
algebra homomorphism B — B is called an endomorphism. By convention (and
as usual for functions), endomorphisms act on the left. An invertible F-algebra
homomorphism B = B’ is called an isomorphism, and an invertible endomorphism
is an automorphism.

21
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The set of automorphisms of B forms a group, which we write as Aut(B)—

these maps are necessarily F-linear, but we do not include this in the notation. We
reserve the notation Endg (V) for the ring of F-linear endomorphisms of the F-vector
space V, and Autg (V) for the group of F-linear automorphisms of V; in particular,
Endr (B) =~ M, (F) if n = dimp B.
Remark 2.1.2. Throughout, whenever we define a homomorphism of objects, we adopt
the (categorical) convention extending this to the terms endomorphism (homomor-
phism with equal domain and codomain), isomorphism (invertible homomorphism),
and automorphism (invertible endomorphism).

A division ring (also called a skew field) is a ring D in which every nonzero
element has a (two-sided) inverse, i.e., D \ {0} is a group under multiplication. A
division algebra is an algebra that is a division ring.

2.2 > Quaternion algebras

In this section, we define quaternion algebras in a direct way, via generators and
relations. Throughout the rest of this chapter, suppose that char FF # 2; the case
char F' = 2 is treated in Chapter 6.

Definition 2.2.1. An algebra B over F is a quaternion algebra if there existi, j € B
such that 1,7, j,ij is an F-basis for B and

i>=a, j>=b, and ji=—ij (2.2.2)
for some a, b € F*.

The entire multiplication table for a quaternion algebra is determined by the mul-
tiplication rules (2.2.2), linearity, and associativity: for example,

(i))? = (i) (ij) = i(jD)j = i(=ij)j = =(*)(j*) = ~ab
and j(ij) = (—ij)j = —bi. Conversely, givena, b € F*, one can write down the unique

possible associative multiplication table on the basis 1, 7, j, kK compatible with (2.2.2),
and then verify independently that it is associative (Exercise 2.1). Accordingly, for

a, . . . C
a,b € F*, we define - to be the quaternion algebra over F' with F-basis 1,7, j,ij

subject to the multiplication (2.2.2); we will also write (a, b | F) when convenient for
formatting. By definition, we have dimg (a, b | F) = 4.

s b bs
The map which interchanges i and j gives an isomorphism (aT) o~ (Ta)’

so Definition 2.2.1 is symmetric in a, b. The elements a, b are far from unique in
determining the isomorphism class of a quaternion algebra: see Exercise 2.4.
If K 2 F is afield extension of F, then there is a canonical isomorphism

a, b or K = a, b
T e
extending scalars (same basis, but now spanning a K-vector space), so Definition 2.2.1
behaves well with respect to inclusion of fields.
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;=1 . .
Example 2.2.3. The R-algebra H := ( R is the ring of quaternions over the real

numbers, discovered by Hamilton; we call H the ring of (real) Hamiltonians (also
known as Hamilton’s quaternions).

Example 2.2.4. The ring M, (F) of 2x2-matrices with coefficients in F is a quaternion

1,1\ o )
algebra over F': there is an isomorphism (7) = M, (F) of F-algebras induced by

L, 1 0 - 0 1
"o -1)7/ 7 of
If F = F¥ is algebraically closed and B is a quaternion algebra over F, then

necessarily B ~ M, (F) (Exercise 2.4). Consequently, every quaternion algebra B over
F has B®p F¥ =~ M,(FY).

A quaternion algebra B is generated by the elements 7, j by definition (2.2.2). How-
ever, exhibiting an algebra by generators and relations (instead of by a multiplication
table) can be a bit subtle, as the dimension of such an algebra is not a priori clear. But
working with presentations is quite useful; and at least for quaternion algebras, we can
think in these terms as follows.

Lemma 2.2.5. An F-algebra B is a quaternion algebra if and only if there exist
nonzero i, j € B that generate B as an F-algebra and satisfy

i=a, j2=b, and ij = —ji (2.2.6)
with a,b € F*.

In other words, once the relations (2.2.6) are satisfied for generators i, j, then
automatically B has dimension 4 as an F'-vector space, with F-basis 1,4, j,ij.

Proof. 1t is necessary and sufficient to prove that the elements 1,7, j,ij are linearly
independent. Suppose that @ = 7+ xi + yj + zij = 0 with ¢,x,y,z € F. Using the
relations given, we compute that

0=i(ai+ia) =2a(t+ xi).

Since char F' # 2 and a # 0, we conclude that # + xi = 0. Repeating with j and ij, we
similarly find that # + yj =t + zij = 0. Thus

a—(t+xi)—(t+yj)— (t+zij)=-2r=0.

Since i, j are nonzero, B is not the zero ring, so 1 # 0; thus # = 0 and so xi = yj =
zij = 0. Finally, if x # 0, then i = 0 so i2=0=aq, impossible; hence x = 0. Similarly,
y=z=0. O

Accordingly, we will call elements i, j € B satisfying (2.2.6) standard generators
for a quaternion algebra B.
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Remark 2.2.7. Invertibility of both a and b in F is needed for Lemma 2.2.5: the
commutative algebra B = F|[i, j]/(i, j)? is generated by the elements i, j satisfying
i> = j2 =ij = —ji = 0 but B is not a quaternion algebra.

Remark 2.2.8. In light of Lemma 2.2.5, we will often drop the symbol k = ij and
reserve it for other use. (In particular, in later sections we will want k to represent
other quaternion elements.) If we wish to use this abbreviation, we will assign k :=ij.

2.3 »> Matrix representations

Every quaternion algebra can be viewed as a subalgebra of 2 X 2-matrices over an at
most quadratic extension; this is sometimes taken to be the definition!

,b
Proposition 2.3.1. Let B := (aT) be a quaternion algebra over F and let F(\a) be

a splitting field over F for the polynomial x> — a, with root \Ja € F(+\/a). Then the
map

A: B - My(F(Va))

(a0 fob

”J'_’(o —x/E)’(l 0)
t+xi+yj+zij— (;ti\/\/c_g b(ty—+xzx/%a))

is an injective F-algebra homomorphism and an isomorphism onto its image.

(2.3.2)

Proof. Injectivity follows by checking ker 4 = {0} on matrix entries, and the homo-
morphism property can be verified directly, checking the multiplication table (Exercise
2.10). O

Remark 2.3.3. Proposition 2.3.1 can be turned around to assert the existence of quater-
nion algebras: one can check that the set

(75 20 s er] o

is an F-vector subspace of dimension 4, closed under multiplication, with the matrices
A(7), A(j) satisfying the defining relations (2.2.2).

2.34. Ifa ¢ F*?, thenK = F(+/a) 2 F isaquadratic extension of F. Let Gal(K | F) =
Autp (K) =~ Z/27Z be the Galois group of K over F and let o € Gal(K | F) be the
nontrivial element. Then we can rewrite the image A(B) in (2.3.2) as

A(B) = {(U’(’V) a'b(‘;)) cuv e K} c My(K). 2.35)
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Corollary 2.3.6. We have an isomorphism

(%) = My(F)

T 1 0} (0 b

BP0 1)1 o
Proof. Specializing Proposition 2.3.1, we see the map is an injective F-algebra homo-
morphism, so since dimg B = dimp M, (F) = 4, the map is also surjective. O

(2.3.7)

The provenance of the map (2.3.2) is itself important, so we now pursue another
(more natural) proof of Proposition 2.3.1.

2.3.8. Let
K :=F[i]=F@®Fi~F[x]/(x* - a)

be the (commutative) F-algebra generated by i. Suppose first that K is a field (so
a ¢ F*?): then K ~ F(+/a) is a quadratic field extension of F. The algebra B has the
structure of a right K-vector space of dimension 2, with basis 1, j: explicitly,

a=t+xi+yj+zij=((+xi)+j(y—zi)) €e KD jK

for all @ € B, so B = K @ jK. We then define the left regular representation of B
over K by
A: B — Endg (B)

239
a (Ag: B af). ( )

Each map 4, is indeed a K-linear endomorphism in B (considered as a right K-vector
space) by associativity in B: forall @, € Bandw € K,

Aa(Bw) = a(Bw) = (aB)w = 1o (B)w.

Similarly, A is an F-algebra homomorphism: for all @, 8,v € B

Aap(v) = (aB)v = a(B(v)) = (Aadp) (v)

reading functions from right to left as usual. The map A is injective (4 is a faithful
representation) since A, = 0 implies 4,(1) =@ = 0.
In the basis 1, j we have Endg (B) ~ M;(K), and A is given by

iH&=%_g,jH@=G @; (23.10)
these matrices act on column vectors on the left. We then recognize the map 4 given
in (2.3.2).

If K is not a field, then K ~ F X F, and we repeat the above argument but with
B a free module of rank 2 over K; then projecting onto one of the factors (choosing
Va € F) gives the map A, which is still injective and therefore induces an F-algebra
isomorphism B ~ M, (F).



26 CHAPTER 2. BEGINNINGS

Remark 2.3.11. In Proposition 2.3.1, B acts on columns on the left; if instead, one
wishes to have B act on the right on rows, give B the structure of a left K-vector space
and define accordingly the right regular representation instead (taking care about the
order of multiplication).

2.3.12. In some circumstances, it can be notationally convenient to consider variants
of the injection (2.3.2): for example

B — My(F(Va))
(2.3.13)
t+xi+yj+zij— b(ty+—x;/\?5) i}jjﬁ)

is obtained by taking the basis 1, 57!}, equivalently postcomposing by ((1) 2) See

also Exercise 2.12.

Remark 2.3.14. The left regular representation 2.3.8 is not the only way to embed B
as a subalgebra of 2 x 2-matrices. Indeed, the “splitting” of quaternion algebras in
this way, in particular the question of whether or not B =~ M (F), is a theme that will
reappear throughout this text. For a preview, see Main Theorem 5.4.4.

2.3.15. Thinking of a quaternion algebra as in 2.3.8 as a right K-vector space suggests
notation for quaternion algebras that is also useful: for a peek, see 6.1.5.

2.4 > Rotations

To conclude this chapter, we return to Hamilton’s original design: quaternions model
rotations in 3-dimensional space. This development is not only historically important
but it also previews many aspects of the general theory of quaternion algebras over
fields. In this section, we follow Hamilton and take k :=ij.

Proposition 2.3.1 provides an R-algebra embedding

A: H — Endc(H) ~ M,(C)
t+xi -y-— zi) _ (u —v) (2.4.1)

vV o u

t+xl+y]+zk:u+]v+—>(y_zi i _

where u 1=t +xi and v := y + zi and ~ denotes complex conjugation. (The abuse of
notation, taking i € H as well as i € C is harmless: we may think of C c H.) We have

u =V
det (v ﬁ) =+ =2+ x>+ y2+ 2%

thus H* = H \ {0}. If preferred, see (2.3.13) to obtain matrices of the form ( uv ;)

instead.
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2.4.2. We define the subgroup of unit Hamiltonians as
H' = {t+xi+yj+zk e H: > +x>+y>+72=1}.

(In some contexts, one also writes GL (H) = H* and SL; (H) = H'.)

As a set, the unit Hamiltonians are naturally identified with the 3-sphere in R*. As
groups, we have an isomorphism H' ~ SU(2) with the special unitary group of rank
2, where

SU®n) :={A eSL,(C): A*=A""} (2.4.3)

where A* = A" is the (complex) conjugate transpose of A.

Definition 2.4.4. Let « € H. We say « is real if @ € R, and we say « is pure (or
imaginary) if @ € Ri + Rj + Rk.

2.4.5. Just as for the complex numbers, every element of H is the sum of its real
part and its pure (imaginary) part. And just like complex conjugation, we define a
(quaternion) conjugation map

—TH-H
S _ o (24.6)
a=t+(xi+yj+zk) > a=t— (xi+yj+zk)
by negating the imaginary part. We compute that
a+a=tr(l(a)) =2t
(@(a)) (2.4.7)

lla||? := det(A(@)) = a@ = @a = 1> + x> + y* + Z°.
The notation || || is used to indicate that it agrees the usual square norm on H ~ R*.
The conjugate transpose map on M, (C) restricts to quaternion conjugation on the
image of H in (2.4.1), also known as adjugation

o= (; ‘EV) - A(@) = (_ﬁv Z)

Thus the elements @ € H such that A(a) = A(a) (i.e., A* = A, and we say A is
Hermitian), are exactly the scalar (real) matrices; and those that are skew-Hermitian,
i.e., A* = —A, are exactly the pure quaternions. The conjugation map plays a crucial
role for quaternion algebras and is the subject of the next chapter (Chapter 3), where
to avoid confusion with other notions of conjugation we refer to it as the standard
involution.

2.4.8. Let
H:={v=xi+yj+zk€H:x,y,z € R} ~R>

be the set of pure Hamiltonians, the three-dimensional real space on which we will soon
see that the (unit) Hamiltonians act by rotations. (The reader should not confuse v € H°
with v the entry of a 2 X 2-matrix in a local instantiation above.) For v € HO ~ R3,

[VII? = x* +y? + 2% = det(A(v)), (2.4.9)



28 CHAPTER 2. BEGINNINGS

and from (2.4.1),
H={veH:tr(A(v)) =v+7 =0}.

We again see that v = —v for v € HC.
The set HY is not closed under multiplication: if v,w € HO, then
VW ==V -W+VXW (2.4.10)

where v - w is the dot product on R and v x w € HC is the cross product, defined as
the determinant
i j ok
vXw=det|vy vy V3 (2.4.11)
w1 w2 w3

where v = vii+vyj +vik and w = wii + waj + w3k, so
VW =VW|+Vowy+V3w3

and
vXw = (vowz —vawp)i + (vaw) —viw3)j + (viwy — vow) )k.

The formula (2.4.10) is striking: it contains three different kinds of ‘multiplications’!
Lemma 2.4.12. Forall v,w € H°, the Jollowing statements hold.

(@) vw € HO ifand only if v, w are orthogonal.
(b) v’ =—[lv[I* e R,
() wv = —vw if and only if v, w are orthogonal.

Proof. Apply (2.4.10). O

2.4.13. The group H' acts on our three-dimensional space H° (on the left) by conju-
gation:

H' OH’ - H
(2.4.14)

Vi avofl;

indeed, tr(A(ava")) = tr(A(v)) = 0 by properties of the trace, so ava~! € H?. Or
H={veH:v?eRg}

and this latter set is visibly stable under conjugation. The representation (2.4.14) is
called the adjoint representation.

2.4.15. Let a € H' \ {*1}. Then there exists a unique 6 € (0, ) such that
a=t+xi+yj+zk=cosf+ (sinf)I(a) (2.4.16)
where I(a) is pure and ||I(a)|| = 1: to be precise, we take 6 such that cos § = ¢ and

xXi+yj+zk
I ==
(@) |sin 0]

We call I(a) the axis of a, and observe that I(a)? = —1.
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Remark 2.4.17. In analogy with Euler’s formula, we can write (2.4.16) as
a =exp(I(a)0).

We are now prepared to identify this action by quaternions with rotations. As

usual, let
O(n) :={AeM,(R): A'=A""}

be the orthogonal group of R" (preserving the standard inner product), and let
SO(n) := {A € O(n) : det(A) =1} < O(n)

to be the special orthogonal group of rotations of R”, a normal subgroup of index 2
fitting into the exact sequence

1 - SO(n) — O(n) X (21} — 1.

Proposition 2.4.18. H' acts by rotation on H® ~ R3 via conjugation (2.4.14): specif-
ically, a acts by rotation through the angle 20 about the axis ().

Proof. Let @ € H' \ {£1}. Then for all v € H°,
llava™|* = |Iv|I*

by (2.4.9), so a acts by a matrix belonging to O(3).

But we can be more precise. Let j’ € HY be a unit vector orthogonal to i’ = I(a).
Then (i’)? = (j’)?> = -1 by Lemma 2.4.12(b) and i’ = —i’j’ by Lemma 2.4.12(c),
so without loss of generality we may suppose that /(@) = i and j° = j. Thus
@ =t+xi=cosf+ (sin@)i with 2 + x2 =cos? +sin0 = 1,and o~ ! = 1 — xi.

We have aia™! =i, and

ajat = (t+xi)j(t —xi) = (t +xi) (1 + xi) ]

o ] (2.4.19)
= ((t° —x7) +2txi)j = (cos 26)j + (sin20)k
by the double angle formula. Consequently,
aka' =i(aja™") = (—sin260)j + (cos 26)k
so the matrix of @ in the basis i, j, k is
1 0 0
A=10 cos26 -—sin26|, (2.4.20)
0 sin26 cos?26
a (counterclockwise) rotation (determinant 1) through the angle 26 about i. ]

Corollary 2.4.21. The action (2.4.13) defines a group homomorphism H' — SO(3),
fitting into an exact sequence

1 - {1} - H' - S0(3) - 1.
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Proof. The map H' — SO(3) is surjective, since every element of SO(3) is rotation
about some axis (Exercise 2.15). If @ belongs to the kernel, then @ = cos §+(sin )1 (@)
must have sinf = 0so @ = +1. O

2.4.22. The matrix representation of H in section 2.4 extends to a matrix representation
of H ®r C, and this representation and its connection to unitary matrices is still used
widely in quantum mechanics. In the embedding with

S A T B A R (I
o - /T - o) i 0

whose images are unitary matrices, we multiply by —i to obtain Hermitian matrices

_(1 o0 (0 i _ (0 1
7=l -1 Tl o) T o

where o7, oy, 0, are the famous Pauli spin matrices. Because of this application to
the spin (a kind of angular momentum) of an electron in particle physics, the group
H' also goes by the name H' ~ Spin(3).

The extra bit of information conveyed by spin can also be seen by the “belt trick”
[Hans2006, Chapter 2].

2.4.23. We conclude with one final observation, returning to the formula (2.4.10).
There is another way to mix the dot product and cross product (2.4.11) in H: we define
the scalar triple product

HxHXH — R

(2.4.24)
(u,v,w) > u-(vxXw).

Amusingly, this gives a way to “multiply” triples of triples! The map (2.4.24) defines
an alternating, trilinear form (Exercise 2.19). If u,v,w € HY, then the scalar triple
product is a determinant

up Uz uj
u-(vxw)=detfvy vy v3
wip w2 w3
and |u - (v X w)]| is the volume of a parallelepiped in R? whose sides are given by
U, v, w.

Exercises

Let F be a field with char F # 2.

» 1. Show that a (not necessarily associative) F-algebra is associative if and only if
the associative law holds on a basis, and then check that the multiplication table
implied by (2.2.2) is associative.
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» 4.

» 7.

» 8.

» 9.

. Show that if B is an F-algebra generated by i,j € B and 1,7, j are linearly

dependent, then B is commutative.

1,1
. Verify directly that the map (’7) = M (F) in Example 2.2.4 is an isomor-

phism of F-algebras.
Leta,b € F*.

(a) Show that (ﬁ) ~ (a,—ab) . (b, _ab |
F F Ia

a,b

2 2
(b) Show that if ¢,d € F* then (T) ~ (M

F
F*/F*? is finite, then there are only finitely many isomorphism classes of
quaternion algebras over F, and in particular that if F*?> = F* then there is

). Conclude that if

1,1 .
only one isomorphism class (T) =~ M, (F). [The converse is not true,
see Exercise 3.16.]
AW :
(c) Show thatif B = % is a quaternion algebra over R, then B =~ M;(R)

or B =~ M| the latter occurring if and only if @ < 0 and » < 0. Conclude
that if B is a division quaternion algebra over R, then B ~ H.

(d) Let B be a quaternion algebra over F. Show that B @ F al o M, (F al),
where F? is an algebraic closure of F.

(e) Refine part (d) as follows. A field K 2 F is a splitting field for B if
B ®F K =~ M;(K). Show that B has a splitting field K with [K : F] < 2.

,b . .
. Let B = (aT) be a quaternion algebra over F. Let i’ € B \ F satisfy (i")> =

/, b/
a’ € F*. Show that there exists b’ € F* and an isomorphism B =~ (aF )

(under which i’ maps to the first standard generator).

i

-1,-1
. Use the quaternion algebra B = (T), multiplicativity of the determinant,

and the left regular representation (2.3.2) to show that if two elements of F can
be written as the sum of four squares, then so too can their product (a discovery
of Euler in 1748). [In Chapter 3, this statement will follow immediately from
the multiplicativity of the reduced norm on B; here, the formula is derived easily
from multiplicativity of the determinant.]

Let B be an F-algebra. Show that if B is a quaternion algebra over F, then B is
central.

Let A, B be F-algebras, and let ¢: A — B be a surjective F-algebra homomor-
phism. Show that ¢ restricts to an F-algebra homomorphism Z(A) — Z(B).

Prove the following partial generalization of Exercise 2.4(b). Let B be a finite-
dimensional algebra over F.

(a) Show that every element @ € B satisfies a unique monic polynomial of
smallest degree with coefficients in F.
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(b) Suppose that B = D is a division algebra. Show that the minimal poly-
nomial of @ € D is irreducible over F. Conclude that if F = F¥ is
algebraically closed, then D = F.

» 10. Prove Proposition 2.3.1: show directly that the map

A: B — My(F(Va))
. Va 0 0 b
Ly ( 0 —va)'\t o
extends uniquely to an injective F-algebra homomorphism. [Hint: check that
the relations are satisfied. |

11. (a) Show explicitly that every quaternion algebra B = (a, b | F) is isomorphic
to an F-subalgebra of M4 (F) via the left (or right) regular representation
over F: write down 4 X 4-matrices representing i and j and verify that
the relations i> = a, j> = b, ji = —ij hold for these matrices. Note the
2 x 2-block structure of these matrices.

(b) With respect to a suitable such embedding in (a) for B = H, verify that
the quaternionic conjugation map @ — « is the matrix transpose, and the
matrix determinant is the square of the norm ||e||*> = a@.

12. In certain circumstances, one may not want to “play favorites” in the left regular
representation (Proposition 2.3.1) and so involve i and j on more equal footing.
To this end, show that the map

b
B= (“7) — My(F(Ya, Vb))
2.4.25
i (Va0 0 Vb ( )
9,] 0 _\/E > \/E 0
is an injective F-algebra isomorphism. How is it related to the left regular

representation?

13. Let B = (a,b | F) be a quaternion algebra over F. For a nonzero element
a =t+xi+yj+zk € B, show that the following are equivalent:
(1) t=0;and
(i) @ ¢ Fand a® € F.
[So the notion of “pure quaternion” is not tethered to a particular basis.]
14. Verify that (2.3.7) is an isomorphism of F-algebras, and interpret this map as

arising from the left regular representation via a map B <— M(F X F) —
M, (F).

15. Show that every rotation A € SO(3) fixes an axis. [Hint: Consider the eigen-
values of A.]

16. For v € H” and 8 € HO \ {0}, consider the map v — 8~ 'v8 = -~ 1vg8 € HC.
Show that this map is the reflection across the plane {w € H? : tr(1(8w)) = 0}.
(For example, taking 8 = i, the map is xi + yj + zk — —xi + yj + zk.)



2.4. » ROTATIONS 33

» 17. In Corollary 2.4.21, we showed that SU(2) ~ H' has a 2-to-1 map to SO(3),
where H' acts on H° ~ R3 by conjugation: quaternions model rotations in
three-dimensional space, with spin. Quaternions also model rotations in four-
dimensional space, as follows.

(a) Show that the map

H' xHHYOH->H
o (2.4.26)
X ax,

defines a (left) action of H' xH! on H ~ R*, giving a group homomorphism
¢: H' xH' - O(4).

(b) Show that ¢ surjects onto SO(4) < O(4). [Hint: If A € SO(4) fixes 1 € H,
then A restricted to H' is a rotation and so is given by conjugation. More
generally, if Al = a, consider x — a ' Ax.]

(c) Show that the kernel of ¢ is {+1} embedded diagonally, so there is an exact
sequence

1 - {x1} - SU(2) x SU(2) —» SO(4) — 1.

[More generally, the universal cover of SO(n) for n > 3 is a double cover called
the spin group Spin(n), and so Corollary 2.4.21 shows that Spin(3) ~ SU(2)
and this exercise shows that Spin(4) ~ SU(2) x SU(2). For further reading, see
e.g. Fulton—-Harris [FH91, Lecture 20].]

18. Let p,.9: R* — R? be the counterclockwise rotation by the angle 6 about the
axis u € R® ~ HO, with ||u|| = 1. Prove Rodrigues’s rotation formula: for all
v eR3,

Pu,0(v) = (cosO)v + (sinf)(u X v) + (1 —cos @) (u - v)u

where u X v and u - v are the cross and dot product, respectively.

19. Verify that the map (2.4.24) is a trilinear alternating form on H, i.e., show the
form is linear when any two of the three arguments are fixed and zero when two
argument are equal.

20. Let B be a quaternion algebra over F and let M,(B) be the ring of 2 x 2-
matrices over B. (Be careful in the definition of matrix multiplication: B is
noncommutative!) Consider the Cayley determinant:

Cdet: My(B) —» B

a B\ _ B
Cdet (7 6) =ad —-vyB
(a) Show that Cdet is F-multilinear in the rows and columns of the matrix.
(b) Show that Cdet is not left B-multilinear in the rows of the matrix.

(c) Give an example showing that Cdet is not multiplicative.
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(d) Findamatrix A € M, (H) thatis invertible (i.e., having a two-sided inverse)
but has Cdet(A) = 0. Then find such an A with the further property that
its transpose has nonzero determinant but is not invertible.

[Moral: be careful with matrix rings over noncommutative rings! For more on
quaternionic determinants, including the Dieudonné determinant, see Aslaksen
[As196].]



Chapter 3

Involutions

In this chapter, we define the standard involution on a quaternion algebra. In this
way, we characterize division quaternion algebras as noncommutative division rings
equipped with a standard involution.

3.1 » Conjugation

The quaternion conjugation map (2.4.6) defined on the Hamiltonians H arises naturally
from the notion of real and pure (imaginary) parts, as defined by Hamilton. This
involution has a natural generalization to a quaternion algebra B = (a,b | F) over a
field F with char F # 2: we define

:B—B
a=t+xi+yj+zija=t—(xi+yj+zij)
Multiplying out, we then verify that
a@:&a:tz—axz—byz+abz2€F.

The way in which the cross terms cancel, because the basis elements i, j,ij skew
commute, is a calculation that never fails to enchant!

But this definition seems to depend on a basis: it is not intrinsically defined.
What properties characterize it? Is it unique? We are looking for a good definition
of conjugation ~ : B — B on an F-algebra B: we will call such a map a standard
involution.

The involutions we consider should have basic linearity properties: they are F-
linear (with 1 = 1, so they act as the identity on F) and have order 2 as an F-linear map.
An involution should also respect the multiplication structure on B, but we should not
require that it be an F-algebra isomorphism: instead, like the inverse map (or transpose
map) reverses order of multiplication, we ask that 8 = Ba for all @ € B. Finally, we
want the standard involution to give rise to a trace and norm (a measure of size), which
is to say, we want @ + @ € F' and aa = aa € F for all @ € B. The precise definition
is given in Definition 3.2.1, and the defining properties are rigid: if an algebra B has a
standard involution, then it is necessarily unique (Corollary 3.4.4).

35
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The existence of a standard involution on B implies that every element of B
satisfies a quadratic equation: by direct substitution, we see that & € B is a root of the
polynomial x?> — tx + n € F[x] where ¢ := a + @ and n := a@ = aa, since then

@ —(@+a)a+aa=0

identically. Accordingly, we define the reduced trace trd: B — F by trd(@) = o + @
and reduced norm nrd: B — F by nrd(@) = aa. We observe that trd is F-linear and
nrd is multiplicative on B*.

Motivated by this setting, we say that B has degree 2 if every element « € B
satisfies a (monic) polynomial in F'[x] of degree 2 and, to avoid trivialities, that B # F
(or equivalently, at least one element of B satisfies no polynomial of degree 1). The
final result of this section is the following theorem (see Theorem 3.5.1).

Theorem 3.1.1. Let B be a division F-algebra of degree 2 over a field F with char F #
2. Then either B = K is a quadratic field extension of F or B is a division quaternion
algebra over F.

As a consequence, division quaternion algebras are characterized as noncommu-
tative division algebras with a standard involution, when char F # 2.

3.2 Involutions

Throughout this chapter, let B be an F-algebra. For the moment, we allow F to be of
arbitrary characteristic. We begin by defining involutions on B.

Definition 3.2.1. An involution ™ : B — B is an F-linear map which satisfies:

O 1=1
(i) @ = a forall @ € B; and
(i) @B = Ba forall @, € B (the map ~ is an anti-automorphism).

3.2.2. We define the opposite algebra of B by letting B°? = B as F-vector spaces but
with multiplication @ -, 8= - a fora, 8 € B.

One can then equivalently define an involution to be an F-algebra isomorphism
B = B°P whose underlying F-linear map has order at most 2.

Remark 3.2.3. What we have defined to be an involution is known in other contexts as
an involution of the first kind. An involution of the second kind is a map which acts
nontrivially when restricted to F, and hence is not F-linear; although these involutions
are interesting in other contexts, they will not figure in our discussion (and anyway
one can consider such an algebra over the fixed field of the involution).

Definition 3.2.4. An involution ~ is standard if @ € F for all @ € B.

Remark 3.2.5. Standard involutions go by many other names. The terminology stan-
dard is employed because conjugation on a quaternion algebra is the “standard” ex-
ample of such an involution. Other authors call the standard involution the main
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involution for quaternion algebras, but then find situations where the “main” involu-
tion is not standard by our definition. The standard involution is also called conjugation
on B, but this can be confused with conjugation by an element in B*. We will see in
Corollary 3.4.4 that a standard involution is unique, so it is also called the canonical
involution; however, there are other circumstances where involutions can be defined
canonically that are not standard (like the map induced by g — g~! on the group ring
F[G)).

3.2.6. If ~ is a standard involution, so that aa € F for all @ € B, then
(e+D(@+D=(e@+)(@+1)=aa+a+a+1€eF
and hence @ + @ € F for all @ € B as well; it then also follows that aa = a«, since
(a+@)a =ala+a).

Example 3.2.7. The identity map is a standard involution on B = F as an F-algebra.
The R-algebra C has a standard involution, namely, complex conjugation.

Example 3.2.8. The adjugate map
A:(a b)l—)ATZ(d —b)
c d -c a
is a standard involution on M, (F) since AAT = ATA =ad — bc =detA € F.

Matrix transpose is an involution on M, (F) but is a standard involution (if and)
onlyifn=1.

3.2.9. Suppose char F # 2 and let B = (a, b | F). Then the map
“:B—>B

a=t+xi+yj+zij—>a=t—-xi—yj—zij

defines a standard involution on B and @ = 27 — @. The map is F-linear with 1=1and

@ = a, so properties (i) and (ii) hold. By F-linearity, it is enough to check property

(iii) on a basis (Exercise 3.1), and we verify for instance that
ij==ij=ji=(=j)(=i) = ji

(see Exercise 3.3). Finally, the involution is standard because

(t+xi+yj+zij)(t—xi—yj—zij) =t> —ax* —=by* +abz? € F.  (3.2.10)

Remark 3.2.11. Algebras with involution play an important role in analysis, in particu-
lar Banach algebras with involution and C*-algebras (generally of infinite dimension).
A good reference is the text by Dixmier [Dix77] (or the more introductory book by
Conway [Con2012]).
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3.3 Reduced trace and reduced norm

Let ~ : B — B be a standard involution on B. We define the reduced trace on B by

trd: B— F
— (3.3.1)
a—at+a
and similarly the reduced norm
nrd: B — F
_ (3.32)
a - aa.

Example 3.3.3. For B = M;,(F), equipped with the adjugate map as a standard
involution as in Example 3.2.8, the reduced trace is the usual matrix trace and the
reduced norm is the determinant.

3.3.4. The reduced trace trd is an F-linear map, since this is true for the standard
involution:

trd(e+B8)=(a+pB)+(a+B)=(a+a)+ (B +,§) = trd(a) + trd(B)

for @, 8 € B. The reduced norm nrd is multiplicative, since

nrd(aB) = (aﬁ)@ = afBa = anrd(B)a = nrd(e) nrd(B)
for all @, 8 € B.
It will be convenient to write

BY := {@ € B : trd(a) = 0}

3.3.5
B! := {@ € BX : nrd(a) = 1} ( )

for the F-subspace B C B of elements of reduced trace 0 and for the subgroup
B! < B* of elements of reduced norm 1. We observe that B! < B is normal, by
multiplicativity, indeed we have an exact sequence of groups

15 B' - B< ™, px

(noting that the reduced norm map need not be surjective).

Lemma 3.3.6. If B is not the zero ring, then o € B is a unit (has a two-sided inverse)
if and only if nrd(a@) # 0.

Proof. Exercise 3.5. O

Lemma 3.3.7. Forall o, € B, we have trd(Ba) = trd(af).
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Proof. We have

trd(af) = trd(a(trd(B) — B)) = trd(a) trd(B) — trd(aB)
and so .
trd(aB) = trd(apB) = trd(B@) = trd(a) trd(B) — trd(Ba)
therefore trd(aB) = trd(Ba). O

Remark 3.3.8. The maps trd and nrd are called reduced for the following reason.
Let A be a finite-dimensional F'-algebra, and consider the left regular representation
A: A — Endp(A) given by left multiplication in A (cf. Proposition 2.3.1, but over F).
We then have a (left) trace map Tr: A — F and (left) norm map Nm: A — F given
by mapping « € B to the trace and determinant of the endomorphism 1, € Endg (A).
When A = M, (F), a direct calculation (Exercise 3.13) reveals that

Tr(a) =2trd(@) = 2tr(a)

(algebra trace, reduced trace, and matrix trace, respectively; there is no difference
between left and right), and

Nm(e) = nrd(a)? = det(a)?

for all @ € A, whence the name reduced. (To preview the language of chapter 7, this
calculation can be efficiently summarized: as a left A-module, A is the sum of two
simple A-modules—acting on the columns of a matrix—and the reduced trace and
reduced norm represent ‘half” of this action.)

3.3.9. Since
- (a+@)a+aa=0 (3.3.10)

identically we see that @ € B is a root of the polynomial
x? — trd(@)x + nrd(a) € F[x] (3.3.11)

which we call the reduced characteristic polynomial of @. The fact that « satisfies its
reduced characteristic polynomial is the reduced Cayley-Hamilton theorem for an
algebra with standard involution. When a ¢ F, the reduced characteristic polynomial
of a is its minimal polynomial, since if @ satisfies a polynomial of degree 1 then @ € F.

3.4 Uniqueness and degree
Definition 3.4.1. An F-algebra K with dimg K = 2 is called a quadratic algebra.

Lemma 3.4.2. Let K be a quadratic F-algebra. Then K is commutative and has a
unique standard involution.
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Proof. Leta € K\ F. Then K = F @ Fa = F[a], so in particular K is commutative.
Then o? = ta — n for unique ¢,n € F, since 1, @ is a basis for K.

If ~ : K — K is any standard involution, then from (3.3.10) and uniqueness we
conclude r = @ + @ (and n = a@), and so any involution must have @ = t — @. On
the other hand, there is a unique standard involution x: K — K with @ =t — @: the
verification is straightforward (see Exercise 3.2). O

Example 3.4.3. The reduced trace and norm on a quadratic algebra are precisely the
usual algebra trace and norm. If char F # 2 and K 2 F is a quadratic field extension
of F, then the standard involution is just the nontrivial element of Gal(K | F).

Corollary 3.4.4. If B has a standard involution, then this involution is unique.

Proof. Forany @ € B\F, we have from (3.3.10) that dimg F[a] = 2, so the restriction
of the standard involution to F[«] is unique. Therefore the standard involution on B
is itself unique. O

We have seen that the equation (3.3.10), implying that if B has a standard involution
then every « € B satisfies a quadratic equation, has figured prominently in the above
proofs. To further clarify the relationship between these two notions, we make the
following definition.

Definition 3.4.5. The degree of B is the smallest m € Zx( such that every element
a € B satisfies a monic polynomial f(x) € F[x] of degree m, if such an integer exists;
otherwise, we say B has degree co.

3.4.6. If B has finite dimension n = dimg B < oo, then every element of B satisfies
a polynomial of degree at most n: if @ € B then the elements 1,a,...,a" are
linearly dependent over F. Consequently, every finite-dimensional F-algebra has a
(well-defined) integer degree, at most n.

Example 3.4.7. By convention, we interpret Definition 3.4.5 as defining the degree
of the zero ring to be 0 (since 1 = 0, the element O satisfies the monic polynomial
Ox)—whatever!

If B has degree 1, then B = F. If B has a standard involution, then either B = F or
B has degree 2 by (3.3.11).

3.5 Quaternion algebras

We are now ready to characterize division algebras of degree 2 when char F # 2. (For
the case char F = 2, see Chapter 6.)

Theorem 3.5.1. Suppose char F # 2 and let B be a division F-algebra. Then B has
degree at most 2 if and only if one of the following hold:

(i) B=F;
(i) B = K is a quadratic field extension of F; or
(iii) B is a division quaternion algebra over F.
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Proof. From Example 3.4.7, we may suppose that B # F' and B has degree 2.

Leti € B\ F. Then F[i] = K is a (commutative) quadratic F-subalgebra of the
division ring B, so K = F (i) is a field. If K = B, we are done. Completing the square
(since char F # 2), we may suppose that i> = a € F*.

Let ¢: B — B be the map given by conjugation by i, i.e., () = i 'ai. Then ¢
is a K-linear endomorphism of B, thought of as a (left) K-vector space, and ¢2 is the
identity on B. Therefore ¢ is diagonalizable, and we may decompose B = B* & B~
into eigenspaces for ¢: explicitly, we can always write

L_atd@)  a-d@)

eB"®B".
2 2 ®

We now prove dimg B* = 1. Let @ € B*. Then L = F(a,i) is a field. Since
char F # 2, and L is a compositum of quadratic extensions of F, the primitive element
theorem implies that L = F(B) for some 8 € L. But by hypothesis 8 satisfies a
quadratic equation so dimg L = 2 and hence L = K. (For an alternative direct proof
of this claim, see Exercise 3.10.)

If B = B" = K, we are done. So suppose B~ # {0}. We will prove that
dimg B~ =1.If0 # j € B theni~'ji = —j, soi = —j~'ij and hence all elements of
B~ conjugate i to —i. Thusif O # jj, j» € B~ then j| j, centralizesi and j; j» € B* = K.
Thus any two nonzero elements of B~ are K-multiples of each other.

Finally, let j € B~ \ {0}; then B=B* ® B~ = K @ Kj so B has F-basis 1,1, j,ij
and ji = —ij. We claim that trd(j) = 0: indeed, both j and i~!ji = —j satisfy
the same reduced characteristic (or minimal) polynomial of degree 2, so trd(j) =
trd(—j) = —trd(j) so trd(j) = 0. Thus j? = b € F*, and B is a quaternion algebra by
definition. O

Remark 3.5.2. We need not assume in Theorem 3.5.1 that B is finite-dimensional;
somehow, it is a consequence, and every division algebra over F (with char F # 2) of
degree < 2 is finite-dimensional.

There are algebras of arbitary (finite or infinite) dimension over F of degree 2: see
Exercise 3.15. Also, a boolean ring (see Exercise 3.12) has degree 2 as an F,-algebra,
and there are such rings of arbitrary dimension over F,. Such algebras are quite far
from being division rings, of course.

Remark 3.5.3. The proof of Theorem 3.5.1 has quite a bit of history, discussed by van
Praag [vPr2002] (along with several proofs). See Lam [Lam2005, Theorem IIL.5.1] for
a parallel proof of Theorem 3.5.1. Moore [Moore35, Theorem 14.4] in 1915 studied
algebra of matrices over skew fields and in particular the role of involutions, and gives
an elementary proof of this theorem (with the assumption char F # 2). Dieudonné
[Die48, Die53] gave another proof that relies on structure theory for finite-dimensional
division algebras.

Corollary 3.5.4. Let B be a division F-algebra with char F # 2. Then B has degree
at most 2 if and only if B has a standard involution.

Proof. In each of the cases (i)—(iii), B has a standard involution; and conversely if B
has a standard involution, then B has degree at most 2 (Example 3.4.7). m]
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Remark 3.5.5. The statement of Corollary 3.5.4 holds more generally—even if B is
not necessarily a division ring—as follows. Let B be an F-algebra with char F # 2.
Then B has a standard involution if and only if B has degree at most 2 [V0i2011b].
However, this is no longer true in characteristic 2 (Exercise 3.12).

Corollary 3.5.6. Let B be a division F-algebra with char F # 2. Then the following
are equivalent:

(i) B is a quaternion algebra;
(ii) B is noncommutative and has degree 2; and
(iii) B is central and has degree 2.

Definition 3.5.7. An F-algebra B is algebraic if every @ € B is algebraic over F (i.e.,
«a satisfies a polynomial with coefficients in F).

If B has finite degree (such as when dimp B = n < 00), then B is algebraic.

Corollary 3.5.8 (Frobenius). Let B be an algebraic division algebra over R. Then
either B=R or B =~ C or B ~ H as R-algebras.

Proof. If @ € B\ R then R(a) =~ C, so «a satisfies a polynomial of degree 2. Thus if
B # R then B has degree 2 and either B ~ C or B is a division quaternion algebra over
R, and hence B =~ H by Exercise 2.4(c). O

Example 3.5.9. Division algebras over R of infinite dimension abound. Transcen-
dental field extensions of R, such as the function field R(x) or the Laurent series
field R((x)), are examples of infinite-dimensional division algebras over R. Also, the
free algebra in two (noncommuting) variables is a subring of a division ring B (its
“noncommutative ring of fractions”) with center R and of infinite dimension over R.

Remark 3.5.10. The theorem of Frobenius (Corollary 3.5.8) extends directly to fields
F akin to R, as follows. A field is formally real if —1 cannot be expressed in F as a
sum of squares and real closed if F is formally real and has no formally real proper
algebraic extension. The real numbers R and the field of all real algebraic numbers are
real closed. A real closed field has characteristic zero, is totally ordered, and contains
a square root of each nonnegative element; the field obtained from F by adjoining a
root of the irreducible polynomial x> + 1 is algebraically closed. For these statements,
see Rajwade [Raj93, Chapter 15]. Every finite-dimensional division algebra over a
real closed field F is either F or K = F(V-1) or B = (=1, -1 | F).

Remark 3.5.11. Algebras of dimension 3, sitting somehow between quadratic ex-
tensions and quaternion algebras, can be characterized in a similar way. If B is an
R-algebra of dimension 3, then either B is commutative or B has a standard involution
and is isomorphic to the subring of upper triangular matrices in M(R). A similar
statement holds for free R-algebras of rank 3 over a (commutative) domain R; see
Levin [Lev2013].
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Exercises

Throughout these exercises, let F be a field.

» 1.

» 2.

10.

Let B be an F-algebra and let ~: B — B be an F-linear map with 1 = 1. Show
that ~ is an involution if and only if (ii)—(iii) in Definition 3.2.1 hold for a basis
of B (as an F-vector space).

Let K = F[a] be a quadratic F-algebra, with o = ta — n for (unique) ,n € F.
Extending linearly, show that there is a unique standard involution ~: K — K
with the property that @ = ¢ — @, and show that

trd(x + ya) = 2x + ty

nrd(x + ya) = x% + txy + ny”

for all x + ya € Fla].

. Verify that the map ~ in Example 3.2.9 is a standard involution.

. Determine the standard involution on K = F X F (with F — K under the

diagonal map).

. Let B be an F-algebra with a standard involution. Show that 0 # « € B is a left

zerodivisor if and only if « is a right zerodivisor if and only if nrd(a) = 0. In
particular, if B is not the zero ring, then @ € B is (left and right) invertible if
and only if nrd(a@) # 0.

. Suppose char F # 2, let B be a division quaternion algebra over F, and let

K1, K> C B be quadratic subfields (over F) with K1 N K, = F. Show that the
F-subalgebra of B generated by K; and K is equal to B. Conclude that if
1,a,B € B are F-linearly independent, then 1, a, 8, @8 are an F-basis for B.
[Hint: use the involution.] By way of counterexample, show that these results
need not hold for B = M, (F).

. Show that B = M,,(F) has a standard involution if and only if n < 2.
. Let G be a finite group. Show that the F-linear map induced by g — g~!

for ¢ € G is an involution on the group ring F[G] = P gec F8&- Determine
necessary and sufficient conditions for this map to be a standard involution.

. Let B be an F-algebra with a standard involution ~ : B — B. In this exercise,

we examine when ~ is the identity map.

(a) Show that if char F' # 2, then x € B satisfies x = x if and only x € F.

(b) Suppose that dimg B < oco. Show that the identity map is a standard
involution on B if and only if (i) B = F or (ii) char F = 2 and B is a
quotient of the commutative ring F[xi,...,x,]/(x} — ay,...,x3 — ap)
with a; € F.

Let K 2 F be a field which has degree m as an F-algebra in the sense of
Definition 3.4.5. Suppose that char F { m. Show that [K : F] = m, i.e., K has
degree m in the usual sense. (What happens when char F' | m?)
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11.

12.

» 13.

14.

15.

» 16.

17.
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Let B be an F-algebra with standard involution. Suppose that ¢: B = B is
an F-algebra automorphism. Show for @ € B that m = ¢(a), and therefore
that trd(¢(a)) = trd(a) and nrd(¢(a)) = nrd(@). [Hint: consider the map
@ ¢~ (¢(a)).]

In this exercise, we explore further the relationship between algebras of degree
2 and those with standard involutions (Remark 3.5.5).

(a) Suppose char F # 2 and let B be a finite-dimensional F-algebra. Show
that B has a standard involution if and only if degy B < 2.

(b) Let F = F, and let B be a Boolean ring, a ring such that x> = x for all
x € B. (Verify that2 = Oin B, so B is an F,-algebra.) Prove that B does not
have a standard involution unless B = F, or B = [F, X [F,, but nevertheless
any Boolean ring has degree at most 2.

Let B = M,,(F), and consider the map A: B < Endg(B) by @ +— A, defined
by left-multiplication in B. Show that for all @ € M, (F), the characteristic
polynomial of A, is the nth power of the usual characteristic polynomial of «.
Conclude when n = 2 that tr(a) = 2 trd(@) and det(a) = nrd(e)?.

Considering a slightly different take on the previous exercise: let B be a quater-
nion algebra over F. Show that the characteristic polynomial of left multipli-
cation by o € B is equal to that of right multiplication and is the square of the
reduced characteristic polynomial. [Hint: if a direct approach is too cumber-
some, consider applying the previous exercise and the left regular representation
asin 2.3.8.]

Let V be an F-vector space andletz : V — F be an F-linear map. Let B = F@V
and define the binary operation x - y = #(x)y for x,y € V. Show that - induces
a multiplication on B, and that the map x +— x = #(x) — x for x € V induces
a standard involution on B. [Such an algebra is called an exceptional algebra
[GrLu2009, Voi2011b].] Conclude that there exists a central F-algebra B with
a standard involution in any dimension n = dimg B > 3.

In this exercise, we mimic the proof of Theorem 3.5.1 to prove that a quaternion
algebra over a finite field of odd cardinality is not a division ring, a special case
of Wedderburn’s little theorem: a finite division ring is a field.

Assume for purposes of contradiction that B is a division quaternion algebra
over F = F, with g odd.

(a) Leti € B\ F. Show that the centralizer Cgx(i) = {@ € B* : ia = ai} of i
in B* satisfies Cpx (i) = F(i)*.

(b) Conclude that any noncentral conjugacy class in B* has order ¢* + 1.

(c) Derive a contradiction from the class equation q4 -1l=q-1+ m(q2 +1)
(where m € Z).

[For the case g even, see Exercise 6.16; for fun, the eager reader may wish to
prove Weddernburn’s little theorem for F' = F, directly.]

Derive Euler’s identity (1.1.6) that the product of the sum of four squares is
again the sum of four squares as follows. Let F = Q(xy,...,X4,y1,...,y4) bea
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18.

19.

function field over Q in 8 variables and consider the quaternion algebra (-1, —1 |
F). Show (by an explicit universal formula) that if R is any commutative ring
and x, y € R are the sum of four squares in R, then xy is the sum of four squares
in R.

Suppose char F' # 2. For an F-algebra B, let
V(B) :={@ € B\ F:a” € F}U{0}.

Let B be a central division ring. Show that V(B) is a nonzero vector space if
and only if B is a quaternion algebra over F.

Let B be an F-algebra with F-basis ej,es,...,e,. Let ~ : B — B be an
involution. Show that ~ is standard if and only if

eie; € Fand (e; +e;)(e; +e;) € Fforalli,j=1,...,n






Chapter 4

Quadratic forms

Quaternion algebras, as algebras equipped with a standard involution, are intrinsically
related to quadratic forms. We develop this connection in the next two chapters.

4.1 > Reduced norm as quadratic form

Let F be a field with char F # 2 and let B = (a, b | F) be a quaternion algebra over
F. We have seen (3.2.9) that B has a unique standard involution and consequently a
reduced norm map, with

nrd(f +xi + yj +zij) = 12 — ax®> — by? + abz* 4.1.1)

for ¢t,x,y,z € F. The reduced norm therefore defines a quadratic form, a homoge-
neous polynomial of degree 2 in F [, x, y, z] (thought of as a function of the coefficients
of an element with respect to the basis 1,4, j, ij). It should come as no surprise, then,
that the structure of the quaternion algebra B is related to properties of the quadratic
form nrd.

Let Q: V — F be a quadratic form. Then Q can be diagonalized by a change of
variables: there is a basis e, . .., e, of V such that

O(xjer ++--+xpey) =0(x1,...,x,) = alx%+---+anx,2£

with a; € F. We define the discriminant of Q to be the (well-defined) product
disc(Q) :=ay ---a, /2" € F/F>*2. (The factor 2" is for consistency with more general
notions; itis harmless if a bit annoying.) We say that a quadratic form is nondegenerate
if its discriminant is nonzero. The reduced norm quadratic form (4.1.1) is already
diagonal in the basis 1,7, j,ij, and it is nondegenerate because a, b # 0.

A similarity from Q to another quadratic form Q’: V' — F is a pair ( f, u) where
f:V = V’is an F-linear isomorphism and u € F* satisfy Q’(f(x)) = uQ(x) for all
x € V. An isometry is a similarity with « = 1. The orthogonal group of Q is the
group of self-isometries of O, i.e.,

O(Q)(F) =={f e Autg (V) : Q(f(x)) = Q(x) for all x € V}.

47
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An isometry f € O(Q)(F) is special if det f = 1, and the special orthogonal group
of Q is the group of special isometries of Q.

More generally, we have seen that any algebra with a standard involution has a
quadratic form nrd. We say that the standard involution is nondegenerate whenever
the quadratic form nrd is so. Generalizing Theorem 3.1.1, we prove the following (see
Main Theorem 4.4.1 for the proof).

Main Theorem 4.1.2. Let B be an F-algebra. Then B has a nondegenerate standard
involution if and only if one of the following holds:

(i) B=F;
(i) B =K has dimg K =2 and either K ~ F X F or K is a field; or
(iii) B is a quaternion algebra over F.

This theorem gives another way of characterizing quaternion algebras: they are
noncommutative algebras with a nondegenerate standard involution.

In Section 2.4, we saw that the unit Hamiltonians H' act on the pure Hamiltonians
HO (Section 2.4) by rotations: the standard Euclidean quadratic form (sum of squares)
is preserved by conjugation. This generalizes in a natural way to an arbitrary field,
and so we can understand the group of linear transformations that preserve a ternary
(or quaternary) form in terms of the unit group of a quaternion algebra B (Proposition
4.5.10): there is an exact sequence

1 - F*— B* — SO(nrd |go)(F) — 1

where SO(Q)(F) is the group of special (or oriented) isometries of the quadratic form
Q and BY := {@ € B : trd(a) = 0}.

4.2 Basic definitions

In this section, we summarize basic definitions and notation for quadratic forms over
fields. The “Bible for all quadratic form practitioners” (according to the MathSciNet
review by K. Szymiczek) is the book by Lam [Lam2005]; in particular, Lam gives
a very readable account of the relationship between quadratic forms and quaternion
algebras over F' when char ' # 2 [Lam2005, Sections III.1-III.2] and many other
topics in the algebraic theory of quadratic forms. Also recommended are the books by
Cassels [Cas78], O’Meara [O’Me73], and Scharlau [Scha85], as well as the book by
Grove [Grov2002], who treats quadratic forms from a geometric point of view in terms
of the orthogonal group. For reference and further inspiration, see also the hugely
influential book by Eichler [Eic53].
Let F be a field. (For now, we allow char F to be arbitrary.)

Definition 4.2.1. A quadratic form Q is amap Q: V — F on an F-vector space V
satisfying:

() Q(ax) =a*Q(x)foralla € F and x € V; and
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(i) Themap T: V XV — F defined by
T(x,y) =0Q0(x+y)-Q(x) - 0(y)
is F-bilinear.
We call the pair (V, Q) a quadratic space and 7T the associated bilinear form.

We will often abbreviate a quadratic space (V, Q) by simply V. If Q is a quadratic
form then the associated bilinear form 7 is symmetric, satisfying 7'(x,y) = T(y,x)
for all x,y € V; in particular, T(x,x) = 2Q(x) for all x € V, so when char F # 2 we
recover the quadratic form from the symmetric bilinear form.

For the remainder of this section, let O : V — F be a quadratic form with associated
bilinear form 7.

4.2.2. Suppose dimgV =n < co. Letey,...,e, be a basis for V, giving an isomor-
phism V ~ F". Then Q can be written

O(xier+--+xne,) = Y QleNx] + Y T(es,e))xixj € Flxi,...,x,]
i i<j
as a homogeneous polynomial of degree 2.
The Gram matrix of Q in the basis ¢; is the (symmetric) matrix

[T] := (T (ei,e;))i,j € Mu(F).

We then have T'(x,y) = x*[T]y for x,y € V ~ F™ as column vectors. Under a change
of basis A € GL,,(F) with e/ = Ae;, the Gram matrix [T]” in the basis ] has

[T] = A*[T]A. (4.2.3)

Definition 4.2.4. A similarity of quadratic forms from Q: V — Fto Q": V' —» F
is a pair (f,u) where f: V = V’ is an F-linear isomorphism and u € F* satisfy
Q’(f(x)) =uQ(x) for all x € V, i.e., such that the diagram

Y

V——F
zlf ILM “4.2.5)
V/L)F

commutes. In a similarity (f,u), the scalar u is called the similitude factor of the
similarity. An isometry of quadratic forms (or isomorphism of quadratic spaces) is a
similarity with similitude factor u = 1; we write in this case Q ~ Q’.

Definition 4.2.6. The general orthogonal group (or similarity group) of the quadratic
form Q is the group of self-similarities of Q under composition

GO(Q)(F) :={(f,u) € Autp (V) X F*: Q(f(x)) = uQ(x) forall x € V};
the orthogonal group of Q is the group of self-isometries of Q, i.e.,

O(Q)(F) :={f € Autg (V) : Q(f(x)) = Q(x) forall x € V}.
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Remark 4.2.7. A similarity allows isomorphisms of the target F' (as a one-dimensional
F-vector space). The notion of isometry comes from the connection with measuring
lengths, when working with the usual Euclidean norm form on a vector space over R:
similarity allows these lengths to scale uniformly (e.g., similar triangles).

There is a canonical exact sequence
1 — O(Q)(F) = GO(Q)(F) — F*
(f,u) »u

realizing O(Q)(F) < GO(Q)(F) as the subgroup of self-similarities with similitude
factor u = 1.

4.2.8)

4.2.9. Returning to 4.2.2, suppose dimg V = n < co and char F # 2. Then one can
understand the orthogonal group of Q quite concretely in matrix terms as follows.
Choose a basis ey, ..., e, for V and let [T] be the Gram matrix of Q with respect to
this basis, so that 2Q(x) = x*[T]x for allx € V ~ F". Then Autr (V) =~ GL, (F) and
A € GL,(F) belongs to O(Q) if and only if

(Ax)[T](Ax) = x*(A*[T]A)x = x*[T]x
for all x € V, and therefore
O(Q)(F) ={A e GL,(F) : A*[T]A = [T]} (4.2.10)

and
GO(Q)(F) = {(A,u) € GL,,(F) x F* : A*[T|A = u[T]} 4.2.11)

Definition 4.2.12. Let x, y € V. We say that x is orthogonal to y (with respect to Q)
if T(x,y) =0.

Since T is symmetric, x is orthogonal to y if and only if y is orthogonal to x for
x,y €V, and so we simply say x, y are orthogonal. If § C V is a subset, we write

St={xeV:T(v,x)=0forallv € §}
for the subspace of V which is orthogonal to (the span of) S.

4.2.13. Let B be an algebra over F with a standard involution. Thennrd: B — Fisa
quadratic form on B. Indeed, nrd(aa) = a® nrd(a) for all @ € B, and the map T given
by

T(a.p) = (@ +p)(a +B) — a@ —~ ff = aB+fa = af+af = ud(af) (42.14)
for @, B € B is bilinear, and
T(a, B) = trd(aB) = trd(a(trd() — B)) = trd(@) trd(8) — trd(af).  (4.2.15)
So @, B € B are orthogonal with respect to nrd if and only if

trd(eB) =aB+Ba =0
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if and only if
trd(ap) = trd(a) trd(B).

Thus 1 and & € B are orthogonal if and only if trd(e) = 0 if and only if @ = — nrd(a).
Moreover, rearranging (4.2.14),

af + Ba = trd(B)a + trd(@)B - T(a, B). (4.2.16)

In particular, if 1, @, 8 € B are linearly independent over F, then by (4.2.16) they are
pairwise orthogonal if and only if Sa = —af.

In this way, we see that the multiplication law in B is governed in a fundamental
way by the reduced norm quadratic form.

Definition 4.2.17. Let O: V — F be a quadratic form. We say that Q represents an
element a € F if there exists x € V such that Q(x) = a. A quadratic form is universal
if it represents every element of F.

Definition 4.2.18. A quadratic form Q (or a quadratic space V) is isotropic if Q
represents 0 nontrivially (there exists 0 # x € V such that Q(x) = 0) and otherwise Q
is anisotropic.

Remark 4.2.19. The terminology isotropic is at least as old as Eichler [Eic53, p. 3],
and perhaps it goes back to Witt. The word can be used to mean “having properties that
are identical in all directions”, and so the motivation for this language possibly comes
from physics: the second fundamental form associated to a parametrized surface
z = f(x,y) in R? is a quadratic form, and (roughly speaking) this quadratic form
defines the curvature at a given point. In this sense, if the quadratic form vanishes,
then the curvature is zero, and things look the same in all directions.

4.2.20. Let Q’: V' — F be another quadratic form. We define the orthogonal direct
sum

0mQ:VeV > F
(QBQ)(x+1x) = 0(x) + 0" (x)

where x € V and x” € V’; the associated bilinear form 7T 8 7’ has
TeT)x+x,y+y)=Tkx,y)+T'(x',y")

for all x,y € V and x’,y’ € V’. By definition, under the natural inclusion of V,V’ C
VeV, wehave V C VL (and V C (V')1).

4.2.21. For a € F, we write {a) for the quadratic form ax? on F. More generally, for
ai,...,a, € F, we write
(ar,....an) ={a1) 8- B(a)

for the quadratic form on F" defined by Q(x1, ..., X,) = @1x] + -+ + axs.
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To conclude this introduction, we state an important result due originally to Witt
which governs the decomposition of quadratic spaces into orthogonal sums up to
isometry.

Theorem 4.2.22. Let V ~ V' be isometric quadratic spaces with orthogonal decom-
positions V. =~ W BW and V' =~ W/ @ W,.

() If W) =~ Wll’ then W, ~ WZ,
(b) If g : Wi = W] is an isometry, then there exists an isometry f:V = V' such
that flw, = g and (W) = W,.

Proof. The proof is requested in Exercise 4.16. For a proof and the equivalence be-
tween Witt cancellation (part (a)) and Witt extension (part (b)), see Lam [Lam2005,
Proof of Theorem 1.4.2, p. 14], Scharlau [Scha85, Theorem 1.5.3], or O’Meara
[O’Me73, Theorem 42:17]. O

Theorem 4.2.22(a) is called Witt cancellation and 4.2.22(b) is called Witt exten-
sion.

4.3 Discriminants, nondegeneracy

For the remainder of this chapter, we suppose that char F' # 2. (We take up the case
char F = 2 in section 6.3.) Throughout, let Q: V — F be a quadratic form with
dimg V = n < co and associated symmetric bilinear form 7.

The following result (proven by induction) is a standard application of Gram-—
Schmidt orthogonalization (Exercise 4.1); working with a quadratic form as a polyno-
mial, this procedure can be thought of as iteratively completing the square.

Lemma 4.3.1. There exists a basis of V such that Q =~ {ay, ...,a,) witha; € F.

A form presented with a basis as in Lemma 4.3.1 is called normalized (or diag-
onal). For a diagonal quadratic form Q, the associated Gram matrix [7] is diagonal
with entries 2ay, . . ., 2a,.

4.3.2. The determinant det([7]) of a Gram matrix for Q depends on a choice of
basis for V, but by (4.2.3), a change of basis matrix A € GL, (F) operates on [T] by
AY[T]A, and det(At[T]A) = det(A)?det([T]), so we obtain a well-defined element
det(T) € F/F*? independent of the choice of basis.

Definition 4.3.3. The discriminant of Q is
disc(Q) :=27"det(T) € F/F**.
The signed discriminant of Q is

sgndisc(Q) := (=1)"""D72 disc(Q) € F/F*.
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When it will cause no confusion, we will represent the class of the discriminant in
F/F*? simply by a representative element in F.

Remark 4.3.4. The extra factor 27" is harmless since char F' # 2, and it allows us to
naturally cancel certain factors 2 that appear whether we are in even or odd dimension—
it will be essential when we consider the case char F = 2 (see 6.3.1). The distinction
between even and odd dimensional quadratic spaces is not arbitrary: indeed, this
distinction is pervasive, even down to the classification of semisimple Lie algebras.

Example 4.3.5. We have disc({ay,...,a,)) =a;---a, fora; € F.

Definition 4.3.6. The bilinear form 7 : V X V — F is nondegenerate if for all
x € V \ {0}, the linear functional Ty : V — F defined by T, (y) = T(x, y) is nonzero,
i.e., there exists y € V such that T'(x, y) # 0. We say that Q (or V) is nondegenerate
if the associated bilinear form 7 is nondegenerate.

4.3.7. The bilinear form 7 induces a map

V — Hom(V, F)
x (ye Tx,y)
and 7 is nondegenerate if and only if this map is injective (and hence an isomorphism) if

and only if det(7T") # 0. Put another way, Q is nondegenerate if and only if disc(Q) # 0,
and so a diagonal form (ay, ..., a,) is nondegenerate if and only if a; # O for all i.

Example 4.3.8. Let B = (a,b | F) be a quaternion algebra. Then by 3.2.9, the
quadratic form nrd: B — F is normalized with respect to the basis 1,7, j,ij. Indeed,

nrd = (1, —a, —b, ab).
We have disc(nrd) = (ab)? # 0, so nrd is nondegenerate.

If B is an F-algebra with a standard involution, then the reduced norm defines a
quadratic form on B, and we say that the standard involution is nondegenerate if nrd
is nondegenerate.

4.3.9. One can often restrict to the case where a quadratic form Q is nondegenerate
by splitting off the radical, as follows. We define the radical of Q to be

rad(Q) :=V* ={xeV:T(x,y)=0forall y € V}.

The radical rad(Q) C V is a subspace, so completing a basis of rad(Q) to V we can
write (noncanonically) V = rad(Q) B W, as the direct sum is an orthogonal direct sum
by definition of the radical. In this decomposition, Q|q(p) is identically zero and
Q|w is nondegenerate.
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4.4 Nondegenerate standard involutions

In this section, we follow Theorem 3.5.1 with a characterization of quaternion algebras
beyond division algebras.

Main Theorem 4.4.1. Suppose char F' # 2 and let B be an F-algebra. Then B has a
nondegenerate standard involution if and only if one of the following holds:

(i) B=F;
(i) B = K is a quadratic F-algebra and either K ~ F X F or K is a field; or
(iii) B is a quaternion algebra over F.

Case (ii) in Main Theorem 4.4.1 is equivalent to requiring that K be a quadratic
F-algebra that is reduced (has no nonzero nilpotent elements).

Remark 4.4.2. By Exercise 3.15, there exist F'-algebras with standard involution having
arbitrary dimension, so it is remarkable that the additional requirement that the standard
involution be nondegenerate gives such a tidy result.

Proof of Main Theorem 4.4.1. If B = F, then the standard involution is the identity
and nrd is nondegenerate. If dimg K = 2, then after completing the square we may
write K ~ F[x]/(x*> —a) and in the basis 1, x we find nrd ~ (1, a). By Example 4.3.5,
nrd is nondegenerate if and only if a € F* if and only if K is a quadratic field extension
of ForK~FXF.

Suppose that dimp B > 2. Let 1,7, j be a part of a normalized basis for B with
respect to the quadratic form nrd. Then 7'(1,{) = trd(i) = 0, so i> = a € F*, since
nrd is nondegenerate. Note in particular that i = —i. Similarly j> = b € F*, and
by (4.2.16) we have trd(ij) = ij + ji = 0. We have T(1,ij) = trd(ij) = 0, and
T(ij,i) = trd(i(ij)) = —atrd(j) = 0 and similarly T(ij, j) = 0, hence ij € {1,i, j}*.
Ifij =0theni(ij) = aj =0so j =0, a contradiction. Since nrd is nondegenerate, it
follows then that the set 1,7, j,ij is linearly independent.

Therefore, the subalgebra A of B generated by i, j satisfies A =~ (a,b | F), and if
dimp B = 4 we are done. So let k € A*; then trd(k) = 0 and k> = ¢ € F*. Thus
k € B, with k="' = ¢~'k. By 4.2.13 we have ka = ak for any € A since k = —k.
But then

k(i) = (ij)k = jik = jki = k(ji). (4.4.3)

But k € B*soij = ji = —ij, and this is a contradiction.
Conversely, if B is a quaternion algebra over F, then the standard involution is
nondegenerate by Example 4.3.8. O

Main Theorem 4.4.1 has the following corollaries.

Corollary 4.4.4. Let B be an F-algebra with char F # 2. Then B is a quaternion alge-
bra if and only if B is noncommutative and has a nondegenerate standard involution.

Proof. Immediate. O
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Corollary 4.4.5. Let B have a nondegenerate standard involution, and suppose that
K C B is a commutative F-subalgebra such that the restriction of the standard
involution is nondegenerate. Then dimp K < 2. Moreover, if K # F, then the
centralizer of K* in B* is K*.

Proof. The first statement is immediate. The second follows as in the proof of Main
Theorem 4.4.1: we may suppose B is a quaternion algebra and K = F[i], and we
proved that the centralizer of K in B is K, so the centralizer of K* in B* is K*. O

Remark 4.4.6. Algebras with involutions come from quadratic forms, and the re-
sults of this chapter are just one special case of a much more general theory. More
precisely, there is a natural bijection between the set of isomorphism classes of finite-
dimensional simple F-algebras equipped with an F-linear involution and the set of
similarity classes of nondegenerate quadratic forms on finite-dimensional F-vector
spaces. More generally, for involutions that act nontrivially on the base field, one
looks at Hermitian forms. Consequently, there are three broad types of involutions
on central simple algebras, depending on the associated quadratic or Hermitian form:
orthogonal, symplectic, and unitary. Accordingly, algebras with involutions can be
classified by the invariants of the associated form. This connection is the subject
of the tome by Knus—Merkurjev—Rost-Tignol [KMRT98]. In this way the theory of
quadratic forms belongs to the theory of algebras with involution, which in turn is a
part of the theory of linear algebraic groups, as expounded by Weil [Weil60]: see the
survey by Tignol [Tig98] for an overview and further references.

4.5 Special orthogonal groups

In this section, we revisit the original motivation of Hamilton (Section 2.4) in a more
general context, relating quaternions to the orthogonal group of a quadratic form. We
retain our running hypothesis that char F # 2 and Q: V — F is a nondegenerate
quadratic form with dimp V = n < co.

Definition 4.5.1. An isometry f € O(Q)(F) is special (or proper) if det f = 1. The
special orthogonal group of Q is the group of special isometries of Q:

SO(Q)(F) :={f € O(Q)(F) : det(f) = 1}.

The condition “det f = 1” is well-defined, independent of the choice of F-basis
of V; having chosen a basis of V so that O(Q)(F) < GL, (F), we have SO(Q)(F) =
O(Q)(F) N SL,(F).

4.5.2. Suppose that V = F" and let f € O(Q) be a self-isometry of Q, represented in
the standard basis by A € GL,,(F). Taking determinants in (4.2.10) we conclude that
det(A)? = 1 so det(A) = +1. The determinant is surjective (see Exercise 4.15), so we
have an exact sequence

1 = SO(Q)(F) — O(0)(F) & (£1} - 1.
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If n is odd, then either f or —f is special, so the sequence splits and
O(Q)(F) = {£1} x SO(Q)(F). (4.5.3)

4.5.4. Similarly, if (f,u) € GO(Q)(F) then from (4.2.11) we get u™" det(f)*> = 1. If
n = 2m is even, then u™™ det(f) = 1, and we define the general special orthogonal
group (or special similarity group) of Q to be

GSO(Q)(F) :={(f,u) € GO(Q)(F) : u™™ det(f) =1}
giving an exact sequence
1 — GSO(Q)(F) — GO(Q)(F) — {1} — 1.
If n is odd, we have little choice other than to define GSO(Q)(F) := GO(Q)(F).

Example 4.5.5. If V = R" and Q is the usual Euclidean norm on V, then
O(Q)(R) =0(n) = {A € GL,(R) : AA* =1}

is the group of linear maps preserving length (but not necessarily orientation), whereas
SO(Q)(R) is the usual group of rotations of V (preserving orientation). Similarly,
GSO(Q)(R) consists of orientation-preserving similarities, preserving orientation but
allowing a constant scaling.

In particular, if n = 2 then O(2) := O(Q)(R) contains

cosf sin6
—sinf cosd

SO(2) :=SO(Q)(R) = {( ) 10¢e R} ~R/(2nZ) =~ S!

(the circle group) with index 2, with a reflection in any line through the origin repre-
senting a nontrivial coset of SO(2) < O(2).

4.5.6. More generally, we may define reflections in O(Q)(F) as follows. For x € V
anisotropic (so Q(x) # 0), we define the reflection in x to be
VoV
T
(V) =v Mx.

T 0)

We have 7, (x) = x — 2x = —x, and

0, =00 +0 -1 (v, - L8|

0(x) e
_ T(v,x)? B T(v,x) 3
=0(v)+ 00 0(x) o0 T(v,x)=0()

so0 T, € O(Q)(F) \ SO(Q)(F).

By a classical theorem of Cartan and Dieudonné, the orthogonal group is generated
by reflections.
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Theorem 4.5.7 (Cartan—Dieudonné). Let (V, Q) be a nondegenerate quadratic space
with dimp V = n. Then every isometry f € O(Q)(F) is a product of at most n
reflections.

Proof. See Lam [Lam2005, §1.7], O’Meara [O’Me73, §43B], or Scharlau [Scha85,
Theorem 1.5.4]. The proof is by induction on n, carefully recording the effect of a
reflection in an anisotropic vector. m}

Since reflections have determinant —1, we have f € SO(Q)(F) if and only if f is
the product of an even number of reflections.

4.5.8. Now let B be a quaternion algebra over F', and recall (3.3.5) that we have defined
B :={v e B:trd(v) = 0}.
Writing V = B, there is a (left) action

B OV >V
. (4.5.9)
a-v=ava .
since trd(ava~!) = trd(v) = 0. Moreover, B acts on V by isometries with respect to
the quadratic form Q = nrd |go: V — F, since nrd(ava ') = nrd(v) for all @ € B and

veV.

Proposition 4.5.10. Let B be a quaternion algebra over F. Then the action (4.5.9)
induces an exact sequence

1 - F* — B* — SO(nrd |go) (F) — 1. (4.5.11)
If further nrd(B*) = F*2, then

1 - {+1} - B' - SO(nrd |go) (F) — 1,
where B' := {a@ € B : nrd(a) = 1}.

Proof. Let Q = nrd|go. We saw in 4.5.8 that the action of B* is by isometries, so
lands in O(Q)(F). By the Cartan—-Dieudonné theorem (Theorem 4.5.7, the weak
version of Exercise 4.17 suffices), every isometry is the product of reflections, and by
determinants an isometry is special if and only if it is the product of an even number
of reflections. A reflection in x € V = BY with Q(x) = nrd(x) # 0 is of the form

() = v — T(v,x)x e trd(w?)x
T 0 7 nrd(x) 4.5.12)
=y- (w_c+xV))_c_l = —vx =

the final equality from X = —x as x € B®. The product of two such reflections is thus
of the form v — ava~! with @ € BX. Therefore BX acts by special isometries, and
every special isometry so arises: the map B* — O(Q)(F) surjects onto SO(Q)(F).
The kernel of the action is given by those @ € B with ava™! = v forall v € B, i.e.,
a € Z(BX) = F*.

The second statement follows directly by writing BX = B! FX. O
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Example 4.5.13. If B ~ M, (F), then nrd = det, so det|zo =~ (1,—1,—1) and (4.5.11)
yields the isomorphism PGL; (F) =~ SO({1, -1, —1))(F).

Example 4.5.14. If F = R and B = H, then nrd(H) = R, = R*2, and the second
exact sequence is Hamilton’s (Section 2.4).

To conclude, we pass from three variables to four variables.

4.5.15. In Exercise 2.17, we showed that there is an exact sequence
1 - {1} > H' xH' - S0(4) - 1

with H' x H! acting on H =~ R* by v  avB~! = avB for a, 8 € H'.
More generally, let B be a quaternion algebra over F. Then there is a left action of
B* x B* on B:
B*xB*OUB—B
(,B) -v=avB .

This action is by similarities, since if a = nrd(«) and b = nrd(g), then

(4.5.16)

nrd(avg™) = nrd(@) nrd(v) nrd(87") = %nrd(v)

for all v € V, with similitude factor u = a/b. In particular, if nrd(@) = nrd(8), then
the action is by isometries.

Proposition 4.5.17. With notation as in 4.5.15, the left action (4.5.106) induces exact

sequences
1 - F* - B*x B* - GSO(nrd)(F) — 1

4 (a.a) (4.5.18)

and
1 - F* - {(a,B) € B*x B* :nrd(a) = nrd(B)} — SO(nrd)(F) — 1.
If further nrd(B*) = F>2, then the sequence
1 - {£1} - B' x B - SO(nrd)(F) — 1
is exact.

Proof. For the first statement, we first show that the kernel of the action is the diagonally
embedded F*. Suppose that av~! = v for all v € B; taking v = 1 shows 8 = a, and
then we conclude that av = va forallv € Bsoa € Z(B) = F.

Next, the map B* x B* — GSO(nrd)(F) is surjective. If f € GSO(nrd)(F)
then nrd(f(x)) = unrd(x) for all x € B, so in particular u € nrd(B*). Every such
similitude factor occurs, since the similitude factor of (a, 1) is nrd(«@). So it suffices
to show that the map

{(a,B) € B* x B* : nrd(a) = nrd(B)} — SO(nrd)(F)
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is surjective. We again appeal to the Cartan—Dieudonné theorem; by the same com-
putation as in (4.5.12), we calculate that a reflection in x € B is of the form

To(v) = —xvx L.

The product of two reflections for x, y € B* is thus of the form
L \— N T _
vie —y(=xx )y = (x v = avg!
where & = yx~! and 8 = @, and in particular the action is by special similarities. We
conclude that (4.5.18) and the second sequence are both exact.

The final statement again follows by writing BX = B! F*, and seeing the kernel as
F*N B! = {+1}. o
Example 4.5.19. When B = M, (F), then nrd(B*) = det(GL,(F)) = F*, giving the
exact sequence

1 = GL{(F) — GL,(F) x GLy(F) — GSO(det)(F) — 1.

Exercises

Let F be a field with char F # 2.

» 1. Give an algorithmic proof that every finite-dimensional quadratic space has a
normalized basis (Lemma 4.3.1).

2. Let F =R and let

V= {(an)n ta, € Rforalln > 0 and Z afl converges}.
n=0
Show that V is an R-vector space, and the map Q: V — R by Q((an),) =
DI a? is a quadratic form, and so V is an example of an infinite-dimensional
quadratic space. [This example generalizes to the context of Hilbert spaces.]

3. Let B be a quaternion algebra over F. Let N : B - Fand A : B — F be
defined by N(a) = trd(a?) and A(e) = trd(@)? — 4 nrd(«). Show that N, A are
quadratic forms on B, describe their associated bilinear forms, and compute a
normalized form (and basis) for each.

4. Generalize Exercise 2.15 as follows. Let Q: V — F be a nondegenerate
quadratic form with dimg V = n and let y € O(Q).

(a) If nis odd and dety = 1, then vy has a nonzero fixed vector (and therefore
restricts to the identity on a one-dimensional subspace of V).
(b) If niseven and dety = —1, then y has both eigenvalues —1 and 1.

5. Generalizing part of Exercise 4.3, let B be an F-algebra with a standard involu-
tion. Show that the discriminant form

A:B—>F
A(a) = trd(a)? - 4nrd(a)
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is a quadratic form.
6. Let Q: V — F be a quadratic form with dimg V < oo and associated bilinear
form 7. The map
V — Hompg(V, F)
x> (y—=T(x,y)
is F-linear. Show that Q is nondegenerate if and only if this map is an isomor-
phism.

7. Write out the action (4.5.9) explicitly, as follows. Let B = (a,b | F) and let
a=t+xi+yj+zij.
(a) Show that the matrix of the action v — ava ™! in the F-basis B=Aij, k}
for BY is [a] where nrd(a)[] is equal to

12— ax® + by? — abz? 2b(tz — xy) 2b(axz —ty)
—2a(tz +xy) 12 + ax? — by? — abz? 2a(tx + byz)
—2(ty + axz) 2(tx — byz) 2 + ax* + by* + abz?

and nrd(a) = 1> — ax® — by* + abz>.

(b) Let Q = nrd|go and let T be the associated bilinear form. Show that
the Gram matrix [7] in the basis B is the diagonal matrix with entries
—2a,-2b,2ab. Then confirm by direct calculation that

[a] € SO(Q)(F) = {A € SL3(F) : A'[T]A = [T]}.

8. In this exercise, we prove the chain lemma. Let B := (a, b | F) be a quaternion
algebra.

(a) Show that if i” # 0 is orthogonal to 1, j, then (i")? =a’ € F¥ and i/, j are
standard generators for B, so B ~ (a’,b | F).

(b) Let B’ := (a’, b’ | F), and suppose that B is isomorphic to B’. Show that
there exists ¢ € F* such that

) (- () ()

~

[Hint: let ¢: B’ = B be the isomorphism, and take an element orthogonal
tol,j,6(j")-]

9. In this exercise, we develop some of the notions mentioned in Remark 3.3.8 in
the context of quadratic forms.
Let B be a finite-dimensional F-algebra (not necessarily a quaternion algebra),
and let Tr : B — F be the left algebra trace (the trace of the endomorphism
given by left multiplication).

(a) Show that the map B — F defined by x — Tr(x?) is a quadratic form on
B; this form is called the (left) trace form on B.

(b) Compute the trace form of A X B and A ®f B in terms of the trace form of
A and B.
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(c) Show thatif K 2 F is ainseparable field extension of finite degree, then the
trace form on K (as an F-algebra) is identically zero. On the other hand,
show that if K/F is a finite separable field extension (with char F # 2)
then the trace form is nondegenerate.

(d) Compute the trace form on Q(V5) and Q(«) where @ = 2cos(27/7), so
that o + o — 2a — 1 = 0.

»10. Let 0: V — F and Q’: V' — F be quadratic forms over F with dimpV =
dimp V' = n < oo, and let T,T’ be the associated bilinear forms. Suppose
that there is a similarity Q ~ Q’ with similitude factor u € F*. Show that
detT’ = udetT € F/F*2.

11. Let Q: V — F be a nondegenerate quadratic form with dimp V = n < co.

(a) A subspace W C V is totally isotropic if Q|w = O is identically zero.
The Witt index v(Q) of Q is the maximal dimension of a totally isotropic
subspace. Show that if v(Q) = m then 2m < n.

(b) A Pfister form is a form in 2™ variables defined inductively by (a)) =
(1, -a) and

<<a17 cee sam—l,am» = «al? e 9am—1>> H _am«al’ .. -,am—l»'

AR
Show that the reduced norm nrd on (aT) is the Pfister form {{(a, b)).

(c) The hyperbolic plane is the quadratic form H: F?> — F with H(x,y) =
xy. A quadratic form Q is a hyperbolic plane if Q ~ H. A quadratic form
Q is totally hyperbolic if O ~ H & - - - 8 H where H is a hyperbolic plane.
Show that if Q is an isotropic Pfister form, then Q is totally hyperbolic.

(d) Suppose that Q is an isotropic Pfister form with n > 4. Let W C V be
a subspace of dimension n — 1. Show that Q|w is isotropic. [This gives
another proof of Main Theorem 5.4.4 (iii) = (iv).]

12. (a) Let B be a quaternion algebra over F. Show that the reduced norm is
the unique nonzero quadratic form Q on B that is multiplicative, i.e.,
Q(ap) = Q(@)Q(B) forall a, B € B.
(b) Show that (a) does not necessarily hold more generally, for B an algebra
with a standard involution. [Hint: consider upper triangular matrices. |

» 13. In this exercise, we pursue some geometric notions for readers with some back-
ground in algebraic geometry (at the level of Hartshorne [Har77, Chapter 1]).
Let Q be nonzero quadratic form on V with dimg V = n. The vanishing locus
of Q(x) = 0 defines a projective variety X C P(V) =~ P" of degree 2 called a
quadric. Show that the quadratic form Q is nondegenerate if and only if the
projective variety X is nonsingular. [For this reason, a nondegenerate quadratic
form is also synonymously called nonsingular.]

14. In this exercise, we work out from scratch Example 4.5.13: we translate the
results on rotations in section 2.4 to B = M (R), but with respect to a different
measure of ‘length’.
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Let

My(R)? = {v € My(R) : tr(v) = 0} = {(ﬁ _yx) Xy, 7€ R} :

For v € M,(R)?, we have det(v) = —x*> — yz. Show that the group
My(R)! = SLy(R) = {@ € Ma(R) : det(a) = 1}

acts linearly on M, (R)? by conjugation (the adjoint representation) preserving
the determinant, giving rise to an exact sequence

1 - {1} - SL>(R) — SO(det) — 1.

»15. Let Q: V — F be a quadratic form with V finite-dimensional over F. Show
that SO(Q) < O(Q) is a (normal) subgroup of index 2. What can you say about
GSO(Q) < GO(Q)?

» 16. In this exercise, we prove Theorem 4.2.22. Let Q: V — F be a quadratic form
with dimg V < oo and let T be its associated bilinear form.

(a) Letv € V be anisotropic. Define the reflection along v by

,: V-V
B T(v,x)
T,(x) =x - ) V.

Observe that 7, is F-linear, and then show that 7, € O(V) withdett, = —1.
[Hint: extend v to a basis of the orthogonal complement in'V.] Why is T,
called a reflection?

(b) If x,y € V are anisotropic with Q(x) = Q(y), show that there exists
f € O(V) such that f(x) = y. [Hint: reflect along either v = x +y or
Vv =Xx — y as at least one is anisotropic, in the former case postcomposing
with reflection along x.]

(c) Let Q': V' — F be another quadratic form, and let f: V = V’ be an
isometry. For W C V, show that f(W+) = f(W)*.

(d) Prove Theorem 4.2.22(a). [Hint: reduce to the case where dimgp W =
dimp W{ = 1; apply parts (b) and (c).]

(e) Prove Theorem 4.2.22(b). [Hint: compare the isometry V ~ V' with the
isometry g.]|

» 17. Prove the following weakened version of the Cartan—Dieudonné theorem (The-
orem 4.5.7): Let (V, Q) be a nondegenerate quadratic space with dimg V = n.
Show that every isometry f € O(Q)(F) is a product of at most 2n— 1 reflections.
[Hint: in the proof of Exercise 4.16(b), note that f can be taken to be a product
of at most 2 reflections, and finish by induction. |



Chapter 5

Ternary quadratic forms and
quaternion algebras

Continuing our treatment of quadratic forms, in this chapter we connect quaternion
algebras to ternary quadratic forms.

5.1 » Reduced norm as quadratic form

Let F be a field with char F # 2 and let B = (a, b | F) be a quaternion algebra over
F. We saw in the previous chapter (4.1.1) that the reduced norm defines a quadratic
form. But we always have scalar norms nrd(z) = ¢* for t € F, so the form carries the
same information when restricted to the space of pure quaternions

BY := {@ € B : trd(a) = 0}
with basis 7, j,ij. This quadratic form restricted to B? is
nrd(xi + yj +zij) = —ax> — by? + abz*

with discriminant (—a)(=b)(ab) = (ab)?, so the trivial class in F*/F*2.

We might now try to classify quaternion algebras over F up to isomorphism in
terms of this quadratic form. Recall as in the previous chapters that for morphisms
between quadratic forms, one allows either isometries, an invertible change of basis
preserving the quadratic form, or similarities, which allow a rescaling of the quadratic
form by a nonzero element of . Our main result is as follows (Corollary 5.2.6).

Theorem 5.1.1. The map B + nrd | go induces a bijection:

with discriminant 1 € F*/F*?
up to isometry

Nondegenerate ternary

:Quaternion algebras over F

Ternary quadratic forms over F
up to isomorphism } { }

quadratic forms over F
up to similarity

63
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The map B +— nrd |zo in Theorem 5.1.1 has inverse defined by the even Clifford
algebra (see section 5.3). The similarity class of a nondegenerate ternary quadratic
form cuts out a well-defined plane conic C C P? over F, so one also has a bijection
between isomorphism classes of quaternion algebras over F' and isomorphism classes
of conics over F. Finally, keeping track of an orientation allows one to fully upgrade
this bijection to an equivalence of categories (Theorem 5.6.8).

The classification of quaternion algebras over F is now rephrased in terms of
quadratic forms, and a more detailed description depends on the field F. In this vein,
the most basic question we can ask about a quaternion algebra B is if it is isomorphic
to the matrix ring B =~ My (F): if so, we say that B is split over F'. For example, every
quaternion algebra over C (or an algebraically closed field) is split, and a quaternion
algebra (a, b | R) is split if and only if a > 0 or b > 0.

Ultimately, we will identify six equivalent ways (Main Theorem 5.4.4) to check if
a quaternion algebra B is split; in light of Theorem 5.1.1, we isolate the following.

Proposition 5.1.2. B is split if and only if the quadratic form nrd |go represents 0
nontrivially.

In later chapters, we will return to this classification problem, gradually increasing
the “arithmetic complexity” of the field F'.

5.2 Isomorphism classes of quaternion algebras

In Section 2.4, we found that the unit Hamiltonians act by conjugation on the pure
quaternions H® ~ R3 as rotations, preserving the standard inner product. In this
section, we return to this theme for a general quaternion algebra, and we characterize
isomorphism classes of quaternion algebras in terms of isometry classes of ternary
quadratic forms.

Throughout this chapter, let F be a field with char F # 2, and let B = (a,b | F) be
a quaternion algebra over F.

Definition 5.2.1. « € B is scalar if @ € F and pure if trd(a) = 0.

5.2.2. Recalling (3.3.5), we have the F-vector space of pure (trace 0) elements of B
given by B” = {1}*. The standard involution restricted to B’ is given by @ = —a for
@ € B, so equivalently B is the —1-eigenspace for ~. We have B = Fi @ Fj & Fij
and in this basis

nrd |go =~ (—a, —b, ab) (5.2.3)

so that disc(nrd | go) = (ab)?> = 1 € F*/F** (cf. Example 4.3.8).

Proposition 5.2.4. Let B, B’ be quaternion algebras over F. Then the following are
equivalent:

(i) B = B’ are isomorphic as F-algebras;

(ii) B =~ (B’)°P are isomorphic as F-algebras;
(iii) B =~ B’ are isometric as quadratic spaces; and
(iv) B? ~ (B")" are isometric as quadratic spaces.
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If f: B = (B")? is an isometry, then f extends uniquely to either an isomorphism
f: B =5 B’ or an isomorphism f: B = (B’)°P of F-algebras.

Proof. We follow Lam [Lam2005, Theorem III.2.5]. The equivalence (i) & (ii)
follows from postcomposing with the standard involution ~ : B” = (B’)°P.

The implication (i) = (iii) follows from the fact that the standard involution on an
algebra is unique and the reduced norm is determined by this standard involution, so
the reduced norm on B is identified with the reduced norm on B’.

The implication (iii) = (iv) follows from Witt cancellation (Theorem 4.2.22); and
(iv) = (iii) is immediate, since B = (1) @ B® and B’ = (1) @ (B")° so the isometry
extends by mapping 1 — 1. (Or use Witt extension, Theorem 4.2.22(b).)

So finally we prove (iv) = (i). Let f: B — (B’)° be an isometry of quadratic
spaces. Suppose B =~ (a, b | F). Since f is an isometry, nrd(f(i)) = nrd(i) = —a and

nrd(f (i) = f() f() = —£()?

so f(i)> = a. Similarly f(j)? = b. Finally, ji = —ij since i, j are orthogonal (as in
the proof of Main Theorem 4.4.1), but then f (i), f(j) are orthogonal as well and so
FDNF@ ==f@Of0).

Similarly, we know that ij is orthogonal to i, j, thus f(ij) is orthogonal to both
f()and f(j)andso f(ij) = uf(i) f(j) for some u € F*; taking reduced norms gives
nrd(ij) = u? nrd(i) nrd(j) so u® = 1 thus u = 1. If u = 1, then f(ij) = f(i)f(j),
and f extends via f(1) = 1 to an F-algebra isomorphism B = B’. Otherwise,
u=-1and f(ij) = —f@) f(j) = f(j)f(@), in which case f extends to an F-algebra
anti-isomorphism, or equivalently an F-algebra isomorphism B = (B’)°P; but then
postcomposing with the standard involution we obtain an F-algebra isomorphism
B = B’ m}

Main Theorem 5.2.5. Let F be a field with char F # 2. Then the functor B + nrd | go
vields an equivalence of categories between

Quaternion algebras over F,
under F-algebra isomorphisms and anti-isomorphisms

and

Ternary quadratic forms over F with discriminant 1 € F*/F*?,
under isometries.

Proof. The association B +— nrd |go gives a functor from quaternion algebras to
nondegenerate ternary quadratic forms with discriminant 1, by 5.2.2; the map sends
isomorphisms and anti-isomorphisms to isometries and vice versa by Proposition
5.2.4. Therefore the functor is fully faithful. To conclude, we show that the functor
is essentially surjective. Let V be a nondegenerate ternary quadratic space with
discriminant 1 € F*/F %2 Choose a normalized basis for V, so that Q ~ (-a,-b,c)
with a, b, ¢ € F*. By hypothesis, we have disc(Q) = abc € F*?, so applying the
isometry rescaling the third basis vector we may suppose ¢ = ab. We then associate to
V the isomorphism class of the quaternion algebra (a, b | F). The result follows. 0O
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Corollary 5.2.6. The map B +— nrd |go yields a bijection

with discriminant 1 € F*/F*?
up to isometry
{ Nondegenerate ternary }
>

{Quaternion algebras over F'

Ternary quadratic forms over F
up to isomorphism } { }

quadratic forms over F
up to similarity

that is functorial with respect to F.

By the expression functorial with respect to F, we mean that this bijection respects
(is compatible with) field extensions: explicitly, if F < K is an inclusion of fields,
and B is a quaternion algebra with associated ternary quadratic form Q: B — F,
then the quaternion algebra Bx = B ®f K has associated ternary quadratic form
Ok: B(IJ( =B’®r K > K.

Proof of Corollary 5.2.6. Functoriality boils down to the fact that
(Bk)’ = (Bor K)° = B” ® K

for F < K an inclusion of fields. The first bijection is an immediate consequence of
Main Theorem 5.2.5. We do not need anti-isomorphisms once we restrict to classes,
since if there is an anti-isomorphism B —> B’ then composing with the standard
involution gives a straight up isomorphism.

Next, we examine the natural map from isometry classes to similarity classes and
show it is surjective. Every nondegenerate ternary quadratic form (or any quadratic
form in odd dimension) is similar to a unique isometry class of quadratic forms with
trivial discriminant: if Q = (a, b, ¢) with a, b, ¢ € F*, then disc({a, b, ¢)) = abc and

0 ={a,b,c) ~abcl{a,b,c) = (a2bc, ab’c, abcz) ~ (bc,ac,ab)

and disc((bc, ac, ab)) = (abc)?> = 1 € FX/F*2. Therefore the map is surjective.

To conclude, we show this map is injective. Suppose that Q,Q’ are forms of
discriminant 1, so det7,detT’ € F*2 Suppose there is a similarity Q ~ Q’, so
O’ (f(x)) =uQ(x) for some f: V — V' and u € F*; we show in fact that Q ~ Q” are
isometric. By Exercise 4.10, we have det7’ = w3detT, and u = c? € F*2, Therefore

Q' (™' f(x) = Q' (f(x) =u”' Q' (f(%)) = Q(x)

and ¢~ f: V =5 V' is the sought after isometry. O

Remark 5.2.7. We will refine Main Theorem 5.2.5 in section 5.6 by restricting the
isometries to those that preserve orientation.
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5.3 Clifford algebras

In this section, we define a functorial inverse to B + nrd |go = Q in Main Theorem
5.2.5: this is the even Clifford algebra of Q. The Clifford algebra is useful in many
contexts, so we define it more generally. Loosely speaking, the Clifford algebra of a
quadratic form Q is the algebra generated by V subject to the condition x> = Q(x)
for all x € V, so the multiplication on the Clifford algebra is induced by the quadratic
form.

Let Q: V — F be a quadratic form with dimg V = n < oo; in this section, the
reader may continue to suppose that char F' # 2, but the constructions in this section
work quite generally, so the reader may also wish to return to this section after reading
Chapter 6 and allow char F' = 2.

Proposition 5.3.1. There exists an F-algebra CIf Q with the following properties:

(i) There is an F-linear map t: V — CIf Q such that «(x)> = Q(x) forall x € V;
and

(ii) CIf Q has the following universal property: if A is an F-algebraandis: V — A
is a map such that 15(x)> = Q(x) for all x € V, then there exists a unique
F-algebra homomorphism ¢: CIf Q — A such that the diagram

Vv ——=CIf (0]
|
X I
A
commutes.
The pair (CIf Q, 1) is unique up to unique isomorphism.

The algebra CIf Q in Proposition 5.3.1 is called the Clifford algebra of Q.

Proof. Let
TenV := @ yed (5.3.2)
d=0
where
ved =y ®...QV and V& :=F,
~—— ——
d

so that

TenV=FeVae(VV)a....

Then Ten V has a multiplication given by tensor product: forx € V®< and y € V®¢ we
define
x-y=x®ye Vel

(concatenate, and possibly distribute, tensors). In this manner, Ten V has the structure
of an F-algebra, and we call Ten V the tensor algebra of V.
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Let
I(Q)=(x®x—-0Q(x):xeV)CTenV (5.3.3)

be the two-sided ideal generated by the elements x ® x — Q(x) forall x € V. Let
CIf Q =TenV/I(Q). (5.3.4)

The algebra CIf Q by construction satisfies (i). And if t4: V — A is as in (ii), then
the map ¢(x) — ta(x) for x € V extends to a unique F-algebra map TenV — A; since
further 14 (x)?> = Q(x) for all x € V, this algebra map factors through ¢: CIf Q — A.
By abstract nonsense (taking A = CIf Q), we see that any other algebra having the
same property as CIf(Q) is uniquely isomorphic to it, i.e., CIf Q is unique up to unique
isomorphism. O

Example 5.3.5. If 0: F — F is the quadratic form Q(x) = ax®> with a € F, then
CIf(F) ~ F[x]/(x*> — a) (Exercise 5.6).

Example 5.3.6. In the extreme case where Q = 0 identically, CIf @ =~ }_j A9V is
canonically identified with the exterior algebra on V.

5.3.7. Letx,y € V. Then in CIf Q, we have

x+y)®(x+y)—x®@x-y®y=0(x+y) - 0(x) - Q(y)

(5.3.8)
x@y+y®x=T(x,y).
In particular, x, y are orthogonal if and only if x ® y = —y ® x.
5.3.9. Let ey,...,e, be an F-basis for V. Then finite tensors on these elements are

an F-basis for TenV. In CIf Q, by 5.3.7 we have e¢; ® ¢; = Q(e;) and ¢; ® ¢; =
T(e;,ej) —e; ® e}, so an F-spanning set for CIf Q is given by e; ® --- ® ¢;, with
1 <ij <ip <---<ig < n(including 1 arising from the empty tensor product), and
sO

n
dimp CIf(Q) < ) (") =", (5.3.10)
d
d=0
It is customary to abbreviate e;; ® --- ® e;, = ¢;, - e;,.

Example 5.3.11. If Q ~ {(ay, ..., a,) is diagonal in the basis ¢;, then
(ei - -ein)? =sgn(iy ... ia)el (en -+ ei)* == (-4 Vg . oqy,.

Example 5.3.12. Suppose char F # 2 and let Q: F> — F be the quadratic form
Q(x) = {a, b). Then by a direct calculation using 5.3.9, we find

CfQ=F®Fe  ®Fey® Feje; (5.3.13)

with multiplication e% = a and e% =b and eye; = —ejep,ie., withi:=¢jand j :=e;

b
we have identified CIf Q ~ (aT) when a, b # 0.
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Example 5.3.12 generalizes as follows.

Lemma 5.3.14. The map ¢: V — CIf Q is injective, and dimp CIf (Q) = 2".

Proof. We give a proof when char ' # 2; for another approach that works more
generally, see Exercise 5.20. By Lemma 4.3.1, we may choose a basis ey, ..., e, for
V in which Q = {ay,--- ,a,) is diagonal. Let A be the F-vector space with basis the
symbols z; ---z;, for 1 <ij <ip < --- <ig < n. In the same way as what was
considered for the relations (2.2.2), we verify directly that there is a unique, associative
multiplication on A such that z% = a; and z;z; = —z;2;. The map 14: V — A by
e; — z; has 14(x)? = 14(3; xiei) = alx% ++ anx% = Q(x), so by the universal
property of CIf(Q), there exists a unique F-algebra homomorphism ¢: CIf(Q) — A

such that ¢¢ = 14. Since the elements z;, - - - z;, are F-linearly independent in A, so
too are their preimages e;, - - - ¢;, in CIf O, so the spanning set given in 5.3.9 is in fact
a basis and ¢ is an isomorphism. m}

As it will cause no confusion, we may identify V with its image ¢«(V) — CIf Q.
5.3.15. The reversal map, given by

rev: CIf Q — CIf Q

(5.3.16)
X1® QX P X Q- QX1

on pure tensors (and extended F-linearly) is well-defined, as it maps the ideal 1(Q) to
itself, and so it defines an involution on CIf Q that we call the reversal involution.

Lemma 5.3.17. The association Q +— CIf Q induces a faithful functor from the
category of

quadratic forms over F', under isometries
to the category of

finite-dimensional F-algebras with involution, under isomorphisms.

Proof. Let Q’: V' — F be another quadratic form and let f: V — V' be an isometry.
Then f induces an F-algebra map Ten V — Ten(V’) and

frex-0(x) =fx)® f(x) -Q(x) = f(x)® f(x) - Q'(f(x))

so f also induces an F-algebra map CIf 0 — CIf(Q’). Repeating with the inverse
map, and applying the universal property, we see that these maps are inverse, so define
isomorphisms. The functor is faithful because V c CIf Q, soif f: V = V acts as the
identity on CIf Q then it acts as the identity on V, so f itself is the identity. (This can
be rephrased in terms of the universal property: see Exercise 5.13.) |
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5.3.18. The tensor algebra TenV has a natural Z5( grading by degree, and by con-
struction (5.3.4), the quotient CIf Q = Ten V/I(Q) retains a Z/27Z-grading

CIf 0 = CIf’ 0 @ CIf' 0

where CIf® 0 C CIf Q is the F-subalgebra of terms of even degree and CIf' Q the
CIf° Q-bimodule of terms with odd degree. The reversal involution 5.3.15 preserves
CIf° 0 and so descends to an involution on CIf° Q.

We call CIf° O the even Clifford algebra and CIf 'O the odd Clifford bimodule
of Q. The former admits the following direct construction: let

Ten’ v = (P v
d=0
and let 19(Q) := 1(Q) N Ten® V; then CIf° Q =~ Ten’ V/1°(Q).

5.3.19. Referring to 5.3.9, the elements ejey, ..., e,_1e, generate leOQ as an F-
algebra, and CIf° Q has basis e;, -+ - e;, where d is even (including the empty product
1), so dimp CIf°(Q) = 2 1.

Example 5.3.20. Continuing Example 5.3.12, we see that the reversal involution fixes
i, j and acts as the standard involution on CIf’ Q. So the algebra CIf Q is not just a
quaternion algebra, but one retaining a Z/2Z-grading.

Lemma 5.3.21. The association Q — CIf° Q defines a functor from the category of
quadratic forms over F', under similarities
to the category of
finite-dimensional F-algebras with involution, under isomorphisms.

Proof. Let Q’: V' — F be another quadratic form and let (f, u) be a similarity, with
f: V>V andu € F*, sothat uQ(x) = Q’(f(x)) for all x € V. We modify the proof
in Lemma 5.3.17: we define a map

Ten’ V — Ten’ (V")
x1® - ®xg > (WP f(x) @ ® f(xa).

Then under this map, we have

x@x=0() = u (f(0)® f(x) = Q) =u (f(x) ® f(x) = Q"(f(x)))

so 1°(Q) maps to 1°(Q’), and the induced map CIf® Q9 — CIf°(Q’) is an F-algebra
isomorphism. O

5.3.22. Note that unlike the Clifford functor, the even Clifford functor need not be
faithful: for example, the map —1: F?> — F2 has ejes — (—e1)(—e2) = ejes so acts
by the identity on CIf° Q.
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We now come to the important immediate application.

5.3.23. Suppose that char F' # 2 and let Q(x) = (a, b, ¢) be a nondegenerate ternary
quadratic form. Then the even Clifford algebra CIf° Q is given by

Clif°Q=FeFia®FjeaFij
where i = ee2, j = epe3, subject to the multiplication
i*=-ab, j*=-bc, ij+ji=0.
So
F

Letting k = e3e, we obtain symmetrically with the other two pairs of generators j, k

or k, i that
I’ 0 ~ (—bc,—ac) N (—ac,—ab).

CIf* Q ~ (—_“b’ _bc).

F F

The reversal involution is the standard involution on CIf° Q. Letting B = Ci1f Q,
nrd |go = (ab, bc,ac) = (abc?, a*be, ab*c) = abe(a, b, c).

So if disc Q(x) = abc € F*?, then nrd |go is isometric to Q. In a similar way, if

s

b
B = (GT), then in Main Theorem 5.2.5 we associate Q = nrdzo = (—a, —b, ab), and

00 ~ (Zab.ab?\ _ (ab
leQ—( = )_(F (5.3.24)

This gives another tidy proof of the bijection in Corollary 5.2.6.

Remark 5.3.25. The even Clifford map does not furnish an equivalence of categories
for the same reason as in 5.3.22; one way to deal with this issue is to restrict the
isometries to those that preserve orientation: we carry this out in section 5.6.

5.4 Splitting

The moral of Main Theorem 5.2.5 is that the problem of classifying quaternion algebras
depends on the theory of ternary quadratic forms over that field (and vice versa). We
now pursue the first consequence of this moral, and we characterize the matrix ring
among quaternion algebras. Suppose that char F # 2, but still Q: V — F a quadratic
form with dimg V < oo.

Definition 5.4.1. The hyperbolic plane is the quadratic form H: F> — F defined by
H(x,y) = xy. A quadratic form is a hyperbolic plane if it is isometric to H.

A hyperbolic plane H is universal, its associated bilinear form has Gram matrix

((1) (1)) in the standard basis, and H has normalized form H =~ (1, —1).



72 CHAPTER 5. TERNARY QUADRATIC FORMS

Lemma 5.4.2. Suppose Q is nondegenerate. Then Q is isotropic if and only if there
exists an isometry Q ~ H 8 Q’ with Q' nondegenerate and H a hyperbolic plane.

Proof. For the implication (&), we have an isotropic vector from either one of the two
basis vectors. For the implication (=), let x € V be isotropic, so x # 0 and satisfy
Q(x) = 0. Since Q is nondegenerate, there exists y € V such that T'(x, y) # 0; rescaling
v, we may assume T'(x,y) = 1. Then replacingy « y—Q(y)x =y —T(y,y)x/2 gives
y isotropic, since

Q(y—-0()x) =0()+0(Q(y)x) +T(y,-Q(y)x) =Q(y) - Q(y) =0.

Thus Q restricted to Fx + Fy is isometric to H, and in particular is nondegenerate.
Therefore letting V' := (Fx + Fy)* and Q’ := Q|y/, we have V = (Fx + Fy) BV’ and
QO~HuQ'. O

Lemma 5.4.3. Suppose Q is nondegenerate and let a € F*. Then the following are
equivalent:

(1) Q represents a;
(i) Q =~ {a) @ Q' for some nondegenerate form Q’; and
(iii) (—a) 8 Q is isotropic.

Proof. For (i) = (ii), we take Q' = Q|w and W = {v}+ c V where Q(v) = a. For (ii)
= (iii), we note that (—a) 8 Q =~ (a,—a) 8 Q' is isotropic. For (iii) = (i), suppose
((—a) ®Q)(v) =0, 50 Q(v) = ax? for some x € F. If x = 0, then Q is isotropic and
by Lemma 5.4.2 represents a; if x # 0, then by homogeneity Q(v/x) = a and again Q
represents a. O

‘We now come to a main result.

,b
Main Theorem 5.4.4. Let B = (aT) be a quaternion algebra over F (with char F' #

2). Then the following are equivalent:

. 1,1 ‘
0 8~ (5] =)
(ii) B is not a division ring;
(iii) The quadratic form nrd ~ (1, —a, —b, ab) is isotropic;
(iv) The quadratic form nrd |go =~ (—a, —b, ab) is isotropic;
(v) The binary form {a, b) represents 1;
(vi) b € Nmg |p(K*) where K = F|i]; and
(vi") b € Nmg p(K*) where K = F(~/a).

Condition (vi) holds if and only if there exist x, y € F such that x2 - ay2 = b; if
K is not a field then K ~ F x F and Nmg | (K*) = F*. In condition (vi’), we take
F(+/a) to be a splitting field for x> — a over F, so equal to F if a € F*. (Depending
on the circumstances, one of these formulations may be more natural than the other.)
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Proof. We follow Lam [Lam2005, Theorem 2.7]. The isomorphism (1,1 | F) =
M, (F) in (i) follows from Example 2.2.4. The implication (i) = (ii) is clear. The
equivalence (ii) & (iii) follows from the fact that @ € B* if and only if nrd(a) € F*
(Exercise 3.5).

We now prove (iii) = (iv). Let 0 # @ € B be such that nrd(a) = 0. If trd(a) = 0,
then we are done. Otherwise, trd(a) # 0. Let 8 be orthogonal to 1,a, so that
trd(aB) = 0. We cannot have both ¢ = 0 and a8 = (trd(@) — @)B = 0, so we may
suppose @ # 0. But then nrd(afB) = nrd(a) nrd(8) = 0 as desired.

To complete the equivalence of the first four we prove (iv) = (i). Let 8 € B°
satisfy nrd(8) = 0. Since nrd |go is nondegenerate, there exists 0 # @ € B® such
that trd(a8) # 0. Therefore, the restriction of nrd to Fa @& Ff3 is nondegenerate
and isotropic. By Lemma 5.4.2, we conclude there exists a basis for B® such that
nrd |go = (1, —1) @ (c) = (1,1, c); but disc(nrd | go) = —c € F*? by 5.2.2; rescaling,
we may suppose ¢ = —1. But then by Proposition 5.2.4 we have B ~ (1,1 | F).

Now we show (iv) = (v). For @ € BY,

nrd(e) = nrd(xi + yj +zij) = —ax> — by + abz’

as in 5.2.2. Suppose nrd(a) = 0. If z = 0, then the binary form (a, b) is isotropic so
is a hyperbolic plane by Lemma 5.4.2 and thus represents 1. If z # O then

y 2 £ \2
=—| +b|{—| =1
a(az) (bz)
Next we prove (v) = (vi). If a € F** then K ~ F x F and Nmg | (K*) = F* 3 b.
If a ¢ F*2, then given ax® + by> = 1 we must have y # 0 so

- e 15

In the equivalence (vi) & (vi’), the two statements are identical if a ¢ F %2 and
both automatically satisfied if a € F*2.

To conclude, we prove (vi) = (iii). If b = x> — ay? € Nmg | (K*), then & =
x+yi+j#0hasnrd(e) = x> —ay’> - b =0. O

We give a name to the equivalent conditions in Main Theorem 5.4.4.

Definition 5.4.5. A quaternion algebra B over F is split if B ~ M,(F). A field K
containing F is a splitting field for B if B ®f K is split.

Example 5.4.6. The fundamental example of a splitting field for a quaternion algebra
is that C splits the real Hamiltonians H: we have H ®g C ~ M;,(C) as in (2.4.1).

Lemma 5.4.7. Let K D F be a quadratic extension of fields. Then K is a splitting
field for B if and only if there is an injective F-algebra homomorphism K — B.
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Proof. First, suppose t: K < B. We may suppose that K = F(Vd) with d € F*. Let
u=1(Vd),sou*=d. Then 1 ® Vd — u ® 1 is a zerodivisor in B ® K:

(1eVd-pue)(1eVd+u®1)=18d—-de®1=0.

By Main Theorem 5.4.4, we conclude that B ® p K ~ M, (K).

Next we prove the converse. If B ~ M;(F) already, then any quadratic field K
embeds in B (take a matrix in rational normal form) and B ® p K ~ M;(K) for any K.
So by Main Theorem 5.4.4, we may suppose B is a division ring. Let K = F(Vd). We
have B ®r K ~ M, (K) if and only if (—a, —b, ab) is isotropic over K, which is to say
there exist x, y, z,u, v, w € F such that

—a(x +uNd)* = b(y + vVd)* + ab(z + wVd)? = 0. (5.4.8)

Let@ =xi+yj+zij and 8 = ui + vj + wij. Then trd(e) = trd(8) = 0. Expansion
of (5.4.8) (Exercise 5.14) shows that « is orthogonal to 3, so trd(e@8) = 0, and that
nrd(a@) + dnrd(B) = 0. Since B is a division ring, if nrd(8) = ¢ = 0 then 8 = 0
so nrd(a) = 0 as well and @ = 0, a contradiction. So nrd(8) # 0, and the element
y =—-aB ' =c'aB € Bhas nrd(y) = —d and trd(y) = ¢~ trd(aB) = 0 s0 > = d as
desired. O

, b . 1,b L
Example 549. If B= (a?), then either ¢ € F*? and B ~ (T) ~ M2(F) is Sp]]t’
ora ¢ F**and K = F(~/a) splits B.

Example 5.4.10. Let p be an odd prime and let a be a quadratic nonresidue modulo
p. We claim that (%) is a division quaternion algebra over Q. By Main Theorem

5.4.4, it suffices to show that the quadratic form (1, —a, —p, ap) is anisotropic. So
suppose that 1> — ax®> = p(y? — az?) with t,x,y,z € Q not all zero. The equation is
homogeneous, so we can multiply through by a common denominator and suppose
that t,x,y,z € Z with ged(t,x,y,z) = 1. Reducing modulo p we find 2 = ax?
(mod p); since a is a quadratic nonresidue, we must have t = x = 0 (mod p).
Plugging back in and cancelling a factor of p we find y> = az> = 0 (mod p), and again
y =2z =0 (mod p), a contradiction.

5.5 Conics, embeddings

Following Main Theorem 5.2.5, we are led to consider the zero locus of the quadratic
form nrd | go up to scaling; this gives a geometric way to view the preceding results.

Definition 5.5.1. A conic C c P? over F is a nonsingular projective plane curve of
degree 2. An isomorphism of conics C,C’ over F is an element f € PGL3(F) =
Aut(P?)(F) that induces an isomorphism of curves f: C = C’.

If we identify
P(B®) := (B® \ {0})/F* =~ P*(F)
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with (the points of) the projective plane over F, then the vanishing locus C = V(Q) of
Q = nrd | go defines a conic over F: if we take the basis i, j, ij for B°, then the conic
C is defined by the vanishing of the equation

Q(x,y,z) = nrd(xi + yj + zij) = —ax> — by> + abz* = 0.

Here, nondegeneracy of the quadratic form is equivalent to the nonsingularity of the
associated plane curve (Exercise 4.13).
The following corollary is then simply a rephrasing of Main Theorem 5.2.5.

Corollary 5.5.2. The map B +— C = V(nrd |go) yields a bijection

Quaternion algebras over F o Conics over F
up to isomorphism up to isomorphism

that is functorial with respect to F.
Main Theorem 5.4.4 also extends to this context.
Theorem 5.5.3. The following are equivalent:

(i) B =Ma(F);
(vii) The conic C associated to B has an F-rational point.

By Lemma 5.4.7, a quadratic field K over F embeds in B if and only if the ternary
quadratic form nrd | go represents 0 over K. We can also rephrase this in terms of the
values represented by nrd | zo.

Lemma 5.5.4. Let K be a quadratic extension of F of discriminant d. Then K <— B
if and only if nrd | go represents —d over F.

Proof. Write K = F(Vd). Then K < B if and only if there exists @ € B such
that @ = d if and only if there exists @ € B with trd() = 0 and nrd(a) = —d, as
claimed. m]

Remark 5.5.5. Two conics over F are isomorphic (as plane curves) if and only if their
function fields are isomorphic (Exercise 5.22).

5.6 Orientations

To conclude, we show that the notion of orientation underlying the definition of special
isometries (as in Example 4.5.5) extends more generally to isometries between two
different quadratic spaces by keeping track of one bit of extra information, refining
Main Theorem 5.2.5. We follow Knus—Murkurjev—Rost-Tignol [KMRT98, Theorem
15.2]. We retain our hypothesis that char F # 2.

Let Q: V — F be a quadratic space with dimg V = n odd.

Lemma 5.6.1. Suppose Q has signed discriminant sgndiscQ = d € F*/F*2. Let
A := CIf Q be the Clifford algebra of Q, and let K = Z(A) be the center of A. Then
K =~ F[x]/(x? = d).
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The signed discriminant gives a simpler statement; one could equally well work
with the usual discriminant and keep track of the sign.

Proof. We do the case n = 3. We may suppose V =~ F 3 with standard basis e, e, e3
and that Q =~ (a, b, ¢) is diagonal, with sgndisc(Q) = —abc = d. We have the relation
eiej = —eje; fori # j;foralli =1,2,3, conjugation by e; acts by —1 on ¢; and e;e;
for j # i. This implies Z(A) C F + Fejezes. Let § := ejeres = exeze) = ezejen;
then §e; = e;6 fori =1,2,3,s0 Z(A) = F[§]. We compute

52 = (e1e2e3)(ere2e3) = e%(€2€3)(€263) = —abc = sgndisc(Q) = d. (5.6.2)

Therefore K ~ F[x]/(x? — d).
The general case is requested in Exercise 5.18: with a basis ey, ..., e, for V, the
center is generated over F by § = e - - - e,. O

From now on, suppose sgndisc(Q) =d = 1.
Definition 5.6.3. An orientation of Q is a choice of ¢ € Z(CIf Q) \ F with /? = 1.

5.6.4. QO has exactly two choices of orientation £, differing by sign, by Lemma 5.6.1:
under an isomorphism Z(CIf Q) =~ F X F, the two orientations are (—1, 1) and (1, —1).
More intrinsically, given an orientation £, we have a projection K — K/({ — 1) =~ F,
and conversely given a projection 7: K — F, there is a unique orientation { with
7({) = 1 (the other maps to —1, by F-linearity).

Definition 5.6.5. Let £, ¢’ be orientations on Q,Q’. An isometry f: V — V' is
oriented (with respect to £, ’) if in the induced map f: Z(CIf Q) — Z(CIf Q') we
have f({) = ¢’

5.6.6. An oriented isometry is the same as a special isometry (Definition 4.5.1) when
V =~ F" (nstill odd), as follows. Let A = CIf Q. Letey, ..., e, be abasis for V adapted
as in the proof of Lemma 5.6.1 and § = e;...e,. Then Z(A) is generated by ¢ and
62 =1.If f € O(Q)(F), then f(6) = (det )J, so { = +6 is preserved if and only if
det(f) = 1, and this is independent of the choice of orientation.

So we define the oriented or special orthogonal group of a quadratic space by
choosing an orientation and letting

SO(Q)(F) :={f € O(Q)(F) : f is oriented};
the resulting group is independent of the choice, and we recover the same group as in
Definition 4.5.1.

b . . .
5.6.7. Let B = (aT) be a quaternion algebra over F. In previous sections, we took

nrd |z : B — F, a nondegenerate ternary quadratic space of discriminant 1. Since
we are working with the signed discriminant, we take instead — nrd | go : B® — F with
sgndisc(—nrd |zo) = 1; this map has a nice description as the squaring map, since
a* = —nrd(«a) for @ € B°,
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We claim that B has a canonical orientation. We have an inclusion ¢: B < B
with ¢(x)? = —nrd(x) for all x € B®. By the universal property of Clifford algebras,
we get an F-algebra homomorphism ¢: CIf(B°) — B. We see that ¢ is surjective
so it induces an F-algebra map 7 : Z(CIf(B®)) — Z(B) = F (Exercise 2.8). This
defines a unique orientation {p = ¢ with  — 1 € ker«, by 5.6.4.

Explicitly, let i, j, k be the standard basis for B with k = ij. Then nrd(k) = ab,
and i, j, k is a basis for B, Let ¢ = ijk™' = —ijk/(ab) € Z(CIf(B")). Then
% = —ab(—ab)/(ab)? = 1 as in (5.6.2). Multiplying out in B, we get ¢({) = 1 € B,
so ¢ is the same orientation as in the previous paragraph.

The following theorem then refines Main Theorem 5.2.5.
Theorem 5.6.8. Let F be a field with char F # 2. Then the functors
(.0) = Clf’Q
(-nrd|[po,{B) — B
vield an equivalence of categories between

Oriented ternary quadratic forms over F with signed discriminant 1 € F*/F*?,
under oriented isometries.

and
Quaternion algebras over F, under F-algebra isomorphisms.

Proof. Let B be a quaternion algebra. As in 5.6.7, the inclusion ¢: B® < B gives
an F-algebra homomorphism CIf(—nrd |g0) — B which restricts to a canonical F-
algebra homomorphism CIf’(—nrd|z) — B. In fact, in coordinates, this map is
the isomorphism (5.3.24): choosing the standard basis i, j, k for B = (a,b | F), and
letting e; =i,e2 = j, e3 = k, we have

F

— 2
CIf°(~nrd | go) = CIf°({a, b, ~ab)) = (M)

with the standard generators iy := ejep = ij and jo := epes = jk. We define the

isomorphism
—ab, ab? a,b
—_— ﬁ —
F F

io, jo — ij, jk.
Therefore, the canonical isomorphism CIf (- nrd | o) — B yields a natural isomor-
phism between these composed functors and the identity functor, giving an equivalence
of categories.
Conversely, let (Q, ¢) be an oriented ternary quadratic space, let B = CIf° Q, and
consider (—nrd|go,{p). We define a natural oriented isometry between these two
spaces. We have a natural inclusion V < CIf Q, and we define the linear map

myg:V—B

v vl
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since v, € Cif! Q, we have v{ € Cif® QO = B. We now show that m; induces an
oriented isometry m; : V — BY. To do so, we let V ~ F3 by choosing an orthogonal
basis ey, €3, e3 in which Q ~ (a, b, c) and —abc = 1. We identify B =~ (—ab,—bc | F)
as in 5.3.23, with i = eje; and j = eze3, and we let k = ij = —beze; so k> =
b*(—ac) = b. Then { = eejese3 with € = +1, and

ems(er) = ej(ejeres) = aerez = aj

emy(ez) = ex(ejeres) = —bejez = -k (5.6.9)

emy(e3) = ez(ereres) = ci;
so in particular m; (V) C BP. The map is an isometry, because

—nrd(mg (v)) = —ned(ve) = (vO)* =v? = Q(v) (5.6.10)

since /2 = 1 and ¢ is central. Finally, the map is oriented:

mg($) =my(eerezes) = e(er)(e2d)(e3)
= e(eaj)(—ek)(eci) = (—ac)(ijk) = (—=abe)ijk ' =ijk" = ¢5.

This natural oriented isometry gives a natural transformation between these composed
functors and the identity functor, and the statement follows. O

Remark 5.6.11. Theorem 5.6.8 can be seen as a manifestation of the isomorphism of
Dynkin diagrams A; =~ B; (consisting of a single node e), corresponding to the iso-
morphism of Lie algebras sl; ~ so3. This is just one of the (finitely many) exceptional
isomorphisms—the others are just as beautiful, with deep implications, and the reader
is encouraged to read the bible by Knus—Merkurjev—Rost-Tignol [KMRT98, §15].

We record the following important consequence.
Corollary 5.6.12. We have Aut(B) ~ B*/F*.

Proof. We take stabilizers of objects on both sides of the equivalence of categories in
Theorem 5.6.8; we find Aut(B) =~ SO(Q)(F) if B corresponds to Q. But by Proposition
4.5.10, there is an isomorphism B*/F* =~ SO(Q)(F), and the result follows. O

Remark 5.6.13. We will return to Corollary 5.6.12 in the Skolem—Noether theorem in
section 7.7, generalizing to the context of embeddings into a simple algebra.

To conclude, we extend the notion of oriented isometry to similarities.
5.6.14. Let £, be orientations on quadratic spaces V,V’ and suppose dimV =
dimV’ = n = 2m is even. Then a similarity (f,u) from V to V’ induces an F-linear

map u” A" f: AN*(V) — A"(V’), and we say (f,u) is oriented if the map u™" A" f
preserves orientations. We define

GSO(Q)(F) :={(f,u) € GO(Q)(F) : (f,u) is oriented }

and recover the same group as in 4.5.4. If n is odd, we declare that every similarity is
oriented and let GSO(Q)(F) := GO(Q)(F).
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Exercises

Throughout, let F be a field with char F # 2.

1.

Let B, B’ be quaternion algebras over F'. Show that if the quadratic forms nrdp
and nrdp' are similar, then they are isometric.

. Consider the hyperbolic quaternions Hyy,. of Macfarlane (1.2.1).

(a) Show that Hyg, is the Clifford algebra of (1, 1, 1) over R.
(b) Show that Hyy, is isomorphic as an algebra over C = R(V—-1) to the even
Clifford algebra of the ternary quadratic form —vV-1(1, 1, 1).

3. Prove the implication (vi) = (v) of Main Theorem 5.4.4 directly.

10.

. Show that (

. Use Main Theorem 5.4.4(vi) to give another proof that there is no division

quaternion algebra B over a finite field F = F, (with g odd).

(a) Show that the quadratic form Q(x,y,z) = x> + y*> + z2 is isotropic over

[F,, for all odd primes p. Conclude that (=1, -1 | F,) ~ My(F,). [Hint:
count squares and nonsquares. |

(b) More generally, show that every ternary quadratic form over a finite field
F, (with g odd) is isotropic. [Hint: Reduce to the case of finding a solution
to y* = f(x) where f is a polynomial of degree 2.] Use Main Theorem
5.4.4(iv) to give yet another proof that there is no division quaternion
algebra B over F,.

(c) Show that over a finite field F, with g odd, there is a unique anisotropic
binary quadratic form up to isometry.

. Show that if Q: F — F is the quadratic form Q(x) = ax? with a € F, then

CIf(F) ~ F[x]/(x* - a).

6) ~ My(Q).

-5

-1, . .
. Let p be prime. Show that (vp) ~ My(Q) ifandonlyif p =2o0rp =1

(mod 4).

. Show that

2,3\ (-1,-1 2,25\ [—1,-1
2 ~ 2 h 2 ’ .
(Q) (Q )b“”at( Q )qk( Q)

Let B = (a,b | F) be a quaternion algebra over F. Give a constructive
(algorithmic) proof of the implication (iv) = (i) in Main Theorem 5.4.4, as
follows.
Let € = xi + yj + zij € B satisfy nrd(€) = —ax*> — by? + abz> = —€*> = 0.

(a) Show that there exists k € B? such that trd(ek) = s # 0.

(b) Let ¢ :=trd(k) and n := nrd(k), and let €’ := s~ 'e. Let

i" =€k - (k+1)€
J i=k+(-tk+n+1)€.
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11.

12.

13.

» 14.

15.

16.

17.

» 18.

19.
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Show that i”, j” generate B as an F-algebra, and that (i")> = (;”)*> = 1 and
j'i’ = —=i’j’. Conclude that B ~ M, (F).

(c) Show thatl := Fe’+Fke’ is aleftideal of B with dimg I = 2, and interpret

(b) as arising from the left multiplication map B — Endg (1) =~ M,(F).
Let B be a quaternion algebra over F. Let Q be the reduced norm on B, and for
clarity write eg = 1, e =i, e3 = j, e3 = k as a basis for the domain of Q.

(a) Let C° = CIf° Q be the even Clifford algebra of the reduced norm Q. Show
that Z(C®) ~ F x F. [Hint: Z(C°) is generated by ege;eses.]

(b) Show that C° ~ B x B°*(~ B x B) as F-algebras.

(c) Prove thatif B’ is a quaternion algebra over F then B ~ B’ are isomorphic
as F-algebras if and only if the reduced norms Q ~ Q’ are similar as
quadratic spaces.

Let Q: V — F be a nondegenerate quadratic form. Show that the reversal map
~: CIf Q — CIf Q on the Clifford algebra has the property that xx € F for all

pure tensors x = ejes - - - eq, but defines a standard involution on CIf Q if and
only if V = {0} and on CIf° Q if and only if dimp V < 3.

Give another proof of Lemma 5.3.17 using the universal property of the Clifford
algebra.

Expand (5.4.8) and prove as a consequence that if @ = xi + yj + zij and
B = ui +vj+ wij, then trd(e¢f8) = 0 (so @ is orthogonal to 8) and moreover
nrd(a@) + d nrd(B) = 0.

Let a,b,b’ € F*. Show that there exists an F-linear isomorphism ¢: (a,b |
F) = (a,b’ | F) with ¢(i) = i’ if and only if b/b’ € Nmg | (K*) where
K = F(+/a). [More generally, see Corollary 7.7.6.]

Let a € @\ Q2. Show that there are infinitely many distinct isomorphism
classes of conics x> — ay? = bz? for b € Q*.

Let K = F(a, b) with a, b algebraically independent, transcendental elements.
9 b . . PR
Show that the generic quaternion algebra a? is a division algebra. [Hint:
show the associated ternary quadratic form is anisotropic. ]
Prove Lemma 5.6.1 for general odd n as follows.
(a) For asubset I = {iy,...,i;} € {l,...,n}, lete; =e; ---e; withi} <
-+ < ip. Then for subsets I,J C {1,...,n}, show that
ere; = eger (=) #=#INT)
(b) Show that Z(CIf Q) = F[6] =~ F[x]/(x> — d) where § = eje, . ..e, and
d = sgndisc(Q). [Hint: Argue on bases and choose #J =2 withINJ = 1.]

Let Q: V — F be a quadratic form. Show that the even Clifford algebra Clf° Q
with its map ¢: V ® V — CIf° Q has the following universal property: if A is an
F-algebraand ¢ty : V®V — A is an F-linear map such that

(i) ta(x®x) =Q(x) forall x € V, and
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(i) ta(x @ y)ta(y ®2) = Q(y)ta(x ® z) forallx, y, z € V,
then there exists a unique F-algebra homomorphism ¢ : Clf° 9 — A such that
the diagram

VeV ——=CIf°Q

|
\\y

A

commutes. Conclude that the pair (CIf® Q, ) is unique up to unique isomor-
phism.

20. In this exercise, we consider graded tensor products, giving an alternate verifi-
cation of Lemma 5.3.14.
Let A=Ay ® A and B = By @ B be finite-dimensional F-algebras equipped
with a Z/2Z-grading. We define the graded tensor product A®B to be the
usual tensor product as an F-vector space but with multiplication law defined
on simple tensors by

(a®b)-(a'®@b") = (—1)deed)deeb) (44" @ pb').

(a) Show that A®B is an F-algebra of dimension (dimg A)(dimg B).

(b) LetQ;: Vi = Fand Q;: Vo, — F,andlet Q := Q| BQ> be the orthogonal
direct sum on the quadratic space V := V| @ V,. Show there is a canonical
isomorphism of Clifford algebras

CIf(Q) = CIf(0,)® CIf(Q>).

(c) Observe that (b) gives another proof of Lemma 5.3.14.
21. Fori=1,2,let Q;: V; — F be quadratic forms over F.

(a) Prove that there exists a canonical F-algebra isomorphism

CIf’(Q) 8 Q2) = (CIf(Q)) ® CIf(Q»)) ® (CIf' (Q1) ® CIf' (Q,))

where CIf' (Q) ® CIf'(Q,) has multiplication induced from the full Clif-
ford algebras CIf(Q) and CIf(Q>).
(b) Prove that there is a CIf°(Q; 8 Q,)-bimodule isomorphism

CIf' (01 B 02) = (CIf°(Q1) ® CIf' (1)) @ (CIf'(Q1) ® CIf*(02))

with bimodule structure induced by multiplication in the full Clifford
algebra.

22. In this exercise, we assume background in algebraic curves. Show that two
conics over F are isomorphic (as projective plane curves) if and only if their
function fields are isomorphic. [Hint: conics are anticanonically embedded—
the restriction of Op2(—1) to the conic is a canonical sheaf—so an isomorphism
of function fields induces a linear isomorphism of conics. ]






Chapter 6

Characteristic 2

In this chapter, we extend the results from the previous four chapters to the neglected
case where the base field has characteristic 2. Throughout this chapter, let F' be a field
with algebraic closure F2.

6.1 Separability

To get warmed up, we give a different notation (symbol) for quaternion algebras that
holds in any characteristic and which is convenient for many purposes.

Definition 6.1.1. Let A be a commutative, finite-dimensional algebra over F. We say
A is separable if
A®p F' ~ Fl ... x Fl;

otherwise, we say A is inseparable.

Example 6.1.2. If A =~ F[x]/(f(x)) with f(x) € F[x], then A is separable if and
only if f has distinct roots in F2!.

6.1.3. If char F # 2, and K is a quadratic F-algebra, then after completing the square,
we see that the following are equivalent:

(i) K is separable;

(i) K ~ F[x]/(x*> = a) with a # 0;
(iii) K is reduced (K has no nonzero nilpotent elements);
(iv) Kisafieldor K ~ F X F.

6.1.4. If char F = 2, then a quadratic F-algebra K is separable if and only if
K = F[x]/(x* +x +a)

for some a € F. A quadratic algebra of the form K = F[x]/(x> + a) with a € F is
inseparable.

Now we introduce the more general notation.

83
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6.1.5. Let K be a separable quadratic F-algebra, and let b € F*. We denote by

K. b
— | =K&Kj
() =xen

the F-algebra with basis 1, j as a left K-vector space and with the multiplication rules
j>=band ja = @j for a € K, where ~ is the standard involution on K (the nontrivial
element of Gal(K | F) if K is a field). We will also write (K, b | F) for formatting.

From 6.1.3, if char F # 2 then writing K ~ F[x] /(x> — a) we see that

K,b a,b

F) \F
is a quaternion algebra over F. The point is that we cannot complete the square in
characteristic 2, so the more general notation gives a characteristic-independent way
to define quaternion algebras. In using this symbol, we are breaking the symmetry

between the standard generators 7, j, but otherwise have not changed anything about
the definition.

6.2 Quaternion algebras

Throughout the rest of this chapter, we suppose that char F = 2. (We will occasionally
remind the reader of this supposition, but it is meant to hold throughout.)

Definition 6.2.1. An algebra B over F' (with char F' = 2) is a quaternion algebra if
there exists an F-basis 1,1, j, k for B such that

P+i=a, j?=b, and k=ij=j(i+1) (6.2.2)
witha € F and b € F*.

Just as when char F # 2, we find that the multiplication table for a quaternion
algebra B is determined by the rules (6.2.2), e.g.

Jk=jUj)=j+j)j=bi+b=kj+b.

9 b . . .
We denote by [aT) or [a,b | F) the F-algebra with basis 1,1, j,ij subject to the
b b . . . . .
multiplication rules (6.2.2). The algebra [a?) is not symmetric in a, b (explaining

the choice of notation), but it is still functorial in the field F'.
If we let K = F[i] =~ F[x]/(x> + x + a), then

@by (KD
Fl] \F

and our notation extends that of Section 6.1.
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Example 6.2.3. The ring M;(F) of 2 X 2-matrices with coefficients in F is again a
quaternion algebra over F, via the isomorphism

[I—Fl) = My(F)

o0 1) (o1
LJ 1 1/°\1 o

Lemma 6.2.4. An F-algebra B is a quaternion algebra if and only if there exist
F-algebra generators i, j € B satisfying

i>+i=a, j*=b, and ij = j(i+1). (6.2.5)

Proof. Proven the same way as Lemma 2.2.5. |

6.2.6. Let B = [a,b | F) be a quaternion algebra over F. Then B has a (unique)
standard involution ~ : B — B given by

a=t+xityj+zija=x+a=(+x)+xi+yj+zij

since

a@ = (t+xi+yj+2zij)((t+x) +xi+yj+zif) (6.2.7)
=1* +1x +ax’ + by’ + byz +abz’ € F. B

Consequently, one has a reduced trace and reduced norm on B as in Chapter 3.

We now state a version of Theorem 3.5.1 in characteristic 2; the proof is similar
and is left as an exercise.

Theorem 6.2.8. Let B be a division F-algebra with a standard involution that is not
the identity. Then either B is a separable quadratic field extension of F or B is a
quaternion algebra over F.

Proof. Exercise 6.9. (This theorem is also implied by Theorem 6.4.1.) O

6.3 * Quadratic forms

We now turn to the theory of quadratic forms over F' with char F = 2. The basic
definitions from section 4.2 apply. For further reference, Grove [Grov2002, Chapters
12—14] treats quadratic forms in characteristic 2, and the book by Elman—Karpenko—
Merkurjev [EKM2008, Chapters I-I1] discusses bilinear forms and quadratic forms in
all characteristics.

Let Q: V — F be a quadratic form with dimg V = n < oo and associated bilinear
form T. Then T'(x,x) = 2Q(x) = 0 for all x € V, so one cannot recover the quadratic
form from the symmetric (equivalently, alternating) bilinear form.
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6.3.1. We begin with the definition of the discriminant. When » is even, we sim-
ply define disc(Q) = det(T) € F/F**>—this is equivalent to Definition 4.3.3 when
char F' # 2, having absorbed the square power of 2.

When 7 is odd, the symmetric matrix 7" always has determinant 0 (Exercise 6.8);
we need to “divide this by 2”. So instead we work with a generic quadratic form, as
follows. Consider the quadratic form

i ) 2 2
O™ (x1,...,xp) := Z ajjXiXj = A11X] + A12X1X2 + -+ + AppX;,y (6.3.2)

1<i<j<n

over the field F™V := Q(aij)i,j=1,....n (now of characteristic zero!) with a;; transcen-
dental elements. We compute its universal determinant

2a11 app -+ aig

i aip 2axp - axy
det([T"™]) = det . : . : € 2Z[aij],~’j (6.3.3)

ain azn cor 2apn

as a polynomial with integer coefficients. We claim all of these coefficients are even:
indeed, reducing modulo 2 and computing the determinant over F>(a;;);, ;, we recall
that the determinant of an alternating matrix of odd size is zero (over any field).
Therefore, we may let

s(ait, ..., ann) :=det(T")/2 € Z[a;;1; ; (6.3.4)
be the universal (half-)discriminant. We then define
disc(Q) = 6(Q(e1),T(er, €2), ..., Q(en)) € F/F

by specialization. Repeating the argument in 4.3.2, if #;; € F and e; := }}; 1;j¢; then

6(Q(€;), T(e{’ eé)’ s Q(e;;)) = 6(Q(€1), T(el’ 62)7 R Q(en)) det(l‘ij)2

(verified universally!) so disc(Q) is well-defined. Moreover, this definition agrees
with Definition 4.3.3 when char F # 2.
Example 6.3.5. For example, disc({a)) = a for a € F, and if

Q(x,y,2) = ax® + by* + cz* + uyz + vxz + wxy

with a, b, c,u,v,w € F, then
disc(Q) = 4abc + uvw — au’® — bv> — cw?
in all characteristics.

Definition 6.3.6. We say Q is nondegenerate if disc(Q) # 0.

Next, not every quadratic form over F can be diagonalized, so we will also make use
of one extra form: for a, b € F, we write [a, b] for the quadratic form ax? + axy + by?
on F2.
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Lemma 6.3.7. There exists a basis of V such that
O =~la,b |8 ---8lam,bn] B{cl,...,Cp)
with a;, b;, cj € F.

Proof. Exercise 6.11.

87

(6.3.8)

]

We say that a quadratic form Q is normalized if Q is presented with a basis as in

(6.3.8).

Example 6.3.9. The quadratic forms Q(x, y, z) = x>+yz+z2and Q(x, y, z) = x>+y’+7>

are normalized over F,, but the quadratic form Q(x,y,z) =xz+ yz + Z2 is not.

Example 6.3.10. For a normalized quadratic form as in (6.3.8),

disc(Q) = disc([a1,b1] B+ B [am, b)) disc({c1,...,cr))

= (ay - am)*disc({cy,....cr)).

In F/F*%, we have

0, ifr >2;
diSC(<Cl,...,Cr>): Ci, lf}":l,
1, ifr=0.

Therefore, Q is nondegenerate if and only if a; - - - a;c1 -+ - ¢, #0and r < 1.

,b . .
Example 6.3.11. Let B = [aT) be a quaternion algebra. Then 1,17, j,ij is a normal-

ized basis for B, and by (6.2.7),
nrd =~ [1,a] &8 [b, ab],

so disc(nrd) = b so nrd is nondegenerate.

6.4 =+ Characterizing quaternion algebras

We now consider the characterization of quaternion algebras as those equipped with
a nondegenerate standard involution (revisiting Main Theorem 4.4.1, but now with

char F = 2).

Theorem 6.4.1. Let B be an F-algebra (withchar F = 2). Then B has a nondegenerate

standard involution if and only if one of the following holds:

(i) B=F;
(i) B = K is a separable quadratic F-algebra; or
(iii) B is a quaternion algebra over F.
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Proof. If B = F, then the standard involution is the identity, and nrd is nondegenerate
on F because the reduced (half-)discriminant of the quadratic form nrd(x) = x? is 1.

If dimg B = 2, then B = K has a unique standard involution (Lemma 3.4.2). By
6.1.4, we see that the involution is nondegenerate if and only if K is separable.

So suppose dimr B > 2. Since B has a nondegenerate standard involution, there
exists an element i € B such that 7(i,1) = trd(i) # 0. We have i ¢ F since
trd(F) = {0}. Rescaling we may suppose trd(i) = 1, whence i’ = i +a for some a € F,
and nrd |p4+p; = [1,a]. (We have started the proof of Lemma 6.3.7, and 1, is part of
a normalized basis, in this special case.)

By nondegeneracy, there exists j € {1,i}* such that nrd(j) = b # 0. Thus
trd(j) =0so j = j and j2 = b € F*. Furthermore,

0=ted(ij) =ij+ji=ij+j(i+1)
so ij = j(i + 1). Therefore i, j generate an F-subalgebra A ~ [a,b | F).
The conclusion of the proof follows exactly as in (4.4.3): if k € {1,i, j,ij}* then

k(ij) = k(ji), a contradiction. 0

Corollary 6.4.2. Let B be a quaternion algebra over F, and suppose that K C B is a
commutative separable F-subalgebra. Then dimg K < 2. Moreover, if K #+ F, then
the centralizer of K> in B* is again K*.

Next, we characterize isomorphism classes of quaternion algebras in characteristic
2 in the language of quadratic forms.

6.4.3. Let B be a quaternion algebra over F'. We again define
B® := {a € B : trd() = 0} = {1}*. (6.4.4)
But now B” = F @ Fj @ Fk and in this basis
nrd(x + yj +zij) = x> + by* + byz + abz? (6.4.5)
so nrd |go = (1) B [b, ab]. The discriminant is therefore
disc(nrd | go) = b*> = 1 € F*/F*. (6.4.6)

Theorem 6.4.7. Let F be a field with char F = 2. Then the functor B — nrd | go yields
an equivalence of categories between

Quaternion algebras over F,
under F-algebra isomorphisms

and

Ternary quadratic forms over F with discriminant 1 € F*/F*?,
under isometries.
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Proof. We argue as in Theorem 5.6.8 but with char F = 2. The argument here is
easier, because all sign issues go away and there is no orientation to chase: by Exercise
6.12, there is a unique ¢ € CIf' Q \ F such that ¢2 = 1. The inclusion ¢: B® < B
induces a surjective F-algebra homomorphism CIf°(nrd |go) — B, so by dimensions
it is an isomorphism; this gives one natural transformation. In the other direction, the
mapms :V — BY by v > v is again an isometry by (5.6.10), giving the other.
Here is a second direct proof. By 6.4.3, the quadratic form nrd | go has discriminant
1. To show the functor is essentially surjective, let Q: V — F be a ternary quadratic
form with discriminant 1 € F*/F>?. Then Q ~ (u) 8 [b, ¢] for some u, b,c € F. We
have disc(Q) = ub®> =1 € F**> so b € F* and u € F**. Rescaling the first variable,
we obtain Q ~ (1)@ [b, c]. Thus by 6.4.3, Q arises up to isometry from the quaternion

k b .
algebra aT with a = ch™!.

For morphisms, we argue as in the proof of Proposition 5.2.4 but with char F = 2. In
one direction, an F-algebra isomorphism B = B’ induces an isometry B* = (B’)°
by uniqueness of the standard involution. Conversely, let f: B — (B’)° be an

a,

isometry. Let B = [T) Extend f to an F-linear map B — B’ by mapping
i — b~ f(ij)f(j). The map f preserves 1: it maps F to F by Exercise 6.15, since
F=(B%* = ((B)"*, and 1 = nrd(1) = nrd(f(1)) = f(1)? so f(1) = 1. We have
f()? =nrd(f(j)) = nrd(j) = b and similarly f(ij)? = ab since j,ij € B°. Thus
1 =td(i) = b~ trd((if)j) = b~'T(ij, j) =

= b7 T(f (). f())) = wd(b™ £ (i) £ (1)) = wd(f (1))

and similarly nrd( f(i)) = nrd(i) = a, thus f(i)> + f(i) + a = 0. Finally,
F@OFG) = b7 FGNFG) = £
and
FDF@) =7 FDFANFG) = b7 FDSDFEH + TG f )

= Fi) + () = (FO+Df(G) = FOLG)
so f is an isomorphism of F-algebras. Therefore the functor is full and faithful,
yielding an equivalence of categories. O
Corollary 6.4.8. The maps B +— Q =nrd |go +— C = V(Q) yield bijections

Nondegenerate ternary
Quaternion algebras over F quadratic forms over F'
{ up to isomorphism } with discriminant 1 € F*/F*?
up to isometry
Nondegenerate ternary
o { quadratic forms over F }
up to similarity
Conics over F'
{ up to isomorphism }
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that are functorial with respect to F.

Proof. The remaining parts of the bijection follow as in the proof of Corollary 5.2.6.
O

We now turn to identifying the matrix ring in characteristic 2.
Definition 6.4.9. A quadratic form H: V — F is a hyperbolic plane if H ~ [1,0].

Recall that [1,0] : F? — F is given by the quadratic form x> + xy = x(x + y),
visibly isometric to the quadratic form xy. Definition 6.4.9 agrees with Definition
5.4.1 after a change of basis.

Lemma 6.4.10. If Q is nondegenerate and isotropic then Q ~ H 8 Q' with H a
hyperbolic plane.

Proof. We repeat the proof of Lemma 5.4.2. O

We may again characterize division quaternion algebras by examination of the
reduced norm as a quadratic form as in Main Theorem 5.4.4 and Theorem 5.5.3.

,b
Theorem 6.4.11. Let B = [aT) (with char F = 2). Then the following are equivalent:

(i) B~ [I—Fl) ~ My(F);
(ii) B is not a division ring;
(iii) The quadratic form nrd is isotropic;
(iv) The quadratic form nrd | go is isotropic;
(v) The binary form [1, a] represents b;
(vi) b € Nmg |p(K*) where K = F|i]; and
(vii) The conic C := V(nrd |go) C P? has an F-rational point.

Proof. Only condition (v) requires significant modification in the case char F' = 2; see
Exercise 6.13. O

Lemma 6.4.12. Let K D F be a quadratic extension of fields. Then K is a splitting
field for B if and only if there is an injective F-algebra homomorphism K — B.

Proof. If1: K — Band K = F(a), then 1 ® @ — t(@) ® 1 is a zerodivisor in B ®f K,
since
(Iea-a)®l)(1®a—-(a)®1) =0, (6.4.13)

and so B ®r K ~ M;(K) and K is a splitting field.
Conversely, let K = F(a) and suppose B ®r K ~ M(K). If B ~ M,(F), we can
take the embedding mapping « to a matrix with the same rational canonical form. So

we suppose that B = [aT) is a division ring. By Theorem 6.4.11(iv) (over K) and

6.4.3, there exist x, y, z, u, v, w € F not all zero such that

(x +ua)? +b(y +va)® + b(y +va)(z + wa) + ab(z + wa)* = 0; (6.4.14)
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expanding and rewriting into the powers of @ gives
(u? + bv* + bvw + abw?)a? + (vz+ wy)ba + (x* + by* + byz + abz?) = 0. (6.4.15)

Let 8 := x+yj+zij and ¥ := u+vj+wij. Theny € B*, since y = 0 implies
nrd(B) = 0 and yet B is a division ring. Then the equation (6.4.15) can be written

n1rd(y)oz2 + trd(By)a + nrd(B) = 0;

then a direct calculation shows that the element

w=py"" =nrd(y)"' gy

satisfies the same equation as (6.4.15) in the variable «, so there is an embedding
K — B defined by a +— p. O

Exercises

Throughout these exercises, we let F' be a field (of any characteristic, unless specified).

1. Recall the primitive element theorem from Galois theory: if K 2 F is a separable
field extension of finite degree, then there exists @ € K such that K = F(«@)—and
hence K =~ F[x]/(f(x)) where f(x) € F[x] is the minimal polynomial of a.
Extend this theorem to algebras as follows. Let B be a separable, commutative,
finite-dimensional F-algebra. Show that B ~ F[x]/(f(x)) for some f(x) €
Fx].

» 2. Let B be a quaternion algebra over F and let K C B be a separable quadratic

K,b .
F-algebra. Show that there exists b € F* such that B ~ (T) (asin 6.1.5).

3. Let F*P be a separable closure of F and let B be a quaternion algebra over F.
Show that B @ FP ~ M, (F*P). [More generally, see Exercise 7.23.]

K, b
» 4. Let K be a separable quadratic F-algebra and let u, b € F*. Show that (?) ~

K,ub\ .
( ; ) if and only if u € nrd(K*) = Nmg |r (K*).

5. Let B be a quaternion algebra over F, and let Ky 2 F be a quadratic field. Prove
that there exists a separable extension K 2 F linearly disjoint from Ky over F
(i.e., K ®F Ky is a domain) such that K splits F'.

6. Suppose char F =2 andleta € F and b € F*.

a,ab

b
(a) Show that [“T) ~ [ )ifa £0.

b
(b) Show thatif ¢ € F and u € F*, then [aT) ~ 7

a+(t+t2),bu2)
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b
. Letchar F =2 andlet B = [a,T) be a quaternion algebra over F. Compute the

left regular representation A: B — Endg (B) ~ M;(K) where K = F[i] as in
2.3.8.

Suppose char F = 2. Let M € M,,(F) be a symmetric matrix with n odd, and
suppose that all diagonal entries of M are zero. Show that det M = 0.

Let char F = 2 and let B be a division F-algebra with a standard involution.
Prove that either the standard involution is the identity (and so B is classified by
Exercise 3.9), or that the conclusion of Theorem 3.5.1 holds for B: namely, that
either B = K is a separable quadratic field extension of F or that B is a quaternion
algebra over F. [Hint: Replace conjugation by i by the map ¢(x) = ix +xi, and
show that ¢* = ¢. Then diagonalize and proceed as in the case char F # 2.]

Let char F = 2. Show that the even Clifford algebra CIf° Q of a nondegenerate
ternary quadratic form Q: V — F is a quaternion algebra over F.

Prove Lemma 6.3.7, that every quadratic form over F' with char F' = 2 has a
normalized basis.

Letchar F =2 and let Q: V — F be a quadratic form over F with discriminant
d € F*/F** and dimg V = n odd. Show that Z(CIf Q) ~ F[x]/(x*> — d) and
that there is a unique ¢ € Z(CIf Q) N CIf' Q such that 2 = 1.

Prove Theorem 6.4.11.

Let Q := Q'@ Q" be an orthogonal sum of two anisotropic quadratic forms over
F (with F of arbitrary characteristic). Show that Q is isotropic if and only if
there exists ¢ € F* that is represented by both Q” and —Q”’.

Let B be a quaternion algebra over F' (with F of arbitrary characteristic). Show
that F = (B%)*.

Prove Wedderburn’s little theorem in the following special case: a quaternion
algebra over a finite field with even cardinality is not a division ring. [Hint: See
Exercise 3.16.]



Chapter 7

Simple algebras

In this chapter, we return to the characterization of quaternion algebras. We initially
defined quaternion algebras in terms of generators and relations in Chapter 2; in the
chapters that followed, we showed that quaternion algebras are equivalently noncom-
mutative algebras with a nondegenerate standard involution. Here, we pursue another
approach, and we characterize quaternion algebras in a different way, as central simple
algebras of dimension 4.

7.1 » Motivation and summary

Consider now the “simplest” sorts of algebras. Like the primes among the integers or
the finite simple groups among finite groups, it is natural to seek algebras that cannot
be “broken down” any further. Accordingly, we say that a ring A is simple if it has no
nontrivial two-sided (bilateral) ideals, i.e., the only two-sided ideals are {0} and A. To
show the power of this notion, consider this: if ¢: A — A’ is a ring homomorphism
and A is simple, then ¢ is either injective or the zero map (since ker¢p C B is a
two-sided ideal).

A division ring A is simple, since every nonzero element is a unit and therefore
every nonzero ideal (left, right, or two-sided) contains 1 so is equal to A. In particular,
a field is a simple ring, and a commutative ring is simple if and only if it is a field.
The matrix ring M,,(F) over a field F is also simple, something that can be checked
directly by multiplying by matrix units (Exercise 7.5).

Moreover, quaternion algebras are simple. The shortest proof of this statement,
given what we have done so far, is to employ Main Theorem 5.4.4 (and Theorem 6.4.11
in characteristic 2): a quaternion algebra B over F is either isomorphic to M, (F) or is
a division ring, and in either case is simple. One can also prove this directly (Exercise
7.1).

Although the primes are quite mysterious and the classification of finite simple
groups is a monumental achievement in group theory, the situation for algebras is quite
simple, indeed! Our first main result is as follows (Main Theorem 7.3.10).

93
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Theorem 7.1.1 (Wedderburn—Artin). Let F be a field and B be a finite-dimensional
F-algebra. Then B is simple if and only if B ~ My, (D) where n > 1 and D is a
finite-dimensional division F-algebra.

As a corollary of Theorem 7.1.1, we give another characterization of quaternion
algebras.

Corollary 7.1.2. Let B be an F-algebra. Then the following are equivalent:

(i) B is a quaternion algebra;
(i) B®p F ~ My (F™), where F* is an algebraic closure of F; and
(iii) B is a central simple algebra of dimension dimg B = 4.

Moreover, a central simple algebra B of dimension dimg B = 4 is either a division
algebra or has B ~ M, (F).

This corollary has the neat consequence that a division algebra B over F is a
quaternion algebra over F if and only if it is central of dimension dimp B = 4.

For the reader in a hurry, we now give a proof of this corollary without invoking
the Wedderburn—Artin theorem; this proof also serves as a preview of some of the
ideas that go into the theorem.

Proof of Corollary 7.1.2. The statement (i) = (ii) was proven in Exercise 2.4(d).

To prove (ii) = (iii), suppose B is an algebra with BY := By F¥ ~ M, (F¥). The
F&_algebra B is central simple, from above. Thus Z(B) = Z(B*) N B = F. And if I
is a two-sided ideal of B then I := I ® F¥ is a two-sided ideal of B¥, so I = {0}
or I*' = B is trivial, whence I = I*' N F is trivial. Finally, dimg B = dimga Bl =4,

Finally, we prove (iii) = (i). Let B a central simple F-algebra of dimension 4.
If B is a division algebra we are done; so suppose not. Then B has a nontrivial
left ideal (e.g., one generated by a nonunit); let {0} € I C B be a nontrivial left
ideal with 0 < m = dimg [/ minimal. Then there is a nonzero homomorphism
B — Endp(I) =~ M,,(F) which is injective, since B is simple. By dimension, we
cannot have m = 1; if m = 2, then B ~ M,(F) and we are done. So suppose m = 3.
Then by minimality, every nontrivial left ideal of B has dimension 3. But for any
a € B, we have that I« is a left ideal, so the left ideal I N I« is either {0} or I. We
cannot have I N Ia = {0} since then 6 = dim(/ + Ia) < 4, impossible. Thus Ia C 1
and / is a right ideal as well. But this contradicts the fact that B is simple. O

The Wedderburn—Artin theorem is an important structural result used throughout
mathematics, so we give in this chapter a self-contained account of its proof. More
generally, it will be convenient to work with semisimple algebras, finite direct products
of simple algebras. When treating ideals of an algebra we would be remiss if we did
not discuss more generally modules over the algebra, and the notions of simple and
semisimple module are natural concepts in linear algebra and representation theory:
a semisimple module is one that is a direct sum of simple modules (“completely
reducible”), analogous to a semisimple operator where every invariant subspace has
an invariant complement (e.g., a diagonalizable matrix).

The second important result in this chapter is a theorem that concerns the simple
subalgebras of a simple algebra, as follows (Main Theorem 7.7.1).
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Theorem 7.1.3 (Skolem—Noether). Let A, B be simple F-algebras and suppose that
B is central. Suppose that f,g: A — B are homomorphisms. Then there exists B € B
such that f(a) = B g(@)B for all a € A.

Corollary 7.1.4. Every F-algebra automorphism of a simple F-algebra B is inner,
i.e., Aut(B) ~ B*/F*.

Just as above, for our quaternionic purposes, we can give a direct proof.

Corollary 7.1.5. Let B be a quaternion algebra over F and let K|, K» C B be quadratic
subfields. Suppose that ¢ Ki = K is an isomorphism of F-algebras. Then ¢ lifts to
an inner automorphism of B, i.e., there exists B € B such that ap = ¢(a1) = B~ a1 8
forall ay € Ky. In particular, Ky = ,B_IKI,B.

Proof. Write K| = F(a;) with @| € Band let ay = ¢(a1) € K» C B,so K, = F(ay).

We want to find 8 € BX such that a; = S 'a8. In the special case B =~ M,(F),

then a1, @ € My (F) satisfy the same irreducible characteristic polynomial, so by the

theory of rational canonical forms, a, = 8~ 3 where 8 € BX ~ GL,(F) as desired.
Suppose then that B is a division ring. Then the set

WZ{ﬂEBZﬁ(YZZCV]ﬁ} (7.1.6)

is an F'-vector subspace of B. Let F*°P be a separable closure of F'. (Or, apply Exercise
6.5 and work over a splitting field K linearly disjoint from K| =~ K,.) Then we have
B ®p F5 ~ M, (F*%P), and the common characteristic polynomial of a, a; either
remains irreducible over F*P (if K O F is inseparable) or splits as the product of two
linear factors with distinct roots. In either case, the theory of rational canonical forms
again applies, and there exists 8 € (B ®F F*P)* ~ GL,(F*?P) that will do; but then
by linear algebra dimpsee W @ F*P = dimg W > 0, so there exists 8 € B \ {0} = B*
with the desired property. O

As shown in the above proof, Corollary 7.1.5 can be seen as a general reformulation
of the rational canonical form from linear algebra.

7.2 Simple modules

Basic references for this section include Drozd—Kirichenko [DK94, §1-4], Curtis—
Reiner [CR81, §3], Lam [Lam2001, §2-3], and Farb—Dennis [FD93, Part I]. An
elementary approach to the Weddernburn—Artin theorem is given by BreSar [Bre2010].
An overview of the subject of associative algebras is given by Pierce [Pie82] and
Jacobson [Jacn2009].

Throughout this chapter, let B be a finite-dimensional F-algebra.

To understand the algebra B, we look at its representations. A representation of
B (over F) is a vector space V over F' together with an F-algebra homomorphism B —
Endp (V). Equivalently, a representation is given by a left (or right) B-module V: thisis
almost a tautology. Although one can define infinite-dimensional representations, they
will not interest us here, and we suppose throughout that dimg V < oo, or equivalently
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that V is a finitely generated (left or right) B-module. If we choose a basis for V, we
obtain an isomorphism Endg (V) =~ M,,(F) where n = dimp V, so a representation is
just a homomorphic way of thinking of the algebra B as an algebra of matrices.

Example 7.2.1. The space of column vectors F" is a left M,, (F)-module; the space
of row vectors is a right M,, (F))-module.

Example 7.2.2. B is itself a left B-module, giving rise to the left regular represen-
tation B — Endg (B) over F (cf. Remark 3.3.8).

Example 7.2.3. Let G be a finite group. Then a representation of F[G] (is the same
as an F[G]-module which) is the same as a homomorphism G — GL(V), where V is
an F-vector space (Exercise 3.8).

Definition 7.2.4. Let V be a left B-module. We say V is simple (or irreducible) if
V # {0} and the only B-submodules of V are {0} and V.

We say V isindecomposable if V cannot be writtenas V = V&V, with Vi, V, # {0}
left B-modules.

A simple module is indecomposable, but the converse need not hold, and this is a
central point of difficulty in understanding representations.

a b

Example 7.2.5. If B = {(o C) ta,b,ce F} C M, (F), then the space V = F? of

. . . 1\ .
column vectors is not simple, since the subspace spanned by NEE B-submodule;

nevertheless, V is indecomposable (Exercise 7.4).

The importance of simple modules is analogous to that of simple groups. Arguing
by induction on the dimension of V, we have the following lemma analogous to the
Jordan—Holder theorem on composition series.

Lemma 7.2.6. A (finite-dimensional) left B-module V admits a filtration
V=Vp2Vi2V,2---2V, ={0}
such that V; [V is simple for each i.

This filtration is not unique, but up to isomorphism and permutation, the quotients
Vi /Vis1 are unique.

Lemma 7.2.7. If I is a maximal left ideal of B, then B/I is a simple B-module.
Conversely, if V is a simple B-module, then V ~ B[ for a maximal left ideal I: more
precisely, for any x € V \ {0}, we may take

I =ann(x) := {a@ € B : ax = 0}.

Proof. For the first statement, a submodule of B/I corresponds to a left ideal containing
I, so B/I is simple if and only if 7 is maximal. Conversely, letting x € V \ {0} we
have {0} # Bx C V a B-submodule and so Bx = V; and consequently V ~ B/I where
I = ann(x) and again [ is a maximal left ideal. O
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Having defined the notion of simplicity for modules, we now consider simplicity
of the algebra B.

Definition 7.2.8. An F-algebra B is simple if the only two-sided ideals of B are {0}
and B.

Equivalently, B is simple if and only if any F-algebra (or even ring) homomorphism
B — A is either injective or the zero map.

Example 7.2.9. A division F-algebra D is simple. In fact, the F-algebra M,,(D) is
simple for any division F-algebra D (Exercise 7.5), and in particular M,, (F) is simple.

Example 7.2.10. Let F?' be an algebraic closure of F. If B ® F¥ is simple, then B
is simple. The association I > I ® F? is an injective map from the set of two-sided
ideals of B to the set of two-sided ideals of B ®p F2.

7.2.11. If B is a quaternion algebra over F, then B is simple. We have B ®p F¥ ~
M, (F), which is simple by Example 7.2.9, and B is simple by Example 7.2.10.

Example 7.2.9 shows that algebras of the form M,, (D) with D a division F-algebra
yield a large class of simple F-algebras. In fact, these are all such algebras, a fact we
will now prove. First, a few preliminary results.

Lemma 7.2.12 (Schur). Let B be an F-algebra. Let V1,V be simple B-modules. Then
any homomorphism ¢: Vi — V, of B-modules is either zero or an isomorphism.

Proof. We have that ker ¢ and img ¢ are B-submodules of V| and V>, respectively, so
either ¢ = 0 or ker ¢ = {0} and img ¢ = V>, hence V| ~ V. O

Corollary 7.2.13. IfV is a simple B-module, then Endg (V) is a division ring.
7.2.14. Let B be an F-algebra and consider B as a left B-module. Then there is a map
p: B — Endg(B)
@ (pa: B Ba),

where B is the opposite algebra of B defined in 3.2.2. The map p is injective since
pe = 0implies p, (1) = @ = 0; it is also surjective, since if ¢ € Endg(B) then letting
a = ¢(1) we have ¢(B) = Bop(1) = Ba for all B € B. Finally, it is an F-algebra
homomorphism, since

Pap(p) = p(ap) = (ua)B = (pp © pa) (1),

and therefore p is an isomorphism of F-algebras.

One lesson here is that a left module has endomorphisms that act naturally on the
right; but the more common convention is that endomorphisms also act on the left. In
order to make this compatible, the opposite algebra intervenes.
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7.2.15. More generally, the decomposition of modules is determined by idempotent
endomorphisms as follows. Let V be aleft B-module. Then V is indecomposable if and
only if Endg (V) has no nontrivial idempotents: that is to say, if ¢ € Endg (V) satisfies
e? = e, thene € {0, 1}. Given anontrivial idempotent, we can write V = eV@ (1 —e)V,

and conversely if V = V| @ V, then the projection V. — V| C V gives an idempotent.

7.2.16. Many theorems of linear algebra hold equally well over division rings as they
do over fields, as long as one is careful about the direction of scalar multiplication. For
example, let D be a division F-algebra and let V be a left D-module. Then V ~ D"
is free, and choice of basis for V gives an isomorphism Endp (V) ~ M,,(D°P). When
n = 1, this becomes Endp (D) ~ DP, as in 7.2.14.

Lemma 7.2.17. Let B be a (finite-dimensional) simple F-algebra. Then there exists a
simple left B-module which is unique up to isomorphism.

Proof. Since B is finite-dimensional over F, there is a nonzero left ideal I of B of
minimal dimension, and such an ideal I is necessarily simple. Moreover, if v € [ is
nonzero then By = I, since By C I is nonzero and [ is simple. Let / = By with v € I.

Now let V be any simple B-module; we will show I ~ V as B-modules. Since B
is simple, the natural map B — Endg (V) is injective (since it is nonzero). Therefore,
there exists x € V such that vx # 0, so Ix # {0}. Thus, the map / — V by 8+ Bx is
anonzero B-module homomorphism, so it is an isomorphism by Schur’s lemma. 0O

Example 7.2.18. The unique simple left M,, (F¥)-module (up to isomorphism) is the
space F" of column vectors (Example 7.2.1).

7.2.19. Every algebra can be decomposed according to its idempotents 7.2.15. Let B
be a finite-dimensional F-algebra. Then we can write B = I} & --- @ I, as a direct
sum of indecomposable left B-modules: this follows by induction, as the decomposing
procedure must stop because each factor is a finite-dimensional F-vector space. This
means we may write

l=ej+:---+e,

with e; € I;. For each a € I; we have a = }; @e; whence ae; = @ and ae; = 0 for
J # i, which implies that

E% =ey, eej = 0 for ] * i, and Ii = Bei.

Thus each e; is idempotent; we call {ey, ..., e,} a complete set of primitive orthog-
onal idempotents: the orthogonal is because e;e; = 0 for j # i, and the primitive is
because each e; is not the sum of two other orthogonal idempotents (by 7.2.15).

Remark 7.2.20. The tight connection between F and M,, (F) is encoded in the fact that
the two rings are Morita equivalent: there is an equivalence of categories between
F-vector spaces and left M,,(F)-modules. For more on this rich subject, see Lam
[Lam99, §18], Reiner [Rei2003, Chapter 4], and Curtis—Reiner [CR81, §35].
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7.3 Semisimple modules and the Wedderburn—Artin theorem

We continue our assumptions that B is a finite-dimensional F-algebra and a B-module
V is finite-dimensional.

Definition 7.3.1. A B-module V is semisimple (or completely reducible) if V is
isomorphic to a (finite) direct sum of simple B-modules V =~ (P, V;.
B is a semisimple F-algebra if B is semisimple as a left B-module.

Remark 7.3.2. More precisely, we have defined the notion of left semisimple and
could equally well define right semisimple; below we will see that these two notions
are the same.

Example 7.3.3. If B = F, then simple F-modules are one-dimensional vector spaces,
and as F is simple these are the only ones. Every F-vector space has a basis and so is
the direct sum of one-dimensional subspaces, thus every F-module is semisimple.

Example 7.3.4. A finite-dimensional commutative F-algebra B is semisimple if and
only if B is the product of field extensions of F,i.e., B~ K| X---X K, withK; 2 F a
finite extension of fields.

Lemma 7.3.5. The following statements hold.

(a) A B-module V is semisimple if and only if it is the sum of simple B-modules.
(b) A submodule or a quotient module of a semisimple B-module is semisimple.
(¢) If B is a semisimple F-algebra, then every B-module is semisimple.

Proof. For (a), let V = }; V; be the sum of simple B-modules. Since V is finite-
dimensional, we can rewrite it as an irredundant finite sum; and then since each V; is
simple, the intersection of any two distinct summands is {0}, so the sum is direct.
For (b), let W C V be a submodule of the semisimple B-module V. Among
all injective maps from W into a finite direct sum of simple B-modules (a nonempty
collection from W C V), let¢: W — >; V; have the minimal number of simple factors.
We claim that ¢ is an isomorphism. Indeed, for each j, composing with the projection
gives amap ¢;: W — P, Vi with fewer factors, hence by minimality it is not
injective; thus there exists w; € W nonzero such that ¢(w ;) € V;, and since V; is simple
we get ¢(Bw ;) = V. Putting these together for all j, we conclude that ¢ is surjective.
For the second statement on quotient modules, suppose ¢: V — Z is a surjective B-
module homomorphism; then ¢~!(Z) C V is a B-submodule, and ¢~ (Z) = 3, W; is a
sum of simple B-modules, and hence by Schur’s lemma Z = }; ¢(W;) is semisimple.
For (c), let V be a B-module. Since V is finitely generated as a B-module, there is a
surjective B-module homomorphism B” — V for some r > 1. Since B” is semisimple,
so too is V by (b). O

Remark 7.3.6. Doing linear algebra with semisimple modules mirrors very closely
linear algebra over a field. We have already seen that every submodule and quotient
module of a semisimple module is again semisimple. Moreover, every module homo-
morphism V. — W with V semisimple splits, and every submodule of a semisimple
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module is a direct summand. The extent to which this fails over other rings concerns
the structure of projective modules; we take this up in Chapter 20.

Lemma 7.3.7. If B is a simple F-algebra, then B is a semisimple F-algebra.

Proof. Let I C B be a minimal nonzero left ideal, the unique simple left B-module up
to isomorphism as in Lemma 7.2.17. For all @ € B, the left ideal /« is a homomorphic
image of /, so by Schur’s lemma, either /@ = {0} or I« is simple. Let A := 3 ,cp .
Then A is a nonzero two-sided (!) ideal of B, so since B is simple, we conclude
A = B. Thus B is the sum of simple B-modules, and the result follows from Lemma
7.3.5(a). O

Corollary 7.3.8. A (finite) direct product of simple F-algebras is a semisimple F-
algebra.

Proof. If B ~ By X --- X B, with each B; simple, then by Lemma 7.3.7, each B; is
semisimple so B; = @ j I;; is the direct sum of simple B;-modules /;;. Each I;; has
the natural structure of a B-module (extending by zero), and with this structure it is
simple, and B = @i’j I;; is semisimple. O

The converse of Corollary 7.3.8 is true and is proven as Corollary 7.3.14, a conse-
quence of the Wedderburn—Artin theorem.
In analogy to 7.2.16, we have the following corollary.

Corollary 7.3.9. Let B be a simple F-algebra and let V be a left B-module. Then
V = I®" for some n > 1, where I is a simple left B-module. In particular, two left
B-modules Vi,V are isomorphic if and only if dimg V| = dimp V.

Proof. Since B is simple, B is semisimple by Lemma 7.3.7, and V is semisimple by
Lemma 7.3.5. But by Lemma 7.2.17, there is a unique simple left B-module /, and
the result follows. O

In other words, this corollary says that if B is simple then every left B-module V
is free over B, so has a left basis over B; if we define the rank of a left B-module V
to be cardinality of this basis (the integer n such that V =~ I®" as in Corollary 7.3.9),
then two such modules are isomorphic if and only if they have the same rank.

We now come to one of the main results of this chapter.

Main Theorem 7.3.10 (Wedderburn—Artin). Let B be a finite-dimensional F-algebra.
Then B is semisimple if and only if there exist integers ny, . . . ,n, and division algebras
Dy, ...,D, such that

B =M, (D)X XMy, (D).

Such a decomposition is unique up to permuting the integers ny, . . . ,n, and applying
an isomorphism to the division rings D1, ..., D,.
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Proof. If B =~ []; My, (D;), then each factor M,,, (D;) is asimple F-algebra by Example
7.2.9, so by Corollary 7.3.8, B is semisimple.

So suppose B is semisimple. Then we can write B as a left B-module as the direct
sum B ~ 11@"1 ®-- -EBIfB"’ of simple B-modules Iy, . . ., I, grouped up to isomorphism.
We have Endg (B) ~ B°P by 7.2.14. By Schur’s lemma,

Endg(B) ~ @ Endg (12");
i

by 7.2.16,
Endy (17 ) = My, (D)

where D; = Endg([;) is a division ring. So
B =~ Endg(B)® =M, (D}") X - - - X My, (D}P).
The statements about uniqueness are then clear. O

Remark 7.3.11. Main Theorem 7.3.10 as it is stated was originally proven by Wedder-
burn [Wed08], and so is sometimes called Wedderburn’s theorem. However, this term
may also apply to the theorem of Wedderburn that a finite division ring is a field; and
Artin generalized Main Theorem 7.3.10 to rings where the ascending and descending
chain condition holds for left ideals [Art26]. We follow the common convention by
referring to Main Theorem 7.3.10 as the Wedderburn—Artin theorem.

Corollary 7.3.12. Let B be a simple F-algebra. Then B ~ M, (D) for a unique
n € Zsy and a division algebra D unique up to isomorphism.

Example 7.3.13. Let B be a division F-algebra. Then V = B is a simple B-module,
and in Corollary 7.3.12 we have D = Endg(B) = B°P, and the Wedderburn—Artin
isomorphism is just B =~ M ((B°P)°P).

Corollary 7.3.14. An F-algebra B is semisimple if and only if B is the direct product
of simple F-algebras.

Proof. Immediate from the Wedderburn—Artin theorem, as each factor M,,, (D;) is

simple. m}

7.4 Jacobson radical

We now consider an important criterion for establishing the semisimplicity of an
F-algebra. Let B be a finite-dimensional F-algebra.

Definition 7.4.1. The Jacobson radical rad B of B is the intersection of all maximal
left ideals of B.

We will in Corollary 7.4.6 see that this definition has left-right symmetry. Before
doing so, we see right away the importance of the Jacobson radical in the following
lemma.
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Lemma 7.4.2. B is semisimple if and only if rad B = {0}.

Proof. First, suppose B is semisimple. Then B as a left B-module is isomorphic to
the direct sum of simple left ideals of B. Suppose rad B # {0}; then rad B contains
a minimal, hence simple, nonzero left ideal I C B. Then B = [ @ I’ for some B-
submodule I’ and B/I’ ~ I so I’ is a maximal left ideal. Therefore rad B C I’, but
then rad B N I = {0}, a contradiction.

Conversely, suppose rad B = {0}. Suppose B is not semisimple. Let I; be a
minimal left ideal of B. Since I; # {0} = rad B, there exists a maximal left ideal
J1 not containing I}, so I} N J; = {0} and B = I} & J;. Since B is not semisimple,
J1 # {0}, and there exists a minimal left ideal I, ¢ J; C B. Continuing in this fashion,
we obtain a descending chain J; 2 J 2 ..., a contradiction. m]

Corollary 7.4.3. B/rad B is semisimple.

Proof. LetJ = rad B. Under the natural map B — B/J, the intersection of all maximal
left ideals of B/rad B corresponds to the intersection of all maximal left ideals of B
containing J; but rad B is the intersection thereof, so rad(B/J) = {0} and by Lemma
7.4.2, B/J is semisimple. O

We now characterize the Jacobson radical in several ways.
7.4.4. For a left B-module V, define its annihilator by
annV :={a € B: aV =0}.

Every annihilator annV is a two-sided ideal of B: if @ € ann(V) and 8 € B, then
apBV C aV = {0} so @B € ann(V).

Lemma 7.4.5. The Jacobson radical is equal to the intersection of the annihilators of
all simple left B-modules: i.e., we have rad B = (y, ann'V, the intersection taken over
all simple left B-modules. Moreover, if a € rad B, then 1 — a € B*.

Proof. We begin with the containment (2). Let @ € ()}, annV and let / be a maximal
left ideal. Then V = B/I is a simple left B-module, so @ € ann(B/I) whence aB C I
anda € 1.

The containment (C) follows with a bit more work. Let & € rad B, and let V be a
simple left B-module. Assume for purposes of contradiction that x € V has ax # 0.
Then as in Lemma 7.2.7, V = B(ax) so x = Bax for some 8 € B and (1 — Ba)x = 0.
Let / be a maximal left ideal containing 1 — Sa. Since @ € rad B, we have « € I, and
thus 1 = (1 — Ba) + Ba € I, a contradiction. Thus @V = {0} and @ € ann V.

The final statement follows along similar lines as the previous paragraph (Exercise
7.9). ]

Corollary 7.4.6. The Jacobson radical rad B is a two-sided ideal of B.

Proof. The statement follows by combining 7.4.4 and Lemma 7.4.5: rad B is the
intersection of two-sided ideals and so is itself a two-sided ideal. O
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Example 7.4.7. If B is commutative (and still a finite-dimensional F-algebra), then
rad B = /(0) is the nilradical of B, the set of all nilpotent elements of B.

A two-sided ideal J C B isnilpotent if /" = {0} for some n > 1, i.e., every product
of n elements from J is zero. Every element of a nilpotent ideal is itself nilpotent.

Lemma 7.4.8. J = rad B contains every nilpotent two-sided ideal, and J itself is
nilpotent.

Proof. If I C B is a nilpotent two-sided ideal, then I + J is a nilpotent two-sided ideal
of B/J; but rad(B/J) = {0} by Corollary 7.4.3, so B/J is the direct product of simple
algebras (Corollary 7.3.14) and therefore has no nonzero nilpotent two-sided ideals.
Therefore I C1+J C J.

Now we prove that J is nilpotent. Consider the descending chain

B>J2J*2....

There exists n € Zs; such that J” = J?". We claim that J” = {0}. Assume for the
purposes of contradiction that I C J" is a minimal left ideal such that J"1 # {0}. Let
a € I be such that /"« # {0}; by minimality /"« = I, so @ = na for some n € J",
thus (1 —n)a =0. Buty € J* C J =rad B. By Lemma 7.4.5, | —n € B* is a unit
hence « = 0, a contradiction. O

Example 7.4.9. Suppose B has a standard involution. Then by Lemma 7.4.8 and the
fact that B has degree 2, we conclude that rad B C {€ € B : €> = 0}. If char F # 2
and we define rad(nrd) as in 4.3.9 for the quadratic form nrd, then rad(nrd) = rad B
(Exercise 7.20).

Corollary 7.4.10. The Jacobson radical rad B is the intersection of all maximal right
ideals of B.

Proof. Lemma 7.4.8 gives a left-right symmetric characterization of the Jacobson
radical, so rad B = rad B°?. There is a bijection between simple left B-modules and
simple right B°?-modules, and the result follows. O

7.5 Central simple algebras

For more on central simple algebras (and in particular division algebras), see e.g.
Saltman [Sal99] or Draxl [Dra83].
Recall (2.1.1) that the center of B is defined as

Z(B) :={a € B: af = Baforall @ € B}.

Remark 7.5.1. An F-algebra B is a central Z(B)-algebra when Z(B) is a field. (Under
a more general definition of algebra, every algebra is an algebra over its center.)

Example 7.5.2. The center Z(B) of a simple F-algebra is a field, since it is a simple
commutative F-algebra. One reaches the same conclusion by applying Corollary
7.3.12 together with Z(M,,(D)) = Z(D) (Exercise 7.5).
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The category of central simple algebras is closed under tensor product, as follows.

Proposition 7.5.3. Let A, B be F-algebras and suppose that B is central.

(a) The center of A ®f B is the image of Z(A) ~— A ®p B under 7+ zQ 1.
(b) Suppose that A, B are simple. Then A Qr B is simple.

Proof. First, centrality in part (a). Suppose thaty = >}; @; ® B; € Z(A ® B) (a finite
sum). By rewriting the tensor, without loss of generality, we may suppose that «;
are linearly independent over F. Then by properties of tensor products, the elements
Bi € Bin the representation y = }; @; ® 5; are unique. But then for all 8 € B,

= (Zai ®,8l-) (1®p) = Z(ai ® Bip)

so BB; = B;B for each i; thus B; = b; € Z(B) = F. Hence

VZZCYi@bi:Zaibi@l: Za/ibi)tgl;

since @ ® 1 also commutes with y for all @ € A, we have },; a;b; € Z(A). Thus
vyeZ(A)QF =Z(A).

Next, simplicity in part (b). Let / be a nontrivial two-sided ideal in A ® B, and
lety =", a; ® B € I\ {0}. Without loss of generality, we may suppose 31 # 0.
Then BB = B since B is simple; multiplying on the left and right by elements of
B C A®B, we may suppose further that 8; = 1. Lety € I\ {0} be such an element that
is minimal with respect to mz; then in particular the elements S3; are linearly independent
over F. Now for each 3 € B,

Z(ai ®BB) = (18 p) (Zm ® Bi

m
(1eB)y-y(1ep) =) (a:i® (BBi—BiB)) € I;
i=2
but by minimality of m, the right-hand side is zero, so 88; = ;8 for all i. Hence
Bi € Z(B) = F for all i and as above y = @ ® 1 for some 0 # a € A. But then
IDA®)(@®1)(A®])=(AcdA)®1=AQ1

since A is simple,so0 I/ 2 (A® 1)(1®B) = A® B,and thus / = A® Band A ® B is
simple. O

Lemma 7.5.4. If B is a finite-dimensional algebra over F, then B is a central simple
F-algebra if and only if the map

¢: B®p B = Endp(B)
20 ® fi = (U= X;aiuf;)

is an isomorphism.
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Proof. First, the implication (=). Just as in 7.2.14, ¢ is a nonzero F-algebra ho-
momorphism. By Proposition 7.5.3, B ® B is simple, so ¢ is injective. Since
dimr (B ®F B°) = dimy Endg(B) = (dimg B)?, ¢ is an isomorphism.

Now the converse (&); suppose ¢ is an isomorphism. If / is an ideal of B then
¢ (I ® B°P) C Endp (B) is an ideal; but Endg (B) is simple over F, therefore 7 is trivial.
Andifa € Z(B) then ¢(¢ ® 1) € Z(Endp(B)) = F,soa € F. O

7.5.5. Among central simple algebras over a field, quaternion algebras have an espe-
cially nice presentation because the quadratic norm form can be put into a standard
form (indeed, diagonalized in characteristic not 2). More generally, one may look at
algebras with a similarly nice presentation, as follows.

Let F be a field, let K D F be a cyclic extension of F of degree n = [K : F], let
o € Gal(K | F) be a generator, and let b € F*. For example, if F contains a primitive
nth root of unity £ € FX, and a € F* \ F*", then we may take K = F({/a) and
o (4%/a) = ¢ {/a. We then define the cyelic algebra

K7 7b p—
( ; ):K@Kj@---ea[(j" !

to be the left K-vector space with basis 1, j,...,J =1 and with multiplication j" = b
and ja = o(a)j for « € K. The definition of a cyclic algebra generalizes that
of 6.1.5, where there is only one choice for the generator o. A cyclic algebra is a
central simple algebra over F of dimension %, and indeed (K, o, b | K) =~ M, (K).
(See Exercise 7.11.) More generally, we may relax the condition that G be cyclic:
there is an analogous construction for any finite Galois extension, yielding a central
simple algebra called a crossed product algebra (and giving an interpretation to a
second cohomology group): see Reiner [Rei2003, §29-30]. There are significant
open problems relating cyclic algebras and crossed products to central simple algebras
in general [ABGV2006].

It is a consequence of the main theorem of class field theory that if F is a global
field then every (finite-dimensional) central simple algebra over F is isomorphic to a
cyclic algebra.

Remark 7.5.6. The theory of central simple algebras and Brauer groups extends to one
over commutative rings (or even schemes), and this becomes the theory of Azumaya
algebras: see Saltman [Sal99, §2].

7.6 Quaternion algebras

Having set the stage, we are now ready to prove the following final characterizations
of quaternion algebras.

Proposition 7.6.1. Let B be an F-algebra. Then the following are equivalent:

(i) B is a quaternion algebra;
(ii) B is a central simple F-algebra with dimp B = 4;
(iii) B is a central semisimple F-algebra with dimr B = 4; and
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(iv) B ®p F¥ ~ My (F™), where F* is an algebraic closure of F.

Proof. First, (i) = (ii): if B is a quaternion algebra, then B is central simple (7.2.11).
The equivalence (ii) < (iii) follows from the Wedderburn—Artin theorem:

1 =dimZ(B) = Z dimp Z(D;) > r

i=1

sor =1.

Next we prove (ii) = (iv). If B is central simple, then B ®f F al i5 a central simple
F?l-algebra by Proposition 7.5.3. But by Exercise 2.9, the only division F-algebra
is F?l so by the Wedderburn—Artin theorem, B ®f F' al M, (F a1); by dimensions,
n=72.

It remains to prove (iv) = (i). So suppose B ®r F& =~ M,(F¥). Then B is
simple by Example 7.2.10 and dimrp B = 4. By the Wedderburn—Artin theorem
(Corollary 7.3.12), we have B ~ M,,(D) with n € Z>; and D a division ring. Since
4 = dimg B = n?dimg D, either n = 2 and B =~ M,(F), or n = 1 and B is a division
ring.

In this latter case, the result will follow from Theorem 3.5.1 (and Theorem 6.2.8
for the case char F' = 2) if we show that B has degree 2. But for any @ € B we have
that @ € B ®p F¥ ~ M,(F¥) satisfies its characteristic polynomial of degree 2, so
that 1, @, o are linearly dependent over F*' and hence linearly dependent over F, by
linear algebra. O

Inspired by the proof of this result, we reconsider and reprove our splitting criterion
for quaternion algebras.

Proposition 7.6.2. Let B be a quaternion algebra over F. Then the following are
equivalent:

(i) B =M;(F);

(ii) B is not a division ring;
(iii) There exists 0 # € € B such that €* = 0;
(iv) B has a nontrivial left ideal I C B;

Proof. The equivalence (i) & (ii) follows from the Wedderburn—Artin theorem (also
proved in Main Theorem 5.4.4 and Theorem 6.4.11). The implications (i) = (iii) =
(i1) and (i) = (iv) = (ii) are clear. O

7.6.3. We showed in Lemma 7.2.17 that a simple algebra B has a unique simple left
B-module I up to isomorphism, obtained as a minimal nonzero left ideal. If B is
a quaternion algebra, this simple module / can be readily identified using the above
proposition. If B is a division ring, then necessarily I = B. Otherwise, B =~ M, (F),
and then I ~ F2, and the map B — End (1) given by left matrix multiplication is an
isomorphism.
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7.7 The Skolem-Noether theorem

In this section, we establish a fundamental result that characterizes the automorphisms
of a simple algebra—and much more.

Main Theorem 7.7.1 (Skolem—Noether). Let A, B be simple F-algebras and suppose
that B is central. Suppose that f,g: A — B are homomorphisms. Then there exists

B € B* such that f(a) = B~'g(a)B for all @ € A.

Proof. By Corollary 7.3.12, we have B ~ Endp (V) =~ M,,(D°P) where V is a simple
B-module and D = Endg (V) is a central F-algebra. Now the maps f, g give V the
structure of an A-module in two ways. The A-module structure commutes with the
D-module structure since B ~ Endp (V). So V has two A ® r D-module structures via
fand g.

By Proposition 7.5.3, since D is central over F, we have that A ®f D is a simple F-
algebra. By Corollary 7.3.9 and a dimension count, the two A ® 7 D-module structures
on V are isomorphic. Thus, there exists an isomorphism : V — V of A D-modules;
ie. B(f(a)x) = g(a)B(x) forall@ € A and x € V, and B(6x) = 6B(x) forall 6 € D
and x € V. We have 8 € Endp (V) ~ B and so we can write 8f(a)8~" = g(a) for all
a € A, as claimed. O

The following corollaries are immediate consequences (special cases) of the
Skolem—Noether theorem.

Corollary 7.7.2. If Ay, Ay are simple F-subalgebras of a central simple F-algebra
Band ¢: Ay = A, is an isomorphism of F-algebras, then ¢ is induced by an inner
automorphism of B.

Proof. Let t;: A; — B be the natural inclusions, and apply Main Theorem 7.7.1 to
f =1 and g = 1y o ¢: we conclude there exists § € B* such that ¢;(@) = a =
B li(p(@))B or equivalently ¢(a) = B! for all @ € Ay, as desired. o

Corollary 7.7.3. If B is a central simple F-algebra and a1, ay € B*, then a1, a; have
the same irreducible minimal polynomial over F if and only if there exists B € B* such
that ap = ﬁ_lmﬁ.

Proof. The implication (<) is immediate. Conversely (=), let A; = Fla;] =
F[x]/(fi(x)) where f;(x) € F[x] are minimal polynomials over F. Since these
polynomials are irreducible, A; is a field hence simple, so Corollary 7.7.2 gives the
result. O

Corollary 7.7.4. The group of F-algebra automorphisms of a central simple algebra
B is Aut(B) ~ B*/F*.

Proof. Taking A = B in Main Theorem 7.7.1, we conclude that every automorphism
of B as an F-algebra is inner, and an inner automorphism is trivial if and only if it is
conjugation by an element of the center F*. O
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Example 7.7.5. By Corollary 7.7.4, we have a canonical isomorphism of groups
Aut(M,,(F)) = GL,(F)/F* = PGL,,(F).

As a final application, we extend the splitting criterion of Main Theorem 5.4.4(i)
& (vi) to detect isomorphism classes of quaternion algebras (also proven in Exercise
6.4, in a different way).

Corollary 7.7.6. Let K 2 F be a separable quadratic F-algebra, and let b, b’ € F*.
Then

Taking b’ = 1, we recover the previous splitting criteria.

Proof. For the implication (&), if b’/b = Nmg |r (@) with @ € K*, then an isomor-
phism is furnished as left K-vector spaces by sending j — «.

For the implication (=), let¢: (K,b | F) = B’ := (K, b’ | F)be anisomorphism
of F-algebras. If K ~ F x F is not a field, then Nmg | (K*) = F* and the result holds.
So suppose K is a field. Then ¢(K) C B’ isomorphic to K as an F-algebra, but need
not be the designated one in B’; however, by the Skolem—Noether theorem, we may
postcompose ¢ with an automorphism that sends ¢(K) to the designated one, i.e., we
may suppose that ¢ is a K-linear map (taking the algebras as left K-vector spaces).
Let ¢(j) = a + Bj’ witha, 8 € K. Then

{0} = trd(K j) = trd(#(K j)) = trd(K$())) = trd(Ka)
and thus @ = 0 since K is separable. Consequently,

—b = nrd(j) = nrd(¢(j)) = - Nmg | (8)b’
and so b/b’ = Nmg |r () as desired. O

In the remainder of this section, we prove an important consequence of the Skolem—
Noether theorem that compares centralizers of subalgebras to dimensions.

Definition 7.7.7. Let A be an F-subalgebra of B. Let
Cp(A) ={BeB:af=Baforalla e A}
be the centralizer of A in B.
The centralizer Cg(A) is an F-subalgebra of B.

Proposition 7.7.8. Let B be a central simple F-algebra and let A C B a simple
F-subalgebra. Then the following statements hold:

(a) Cg(A) is a simple F-algebra.
(c) Cp(Cp(A)) = A.
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Part (c) of this proposition is called the double centralizer property.

Proof. First, part (a). We interpret the centralizer as arising from certain kinds of
endomorphisms. We have that B is a left A® B°? module by the action (¢®8)-u = aup
fora ® B € A® B°P and u € B. We claim that

CB(A) = EndA®Bop(B). (7.7.9)

Any ¢ € Endggper (B) is left multiplication by an element of B: if y = ¢(1), then
d(u) = p(1)p = yu by 1 ® B°P-linearity. Now the equality

ya =¢(a) = ag(l) = ay

shows that multiplication by y is A® 1-linear if and only if y € Cg(A), proving (7.7.9).

By Proposition 7.5.3, the algebra A ® B°P is simple. By the Wedderburn—Artin
theorem, A ® B°? ~ M,,(D) for some n > 1 and division F-algebra D. Since M,,(D)
is simple, its unique simple left D-module is V = D", and Endy, (py(V) =~ D. In
particular, B ~ V" for some r > 1 as an A ® B°’-module. So

Cp(A) = Endagpor (B) = Endy,, (p) (V") = M, (Endy, (p)(V)) = M, (D).

Thus Cg(A) is simple.
For part (b),

dimp Cp(A) = dimg M, (D) = r* dimg D

and
dimp (A ® B®) = dimy A - dimy B = n’ dimg D

and finally
dimg B =dimg V" = rdimg D" = rndimg D;

putting these together gives dimg A - dimg Cp(A) = rndimg D = dimp B.
Finally, part (c) follows from (a) and (b):

dimF B = dll’IlF CB(A) . dlmF CB(CB(A)) = dlmF A- dlmF CB (A)
sodimg A = dimg Cg(Cg(A)) and A C Cp(Cp(A)), therefore equality holds. O

Example 7.7.10. We always have the two extremes A = Fand A = B, withCg(F) = B
and Cg(B) = F, accordingly.

We note the following structurally crucial corollary of Proposition 7.7.8.

Corollary 7.7.11. Let B be a central division F-algebra and let K be a maximal
subfield. Then dimg B = (dimg K)?.

Proof. Since B is a division algebra and K is maximal subfield, in fact K is a maximal
commutative F-subalgebra, so Cp(K) = K and thus by Proposition 7.7.8(b) we have
dimg B = (dlmF K)z [m]
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Corollary 7.7.11 generalizes the comparatively easier statement for quaternion
algebras: the maximal subfields of a quaternion algebra are quadratic. Returning now
to quaternion algebras, we conclude with a nice package of consequences of the above
results concerning embeddings of quadratic fields into quaternion algebras.

7.7.12. Let B be a quaternion algebra over F and let K C B be a quadratic separable
F-subalgebra. Then the set of all embeddings of K in B is naturally identified with the
set K*\B*, as follows.

By the Skolem—Noether theorem (Corollary 7.1.5, and Exercise 7.10 for the case
K =~ F X F), if ¢: K < B is another embedding, then there exists 8 € B* such that
¢(a) = B lap for all @ € K, and conversely. Such a conjugate embedding is the
identity if and only if S centralizes K. By Corollary 4.4.5, and Corollary 6.4.2 for
characteristic 2, the centralizer of K* in B* is K*. Therefore, the set of embeddings
of K in B is naturally identified with the set K*\B*, with K* acting on the left.

7.8 Reduced trace and norm, universality

‘We now consider notions of reduced trace and reduced norm in the context of semisim-
ple algebras.

7.8.1. Let B be a (finite-dimensional) central simple algebra over F', and let F°°P denote
a separable closure of F. By Exercise 7.23, we have an F-algebra homomorphism

¢: B®p F*P ~ M, (F*P)

for some n > 1. By the Skolem—Noether theorem (Main Theorem 7.7.1), for any
other isomorphism ¢': B ®p F*P ~ M, (F*P), there exists M € GL,,(F*P) such that
¢’ () = Mp(a)M™", so the characteristic polynomial of an element of B ® F%P is
independent of the choice of «. In particular, from the canonical embedding ¢: B —
B ®F F*P by a@ — a ® 1, we define the reduced characteristic polynomial of @ € B
to be the characteristic polynomial of (¢¢) (@) as an element of F*P[T] and similarly
the reduced trace and reduced norm of « to be the trace and determinant of (¢¢) (@)
as elements of F°P.

In fact, the reduced characteristic polynomial descends to F, as follows. The
absolute Galois group Galg := Gal(F*®P | F) acts on B ®p F*P ~ M,,(F*P) by

ogla®a)=a®oc(a)

for o € Galp, @ € B,and a € F*%P. Let o € Galg. Sinceoc(a® 1) =a®o(l) =
a ® 1, the reduced characteristic polynomials of «(@) and o (¢(@)) are the same. By
comparison (see e.g. Reiner [Rei2003, Theorem 9.3]), if

F(@;T) = det(T — (@) =T" + a1 T + -+ ag

is the reduced characteristic polynomial of ¢(«), then the reduced characteristic poly-
nomial of (o (1)) (@) is

o(f)(a;T) =det(T — o (t(a))) =T" + o (an- )T+ + 0 (ay).
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And then since f(a;T) = o(f)(a;T) for all o € Galp, by the fundamental theorem
of Galois theory, f(a@;T) € F[T]. Therefore, the reduced norm and reduced trace also
belong to F.

Alternatively, we may argue as follows. The characteristic polynomial of left
multiplication by « on B is the same as left multiplication by (¢¢)(a@) on M,, (F5°P)
(by extension of basis), and the latter is the nth power of the reduced characteristic
polynomial by Exercise 3.13. Finally, if f(T) € F*P[T] has f(T)" € F[T] then in
fact f(T) € F[T]: see Exercise 7.24.

These definitions extend to a general semisimple algebra over F, but to do so it
is convenient to give an alternate approach that avoids going to the separable closure
and works in even more generality using universal elements; for more, see Garibaldi
[Gar2004].

Let B be a (finite-dimensional) F-algebra with n := dimg B, and choose a basis
ey,...,e, for B. Let F(xy,...,x,) be a pure transcendental field extension of tran-
scendence degree n, and let & := xje; +--- +xye, € BQp F(x1,...,x,); we call &
the universal element of B in the given basis.

Definition 7.8.2. The universal minimal polynomial of B (in the basis ey, ..., e;,) is
the minimal polynomial mpg(&;T) of € over F(xy,...,x,).

For @ = aje; + --- + ane, € B (with a; € F), the polynomial obtained from
mp(&;T) by the substitution x; < a; is called the specialization of mg(¢;T) at a.

The following example will hopefully illustrate the role of this notion.

a,b

Example 7.8.3. For charF # 2 and B = T)’ in the basis 1,7, j,ij we have

& =t+xi+yj+zij (substituting ¢, x, y, z for x1, ..., x4). We claim that the universal
minimal polynomial is

mp(&T) =T = 24T + (1* — ax® — by* + abz?).

Indeed, we verify that & satisfies mp(&; &) = 0 by considering ¢ € B®F F(t,x,y,2) =

b b .
(a—) and computing that trd(¢) = 2¢ and nrd(¢) = > — ax® — by* + abz?;
F(t,x,y,2)

and this polynomial is minimal because ¢ ¢ F (¢, x, y, z) does not satisfy a polynomial
of degree 1 over F(t,x,y,7z).

7.84. If B~ B X---X B,, then in a basis for B obtained from the union of bases for
the factors B; with universal elements &;, we have

mp(&;T) =mp, (é1;T) ---mp, (&;T).

In the proofs that follow, we abbreviate by using multi-index notation, e.g. writing
Flx] == Flx1,...,x.].

Lemma 7.8.5. We have mg(&;T) € Flxy,...,xy][T], i.e., the universal minimal
polynomial has coefficients in F[xy,...,X,].
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Proof. We consider the map given by left multiplication by £ on B®p F(x). In the basis
ey, ...,ey, almost by construction we find that the matrix of this map has coefficients
in F[x] (it is the matrix of linear forms obtained from left multiplication by ¢;). We
conclude that £ satisfies the characteristic polynomial of this matrix, which is a monic
polynomial with coefficients in F[x]. Since mp(&;T) divides this polynomial (over
F(x)) by minimality, by Gauss’s lemma we conclude that mpg(¢;7T) € F[x][T]. O

Proposition 7.8.6. Forall a € B, the specialization of mg(&;T) at a is independent of
the choice of basis ey, . . ., e, and is satisfied by the element a. Moreover, if ¢ € Aut(B)
and a € B, then a and ¢(a) have the same specialized polynomials.

In view of Proposition 7.8.6, we write mp (a; T) for the specialization of mpg(£;T)
at @ € B; from it, we conclude that mg(a; ) = 0.

Proof. Since mpg(&;&) = 0, by specialization we obtain mg(a;a) = 0. For the
independence of basis, let €], ..., e, be another F-basis and &’ the corresponding
universal element. Writing e; in the basis e/ allows us to write & = 3" | £;(x)e; where
i(x) € F[x] are linear forms; moreover, writing @ = 3’; aje; we have {;(a) = a;.
The map x; +— ¢;(x) extends to an F-algebra automorphism ¢ of F[x] (repeat the
construction with the inverse, and compose) with ¢(c)(a) = c(a’) for all c(x) € F[x].
We let ¢ act on polynomials over F[x] by acting on the coefficients; by uniqueness of
minimal polynomials, we have ¢(mp(&;T)) = mp(€7;T). Therefore, looking at each
coefficient, specializing ¢(mp(&;T)) at a is the same as specializing mpg(¢/;T) at a’,
as claimed.

The second sentence follows by the same argument, as from ¢ € Aut(B) we have
a new basis e] := ¢(e;) so the specializations again agree. (This argument replaces
the use of the Skolem—Noether theorem in the special case where B is a central simple
algebra.) O

Lemma 7.8.7. For any field extension K 2 F, we have mpg, x (£;T) = mg (&;T).

Proof. First, because an F-basis for B is a K-basis for B @ K, the element & (as
the universal element of B), also serves as a universal element of B ® K. Since
K(x1,...,x,) € F(xy,...,x,), by minimality we have mp, (£;T) | mp(&;T). Con-
versely, let F(x)[¢] € B ®F F(x) be the subalgebra generated by & over F(x); then
F(x)[€] = F(x)[T]/(mp(&;T)). Tensoring with K gives

K(x)[§] = K(x)[T]/(mp(&:T))

as the subalgebra of (B ®r K) ®k K(x) generated by &. Thus mp(&;7T) | mp, (&;7),
so equality holds. O

We conclude by relating this construction to more familiar polynomials.
Lemma 7.8.8. Let a € B. Then the following statements hold.

(@) If B=K 2 F is a separable field extension, then mg (a; T) is the characteristic
polynomial of left multiplication by «.
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(b) If B is a central simple F-algebra, then mg(a;T) is the reduced characteristic
polynomial of a.

Proof. For (a), we recall (as in the proof of Lemma 7.8.5) that & satisfies the charac-
teristic polynomial of left multiplication on K, a polynomial of degree n = [K : F];
on the other hand, choosing a primitive element @, we see the specialization mg (a; T')
is satisfied by «@ so has degree at least n, so equality holds and mg (a; T) is the charac-
teristic polynomial. Therefore the universal minimal polynomial is the characteristic
polynomial, and hence the same is true under every specialization.

For (b), it suffices to prove this when F = F is algebraically closed, in which case
B ~ M,,(F); by Proposition 7.8.6, we may assume B = M,,(F). By 7.8.1, we want
to show that mpg(a;T) for @ € M,,(F) is the usual characteristic polynomial. But the
universal element (in a basis of matrix units, or any basis) satisfies its characteristic
polynomial of degree n, and a nilpotent matrix (with s just above the diagonal) has
minimal polynomial 7", so we conclude as in the previous paragraph. [

In light of the above, we may make the following definition.

Definition 7.8.9. Let B be a semisimple F-algebra. For @ € B, the reduced charac-
teristic polynomial f(;T) = T"—c T '+- - -+(=1)"c, € F[T] is the specialization
of the universal minimal polynomial mg(&;T), and the reduced trace and reduced
norm are the coefficients cy, c¢,, respectively.

Example 7.8.10. For a semisimple algebra B ~ By X --- X B,, with each B; central
simple, we find that the reduced characteristic polynomial is just the product of the
reduced characteristic polynomials on each simple direct factor B;; this is well-defined
(again) by the uniqueness statement in the Wedderburn—Artin theorem (Main Theorem
7.3.10).

Proposition 7.8.11. Let B be semisimple. Then the reduced trace ttd: B — F is
F-linear and satisfies trd(aB) = trd(Ba) for all @, € B; and the reduced norm
nrd: B — F is multiplicative, satisfying nrd(a8) = nrd(«a) nrd(B).

Proof. Consider (again) V := F(x)[¢] € B ®F F(x) the subalgebra generated over
F(x) by &; then & acts on V =~ F(x)[T]/(mp(&;T)) by left multiplication with
characteristic polynomial mpg(&;T). It follows that the reduced trace and reduced
norm are the usual trace and determinant in this representation, so the announced
properties follow on specialization. m}

Remark 7.8.12. It is also possible to define the reduced characteristic polynomial on
a semisimple algebra B by writing B ~ By X - -+ X B, as a product of simple algebras;
for details, see Reiner [Rei2003, §9].

7.9 Separable algebras

For a (finite-dimensional) F'-algebra, the notions of simple and semisimple are sensitive
to the base field F in the sense that these properties need not hold after extending the
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base field. Indeed, let K 2 F be a finite extension of fields, so K is a simple F-
algebra. Then K ®F F? is simple only when K = F and is semisimple if and only if
K®p Fl ~ Fil x ... x F¥ je. K is separable over F.

It is important to have a notion which is stable under base change, as follows.
For further reference, see Drozd—Kirichenko [DK94, §6], Curtis—Reiner [CR81, §7],
Reiner [Rei2003, §7c], or Pierce [Pie82, Chapter 10].

Definition 7.9.1. Let B be a finite-dimensional F-algebra. We say that B is a separable
F-algebra if B is semisimple and Z(B) is a separable F-algebra.

In particular, a separable algebra over a field F with char F' = 0 is just a semisimple
algebra.

7.9.2. For a semisimple algebra B ~ M,,, (D) X --- X M, (D;), by Example 7.5.2
we have Z(B) ~ Z(D1) X --- X Z(D,), and B is separable if and only if Z(D;) is
separable foreachi=1,...,r.

Lemma 7.9.3. A finite-dimensional simple F-algebra is a separable algebra over its
center K.

Proof. The center of B is a field K = Z(B) and as a K-algebra, the center Z(B) =
K is certainly separable over K. (Or use Proposition 7.5.3 and Theorem 7.9.4(iii)
below.) O

The notion of separability in this context is quite robust.

Theorem 7.9.4. Let B be a finite-dimensional F-algebra. Then the following are
equivalent:

(1) B is separable;
(ii) There exists a finite separable field extension K of F such that B ®p K =~
M, (K) x---x M, (K) forintegers ny,...,n, > 1;

(iii) For every extension K 2 F of fields, the K-algebra B ®f K is semisimple;
(iv) B is semisimple and the bilinear form

BxB—F
(@, B) > trd(ap)

is nondegenerate.
Moreover, if char F = 0, then these are further equivalent to:
(v) The bilinear form (a, B) — Trp|r (ap) is nondegenerate.

A separable F-algebra is sometimes called absolutely semisimple, in view of
Theorem 7.9.4(iii).
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Proof. First we prove (i) = (ii). Let B; be a simple component of B; then Z(B;) is
separable over F. Let K; 2 F be a separable field extension containing Z(B;) that
splits B;, so B; ®z(p,) Ki ~ M,,,(K;). Let K be the compositum of the fields K;. Then
K is separable, and

B; ®r K = M,,,(Z(B;) ®F K) =M, (K) X --- XM, (K)

the number of copies equal to [Z(B;) : F].

Next we prove (ii) = (iii). Suppose B ®r K =~ []; M, (K) and let L 2 F be an
extension of fields. Let M = KL. On the one hand, B®r M ~ (BQ®p K) Qx M =~
[1; M, (M), sorad B®r M = {0}; on the other hand, B&r M ~ (B®F L) ® M and
rad(B ®p L) Crad(B ®r L) ® M = {0}, so B ®F L is semisimple.

For the implication (iii) = (i), suppose B is not separable, and we show that there
exists K 2 F such that B ®¢ K is not semisimple. If B is not semisimple over F, we
can just take F = K. Otherwise, Z(B) is not separable as an F-algebra, and there is a
component of Z(B) which is an inseparable field extension K. Then B®p K contains a
nonzero nilpotent element in its center and this element generates a nonzero nilpotent
ideal, so rad(B ®f K) # {0} and B ®F K is not semisimple.

The implication (iii) = (iv) holds for the following reason. We have B ®p F ~
M, (F aly ... x M, (F al) "and the reduced trace pairing on each matrix ring factor is
nondegenerate so the whole pairing is nondegenerate. By linear algebra we conclude
that the bilinear form on B is nondegenerate.

The implication (iv) = (i) holds with char F arbitrary: if € € rad B then ae € rad B
is nilpotent and trd(@e) = 0 for all @ € B, and by nondegeneracy € = 0.

The final equivalence (iv) < (v) follows when char F = 0 since the algebra trace
pairing on each simple factor is a scalar multiple of the reduced trace pairing. m}

Exercises

Throughout the exercises, let F be a field.

by o .
» 1. Prove that a quaternion algebra B = (aT) with char F # 2 is simple by a direct
calculation, as follows.

(a) Let I be a nontrivial two-sided ideal, and let e =t + xi + yj + zij € I. By
considering ie — €i, show that 7 + xi € [.

(b) Arguing symmetrically and taking a linear combination, show that ¢ € I,
and conclude that ¢t = 0, whencex =y =z =0.

AN
Modify this argument to show that an algebra B = [QT) is simple when

char F = 2. [We proved these statements without separating into cases in
7.2.11.]

2. Let B be a quaternion algebra over F, and let K C B be an F-subalgebra that is
commutative. Show that dimg K < 2.
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3.

»4.

» 5.

» 0.

»9.

» 10.

11.
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Let B be a quaternion algebra. Exhibit an explicit isomorphism
B ®F B = My(F).

[Hint: see Exercise 2.11.]

Let B = { g lc) ca,b,ce€ F} C My(F), and V = F? be the left B-module
of column vectors. Show that V is indecomposable, but not simple, as a left

B-module (cf. Example 7.2.5).

This exercise proves basic but important facts about two-sided ideals in matrix
algebras using matrix units.

(a) Let D be a division F-algebra. Prove that M, (D) is a simple F-algebra
with center Z(D) for all n > 1. [Hint: Let E;; be the matrix with 1 in the
ijth entry and zeros in all other entries. Show that Ex;ME ;e = m;;Eye
where m;j is the ijth entry of M.]

(b) More generally, let R be a ring (associative with 1, but potentially non-
commutative). Show that Z(M,,(R)) = Z(R) and that any two-sided ideal
of M;,(R) is of the form M,,(I) € M,,(R) where [ is a two-sided ideal of
R.

Let F be a field, let B a simple F-algebra, and let I be a left B-module with
dimp I = dimg B. Show that [ is isomorphic to B as a left B-module, i.e., there
exists @ € I such I = Ba.

In this exercise, we consider extensions of the Skolem—Noether theorem.

(a) Let B be a quaternion algebra over F and let K|, K, C B be F-subalgebras
(not necessarily subfields). Suppose that ¢: K; = K3 is an isomorphism
of F-algebras. Show that ¢ lifts to an inner automorphism of B. [Hint:
repeat the proof of Corollary 7.1.5.]

(b) Show by example that Corollary 7.7.3 is false if the minimal polynomials
are not supposed to be irreducible. In particular, provide an example
of isomorphic algebras K, K, C B that are not isomorphic by an inner
automorphism of B.

Let B be a quaternion algebra over F, and let K C B be a separable, quadratic
F-subalgebra. Show that there exists b € F* such that B ~ (K, b | F). [Hint:
lift the standard involution on K via the Skolem—Noether theorem. |

Let B be a finite-dimensional F-algebra. Show thatif @ € rad B, then 1-Ba € B>
for all B € B. [Hint: if 1 — Ba is not left invertible then it belongs to a maximal
left ideal; left invertible implies invertible. |

Extend Corollary 7.1.5 to the case where K = F X F as follows: show directly
that if K1, K, C B are F-subalgebras with K} ~ F X F, and ¢: K; = K, is an
isomorphism of F-algebras, then ¢ lifts to an inner automorphism of B.

Letn € Zs, and let F be a field with char F { n. Let { € F be a primitive nth

,b
root of unity. Leta,b € F* andlet A = (;—5) be the algebra over F generated

i
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by elements 7, j subject to
i"=a, j"=b, ji=/{ij.

(a) Show that dimp A = nZ.
(b) Show that A is a central simple algebra over F.
(c) Let K = F[i] = F[x]/(x" —a). Show that if b € Nmg r(K*) then
A =M, (F).
[Such algebras are called cyclic algebras or sometimes power norm residue
algebras.]

12. Generalize the statement of Proposition 7.5.3(a) as follows. Let A, B be F-
algebras, and let A” € A and B’ C B be F-subalgebras. Prove that

Cagp(A’® B') =C4(A") ® C(B’).

13. Let B be a finite-dimensional F-algebra. Show that the following are equivalent:
(i) Bis separable;
(ii) B is semisimple and the center K = Z(B) is separable;
(iii) B ®F B°P is semisimple.
14. Let G # {1} be a finite group. Show that the augmentation ideal, the two-sided
ideal generated by g — 1 for g € G, is a nontrivial ideal, and hence F[G] is not
simple as an F-algebra.

15. Let G be a finite group of order n = #G. Show that F[G] is a separable F-
algebra if and only if char F 1 n as follows. [This exercise is known as Maschke’s
theorem.]

(a) Suppose first that char F' = 0O for a special but quick special case. Compute
the trace pairing and conclude F[G] is separable.

(b) If char F | n, show that N = 3}, g is a nilpotent element in the center of
F[G], so F[G] is not semisimple.

(c) Suppose that char F'  n. Let B = F[G]. Define the map of left B-modules
by

¢: B— B®p B® = B°

1
p()==> g®(g™")°
so that ¢(a) = a¢(1) for all @ € B. Give B the structure of a B®-module
by (@, a@®) - B +— aBa’. Show that ¢ is a homomorphism of B®-modules,
and that the structure map ¢ : B® — B has i o ¢ = idg. Conclude that B
is separable.

16. Let B be an F-algebra, and let F! be an algebraic closure of F. Show that if
B ®p F¥ is simple then B is simple, but give a counterexample to the converse.

17. Let D be a (finite-dimensional) division algebra over F2. Show that D = F&.,
Conclude that if B is a simple algebra over F¥, then B ~ M,,(F) for some
n > 1 and hence is central.
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19.
20.

21.

22.

»23.

24.

25.

» 26.
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Let B be a (finite-dimensional) F algebra, and let K 2 F be a finite separable
extension of fields. Show that rad(B ®F K) = rad(B) ®F K.

Show that if B is a semisimple F-algebra, then so is M,,(B) for any n € Z5;.

Let B be a (finite-dimensional) F-algebra with standard involution and suppose
char F # 2.

(a) Show that rad B = radnrd. Conclude B is semisimple if and only if
radnrd = {0}.

(b) Suppose B # F and B is central. Conclude that B is a quaternion algebra
if and only if rad nrd = {0} (viz. Main Theorem 4.4.1).

Compute the Jacobson radical rad B of the F-algebra B with basis 1,4, j,ij
satisfying
2

i“=a, j2 =0, and ij = —ji
for a € F, and compute B/rad B. In particular, conclude that such an algebra
is not semisimple, so B is not a quaternion algebra. [Hint: restrict to the case

char F # 2 first.]

Give an example of (finite-dimensional) simple algebras A, B over a field F such
that A ® B is not simple. Then find A, B such that A ®¢ B is not semisimple.

In Exercise 7.17, we saw that if D is a (finite-dimensional) central division
algebra over F then D ®F F =~ M, (F¥) for some n > 1. In this exercise,
we show the same is true if we consider the separable closure. (We proved this
already in Exercise 6.3 for D a quaternion algebra.)

Let F be a separably closed field, so every nonconstant separable polynomial
with coefficients in F has a root in F. Let D be a finite-dimensional central
division algebra over F with char F = p. For purposes of contradiction, assume
that D # F.

(a) Prove that dimg D is divisible by p.

(b) Show that the minimal polynomial of each nonzero d € D has the form
xP° —aforsomea € Fande > 0.

(c) Choose an F?-algebra isomorphism ¢: D ® F¥ = M,,(F). Show that
trg(x® 1) =0forall x € D.

(d) Prove that D does not exist.

Let K 2 F be a separable (possibly infinite) extension, and let f(T') € K[T] be
monic. Suppose that f(T)" € F[T] forsomen € Z5;. Show that f(T) € F[T].
[Hint: when p = char F | n, use the fact that a? € F implies a € F.]

Let B be a finite-dimensional F-algebra, let @ € B, and let f, («;T) and fr(a; T)
be the characteristic polynomial of left and right multiplication of @ on B,
respectively.

(a) If B is semisimple, show that f, (;T) = fr(a;T).

(b) Give an example where f, (a;T) # fr(a;T).
Use the Skolem—Noether theorem to give another solution to Exercise 6.2: if
K C B is aseparable quadratic F-algebra then B ~ (K, b | F) for some b € F*.
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27.

28.

» 29.

» 30.

31.

Give a direct proof of Corollary 7.7.4. [Hint: Use the fact that there is a unique
simple left B-module. ]

Let B = (K, b | F) be a quaternion algebra. Show that the subgroup of Aut(B)
that maps K C B to itself is isomorphic to the group

K*/F* U j(K*|F*).

Show that the subgroup of Aut(B) that restricts to the identity on K (fixing K
elementwise) is isomorphic to K*/F*.

Use the Skolem—Noether theorem and the fact that a finite group cannot be writ-
ten as the union of the conjugates of a proper subgroup to prove Wedderburn’s
little theorem: a finite division ring is a field.

Let B be a quaternion algebra over F. In this exercise, we show that the
commutator subgroup

[B*,B*] = (aBa”'B7! : a, B € BX)
is precisely
[B*,B*] = B' = {y € BX : nrd(y) = 1} = SL(B).

(a) Show that [BX, BX] < B'.
(b) Show that [GL,(F),GLy(F)] = SL,(F) if #F > 3. [Hint: choose z € F

such that 72 — 1 € F%, let Y = (Z) Z(_)l , and show that for all x € F we

I x| _ 1 x(2-17!
o )=l ")

and analogously for the transpose. See 28.3 for a review of elementary
matrices. |

(c) Suppose that B is a division algebra. Let y € B'. Show that there exists
@ € K = F(y) such that @' = y. [Hint: This is a special case of
Hilbert’s theorem 90. Let « =y + 1 ify # —1, and a € B \ {0} if
v = —1, with appropriate modifications if char F = 2.] Conclude from the
Skolem—Noether theorem that there exists 8 € B* such that Sa~! = @,
and thus y € [B*, BX].

have

Show that every ring automorphism of H is inner. (Compare this with ring
automorphisms of C!)






Chapter 8

Simple algebras and involutions

In this chapter, we examine further connections between quaternion algebras, simple
algebras, and involutions.

8.1 » The Brauer group and involutions

An involution on an F-algebra B induces an isomorphism ~ : B = B°P_ for example
such an isomorphism is furnished by the standard involution on a quaternion algebra B.
More generally, if By, B; are quaternion algebras, then the tensor product B; ®r B; has
an involution provided by the standard involution on each factor giving an isomorphism
to (B1 ®F By) =~ B{® @ B,"—but this involution is no longer a standard involution
(Exercise 8.1). The algebra B; ®F B is a central simple algebra over F called a
biquaternion algebra. In some circumstances, we may have

B\ ®F By ~ M;(Bj3) (8.1.1)

where B3 is again a quaternion algebra, and in other circumstances, we may not;
following Albert, we begin this chapter by studying (8.1.1) and biquaternion algebras
in detail.

To this end, we look at the set of isomorphism classes of central simple algebras
over F, which is closed under tensor product; if we think that the matrix ring is
something that is ‘no more complicated than its base ring’, it is natural to introduce an
equivalence relation on central simple algebras that identifies a division ring with the
matrix ring (of any rank) over this division ring. More precisely, if A, A’ are central
simple algebras over F we say A, A’ are Brauer equivalent if there exist n,n” > 1 such
that M,,(A) =~ M, (A’). In this way, (8.1.1) reads B; ® B, ~ B3z. The set of Brauer
equivalence classes [ A] has the structure of a group under tensor product, known as the
Brauer group Br(F) of F, with identity element [F] and inverse [A]~' = [A°]. The
class [ B] € Br(F) of aquaternion algebra B is a 2-torsion element, and therefore so is a
biquaternion algebra. In fact, by a striking theorem of Merkurjev, when char F # 2, all
2-torsion elements in Br(F) are represented by a tensor product of quaternion algebras
(see section 8.3).

121
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Finally, our interest in involutions in Chapter 3 began with an observation of
Hamilton: the product of a nonzero element with its involute in H is a positive real
number (its norm, or square length). We then proved that the existence of such an
involution characterizes quaternion algebras in an essential way. However, one may
want to relax this setup and instead consider when the product of a nonzero element with
its involute merely has positve frace. Such involutions are called positive involutions
and they arise naturally in algebraic geometry: the Rosati involution is a positive
involution on the endomorphism algebra of an abelian variety, and it is a consequence
that this algebra (over Q) is semisimple, and unsurprisingly quaternion algebras once
again feature prominently (see sections 8.4-8.5).

8.2 Biquaternion algebras
Let F be a field. All tensor products in this section will be taken over F.

8.2.1. Let By, B, be quaternion algebras over F. The tensor product B; ® B; is a
central simple algebra over F of dimension 4> = 16 called a biquaternion algebra.
A biquaternion algebra may be written as a tensor product of two quaternion algebras
in different ways, so the pair is not intrinsic to the biquaternion algebra.

By the Wedderburn—Artin theorem (Main Theorem 7.3.10), we have exactly one
of the three following possibilities for this algebra:

* B| ® B, is a division algebra;
* B; ® By ~ M;(B3) where Bj is a quaternion division algebra over F'; or

* B; ® By ~ My(F).

We could combine the latter two and just say that B) ® B, ~ M,(B3) where B3 is a
quaternion algebra over F, since M (M (F)) =~ My(F) as F-algebras.

Example 8.2.2. By Exercise 8.2, when char F' # 2 we have

(a,}f)l ) % (a,;)z) ~ Ma(B3)

bib b b b
where B3 = a’—FlQ) In particular, (a?) ® (a?) ~ My(F), since (aT) ~
M, (F).

Example 8.2.2 is no accident, as the following proposition indicates.
Proposition 8.2.3 (Albert). The following are equivalent:
(1) There exists a quadratic field extension K D F that can be embedded as an
F-algebra in both By and B;;

(i) By and By have a common quadratic splitting field; and
(iii) B1 ® B; is not a division algebra.
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Proof. The equivalence (i) & (ii) follows from Lemma 5.4.7.
For the implication (i) = (iii), for i = 1,2 let a; € B; generate K so af =ta; —n
witht,n € F. Let
B=a1®1-1Qa;.

Then

Bla®l+1®@am-t)=al®l-10a}-1p

(8.2.4)
=(ta;-n)®1-1Q (tap —n) —tB=0.

Therefore S is a zerodivisor and B; ® B, is not a division algebra.
To finish, we prove (iii) = (i). We have an embedding

By — B, ®B;

a—a®l

and similarly B,; the images of B and B, in B ® B, commute. Write By = (K, by | F).
Consider (B|)xk = Bj ® K C B] ® By; then (B])g is a quaternion algebra over K (with
dimg (By)g = 8). If (By)k is not a division algebra, then K splits B; and K < B
and we are done. So suppose that (B1)k is a division algebra. Then

By ® By = (B1)k + (B1)kJ

is free of rank 2 as a left (B;)g-module.

Since B| ® B, ~ M;(B3) is not a division algebra, there exists € € B} ® B, nonzero
such that €2 = 0. Without loss of generality, we can write € = @] ® z+ j where a| € B
and z € K. Then

0=€>=a’0@2+ (a1 ®2)j + (a1 ®2)j +by. (8.2.5)
From the basis 1, j over (B1)k, if 7z =t — z with t € F, we conclude that
a1®z+a/1®(t—z)=al®t=0.

Therefore = 0, and z* = ¢ for some ¢ € F*. Then from (8.2.5) cai + by = 0
SO a/]2 = —by/c and B contains the quadratic field F(v/~byc). But so does By, as
(zj)? = —=bsc as well.

(For an alternate proof, see Jacobson [Jacn2009, Theorem 2.10.3].) O

Remark 8.2.6. In view of Proposition 8.2.3, we say that two quaternion algebras
By, B> over F are linked if they contain a common quadratic field extension K 2 F.
For further discussion of biquaternion algebras and linkage in characteristic 2 (where
one must treat separable and inseparable extensions differently), see Knus [Knu93],
Lam [Lam?2002], or Sah [Sah72]. Garibaldi—Saltman [GS2010] study the subfields of
quaternion algebra over fields with char F' # 2.

From now on, we suppose that char F' # 2. (For the case char F' = 2, see Chapman—
Dolphin-Laghribi [CDL2015, §6].)
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8.2.7. Motivated by Proposition 8.2.3, we consider the quadratic extensions repre-
sented by By and B; encoded in the language of quadratic forms (recalling Lemma
5.5.4). Let

V={1®1-1®as € B; ® By : trd(a) = trd(a»)}.

Then dimp V = 6, and we may identify V = B(l) ®1-1 ®Bg. The reduced norm on each
factor separately defines a quadratic form on V by taking the difference: explicitly, if
By = (a1,by | F) and B, = (ay, by | F), then taking the standard bases for B, B

Q(By,By) =~ (—ay,—byi,a1b1) B —(—az, b3, arby)
=~ (—ay,=by,a1b,az, by, —azby).

The quadratic form Q(Bj, B;) : V — F is called the Albert form of the biquaternion
algebra B; ® Bj.

We then add onto Proposition 8.2.3 as follows.

Proposition 8.2.8 (Albert). Let B; ® By be a biquaternion algebra over F (with
char F # 2) with Albert form Q(By, By). Then the following are equivalent:

(1) Bj, By have a common quadratic splitting field;
(iv) Q(Bj1, B») is isotropic.

Proof. The implication (ii)) = (iv) follows by construction 8.2.7. To prove (iv) =
(ii), without loss of generality, we may suppose Bj, B, are division algebras; then
an isotropic vector of Q corresponds to elements @; € By and @, € B; such that

0/12 = a'g = ¢ € F*. Therefore K = F(4/c) is a common quadratic splitting field. O

Remark 8.2.9. Albert’s book [Alb39] on algebras still reads well today. The proof of
the key implication (iii) = (i) in Proposition 8.2.3 is due to him [Alb72]. (“I discovered
this theorem some time ago. There appears to be some continuing interest in it, and I
am therefore publishing it now.”) Albert [Alb32] used Proposition 8.2.8 to show that
certain tensor products of quaternion algebras over function fields are division algebra,

for example
-1 -
B = (x, ) and B, = ( x,y)
F F

is a division algebra over F = R(x, y)—by a direct argument, one can show that the
Albert form Q(Bj, B;) is anisotropic over F. See Lam [Lam2005, Albert’s Theorem
4.8, Example VI.1.11] for more details.

For the fields of interest in this book (local fields and global fields), a biquaternion
algebra will never be a division algebra—the proof of this fact rests on classification
results for quaternion algebras over these fields, which we will take up in earnest in
Part II.
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8.3 Brauer group

Motivated to study the situation where B; ® By =~ M;(B3) among quaternion algebras
B1, By, B3 more generally, we now turn to the Brauer group.

Let CSA(F) be the set of isomorphism classes of central simple F-algebras.
The operation of tensor product on CSA(F) defines a commutative binary operation
with identity F', but inverses are lacking (for dimension reasons). So we define an
equivalence relation ~ on CSA(F) by

A~ A" if M, (A) =~ M,,(A”) for some n,n’ > 1 (8.3.1)

and we say then that A, A’ are Brauer equivalent. In particular, A ~ M,,(A) for all
A € CSA(F) as needed above.

Lemma 8.3.2. The set of equivalence classes of central simple F-algebras under the
equivalence relation ~ has the structure of an abelian group under tensor product,
with identity [F] and inverse [A]™' = [A°P].

Proof. By Exercise 8.5, the operation is well-defined: if A, A’ € CSA(F) and A" ~
A” € CSA(F) then A® A" ~ A® A”. To conclude, we need to show that inverses
exist. This is furnished by Lemma 7.5.4: if dimg A = n and AP is the opposite algebra
of A (3.2.2) then the map

A ®p A® — Endg (A) =~ M, (F)
a® B (uH aup)

is an isomorphism of F-algebras, so [A]~' = [A°P] provides an inverse to [A]. O
So we make the following definition.

Definition 8.3.3. The Brauer group of F is the set Br(F) of Brauer equivalence classes
of central simple F-algebras (8.3.1) under the group operation of tensor product.

8.3.4. Let B be a quaternion algebra over F. We have B =~ M,(F) if and only if
[B] = [F] is the identity. Otherwise, B is a division algebra. Then the standard
involution gives an F-algebra isomorphism B = B°P, and hence in Br(F) we have
[B]~! = [B] and so [B] is an element of order 2. Since Br(F) is abelian, it follows that
biquaternion algebras, or more generally tensor products B; ® - - - ® B; of quaternion
algebras B;, are also elements of order at most 2 in Br(F).

Theorem 8.3.5 (Merkurjev). Let char F # 2. Then Br(F)[2] is generated by quater-
nion algebras over F, i.e., every (finite-dimensional) central division F-algebra with
involution is Brauer equivalent to a tensor product of quaternion algebras.

Remark 8.3.6. More generally, Merkurjev [Mer82] proved in 1981 that a division
algebra with an involution is Brauer equivalent to a tensor product of quaternion
algebras; more precisely, if D is a division F-algebra with (not necessarily standard)
involution, then there exists n € Zs; such that M,,(D) is isomorphic to a tensor
product of quaternion algebras. His theorem, more properly, says that the natural
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map K>(F) — Br(F)[2] is an isomorphism. (Some care is required in this area:
for example, Amitsur—Rowen—Tignol [ART79] exhibit a division algebra D of degree
8 with involution that is not a tensor product of quaternion algebras, but M (D) is
a tensor product of quaternion algebras.) For an elementary proof of Merkurjev’s
theorem, see Wadsworth [Wad86].

Remark 8.3.7. Justas quaternion algebras are in correspondence with conics (Corollary
5.5.2), with a quaternion algebra split if and only if the corresponding conic has a
rational point (Theorem 5.5.3), similarly the Brauer group of a field has a geometric
interpretation (see e.g. Serre [Ser79, §X.6]): central simple algebras correspond to
Brauer-Severi varieties—for each degree n > 1, both are parametrized by the Galois
cohomology set H' (Gal(F*P | F),PGL,,).

8.4 Positive involutions

We now turn to study algebras with involution more general than a standard involution.
Throughout this section, let F/ C R be a subfield of R and B a finite-dimensional F-
algebra. We define the trace map Tr : B — R by the trace of left multiplication.

Definition 8.4.1. An involution * : B — B is positive if Tr(a*a) > 0 for all a €
B\ {0}.

Since the map («, 8) — Tr(a*B) is bilinear, an involution * on B is positive if and
only if Tr(a*a@) > 0 for @ in a basis for B and so is positive if and only if its extension
to B ®F R is positive.

Example 8.4.2. The standard involutions on R, C, and H, defined by a + trd(a) — «,
are positive involutions. The standard involution on R X R is not positive since for
a = (x1,x3) € R X R we have Tr(a@) = 2x1x2. The standard involution on M (R) is
also not positive, since for @ € M, (R) we have Tr(a@) = 4 det(a).

8.4.3. Let D be one of R, C, or H. Let B = M,,(D). The standard involution ~ on D
extends to an involution on B, acting on coordinates. The conjugate transpose (or,
perhaps better the standard involution transpose) map
*:B— B
aa*=a'
also defines an involution on B, where t is the transpose map. If o = (@ij)ij=t,...n

then

Tr(a*a) = n(dimg D) Y ajjai; > O; (8.4.4)

=

i,j=1
thus * is positive, and the norm a — Tr(a* @) is (an integer multiple of) the Frobenius
norm on B.

We will soon see that every positive involution can be derived from the conjugate
transpose as in 8.4.3. First, we reduce to the case where B is a semisimple algebra.
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Lemma 8.4.5. Suppose that B admits a positive involution *. Then B is semisimple.

Proof. We give two proofs. First, we appeal to Theorem 7.9.4: since the trace pairing
is positive definite, it is nondegenerate and immediately B is semisimple.

For a second (more general) proof, let / = rad B be the Jacobson radical of B.
By Lemma 7.4.2, B is semisimple if and only if rad B = {0}, and by Lemma 7.4.8,
J = rad B is nilpotent. Suppose for purposes of contradiction that J # {0}. Then there
exists n > 0 such that J” # {0} but J"*! = {0}. Let € € J be such that €” # 0 but

€"*! = 0. The involution gives an isomorphism B — B°P taking maximal left ideals
to maximal right ideals and therefore by Corollary 7.4.6 we conclude J* = J. Thus
€"e* =0so Tr(e"(e*)") = Tr(e"(")*) = 0, contradicting that * is positive. O

8.4.6. Suppose B is semisimple with a positive involution *, and let B; be a simple
factor of B. Then * preserves B;: forif B} = B; # B;, then B; is a simple factor and
B;B; = 0so Tr(B;B}) = Tr(B;Bj) = {0}, a contradiction.

Putting Lemma 8.4.5 with 8.4.6, we see it is enough to classify positive involutions
on simple R-algebras. By the theorem of Frobenius (Corollary 3.5.8), a simple algebra
over R is isomorphic to M,, (D) with D =R, C, H, so 8.4.3 applies.

Proposition 8.4.7. Let B ~ M,,(D) be a simple R-algebra and let * be the conjugate
transpose involution on B. Let *: B — B be another positive involution on B. Then
there exists an element u € B* with u* = pu such that

1

o = u ot

forall @ € B.

Proof. First suppose B is central over R. Then the involutions  and * give two R-
algebra maps B — B°P. By the Skolem—Noether theorem (Main Theorem 7.7.1), there
exists 4 € B such that o = y~'a*u. Since

a=@") =@'ew =g ey =(u ya () (8.4.8)

for all @ € B, we have u~'u* € Z(B) = R, so u* = cu for some ¢ € R. But
()" = pu = (cu*)* = 2, thus ¢ = +1. Butif ¢ = —1, then y is skew-symmetric so
its top-left entry is w7 = O; but then for the matrix unit e;; we have

Tr(ene],) = Tr(enpu ™" ej ) = Tr(u ' enipers) = Tr(u™ pry) =0, (8.4.9)

a contradiction.

A similar argument holds if B has center Z(B) = C. The restriction of an involution
to Z(B) is either the identity or complex conjugation; the latter holds for the conjugate
transpose involution, as well as for ™: if z € Z(B) then Tr(zz") = n?(zz") > 0,
and we must have z' = 7. So the map & — (a*) is a C-linear automorphism, and
again there exists u € BX such that o' = y~'a*u. By the same argument, we have
W= zu with z € C, but now u = (u*)* = Zzu so |z| = 1. Let w?> = w/w = z; then
(wu)* =wu* = wzu = wu. Replacing u by wu, we may take z = 1. O
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Corollary 8.4.10. The only positive involution on a real division algebra is the stan-
dard involution.

Proof. Apply Proposition 8.4.7 with n = 1, noting that u* = g = g impliesu € R. O

8.4.11. Let u € B* with u* = u. Then yu is self-adjoint with respect to the pairing
(a,B) — Tr(a*p):

(na, B) = Tr((na)*B) = Tr(a*u*B) = Tr(a"upB) = (a, upB).

It follows from the spectral theorem that the R-linear endomorphism of B given by
left-multiplication by ¢ on B as an R-algebra is diagonalizable (with real eigenvalues)
via a symmetric matrix. We say u is positive definite (for *) if all eigenvalues of u
are positive. The map @ — Tr(a*ua) defines a quadratic form on B, and u is positive
definite if and only this quadratic form is positive definite.

Lemma 8.4.12. Let u* = u. Then the involution o' = u~'a* u is positive if and only
if either u or — i is positive definite.

Proof. Diagonalize the quadratic form a +— Tr(a*ua) to get {ay, ..., a,) in a nor-
malized basis ey, .. ., e,, and suppose without loss of generality that a; = +1. If all
a; = —1, then we can replace u with —u without changing the involution to suppose
they are all +1.

Suppose u is not positive, and without loss of generality a; < 0 and a, > 0, then
Tr((e; + ex)*u(e; + e2)) = =1+ 1 = 0, a contradiction. Conversely, if u is positive
definite, then all eigenvalues are +1. Let v = 4/u be such that yv* = v, and then

Tr(a* u ap) = Tr(a* v 2av?) = Te((va* v ) (v av))

8.4.13
=Tr((v'av)* (v 'av)) > 0 ( )

for all @ € B, so T is positive. O

Example 8.4.14. If n = 1, and B = D, then the condition u* = u implies u € R, and
the condition u positive implies u > 0; rescaling does not affect the involution, so we
can take u = 1 and there is a unique positive involution on D given by *.

b 2c
if a > 0 and b*> — 4ac < 0. Combining Proposition 8.4.7 with Lemma 8.4.12, we
see that all positive involutions " on B are given by o' = u~'a*u where y is positive
definite.

We can instead relate positive involutions to the standard involution @ instead of

-1 %

the transpose; to this end, it is enough to find j € B* = GL,(R) such that @ = ;7' a*],

Example 8.4.15. Let B = M;(R). Then u = (2a b ) is positive definite if and only

and the element ; = (_O] (l)) does the trick, because

(—01 (1>) (Z ;) ((1) _ol):(_dc _ab)' (8.4.16)
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I 0J\b 2¢ —2a
involutions are given by o' = u~'@u where u? € R.

From the product (_O ]) (Za b) = ( b EZ), we conclude that all positive

Remark 8.4.17. Beyond the application to endomorphism algebras, Weil [Weil60] has
given a more general point of view on positive involutions, connecting them to the
classical groups. For more on involutions on finite-dimensional algebras over real
closed fields, see work of Munn [Mun2004].

8.5 + Endomorphism algebras of abelian varieties

We conclude this chapter with an advanced (optional) application: we characterize
endomorphism algebras of (simple) abelian varieties in terms of algebras with involu-
tions. We borrow from the future the notions from section 43.4. Briefly, a complex
torus of dimension g is a complex manifold of the form A = V/A for g > 0, where
A C V ~ C8 is a lattice (discrete subgroup) and A =~ Z?¢. A complex abelian variety
is a certain kind of complex torus. A complex abelian variety A is simple if A has no
abelian subvariety other than {0} and A.

An endomorphism of A is a C-linear map @: V — V such that a(A) C A. Let
End(A) be the ring (Z-algebra) of endomorphisms of A.

Proposition 8.5.1. B = End(A) ® Q is a finite-dimensional algebra over Q that admits
a positive involution " : B — B.

Proof. The algebra B acts faithfully on A ® Q ~ Q¢, so is isomorphic to a subalgebra
of M, (Q) hence is finite-dimensional over Q. For positivity, see Proposition 43.4.24
(for the case when A is principally polarized). O

Remark 8.5.2. The involution ": B — B is called the Rosati involution (and depends
on a choice of polarization 1: A — AV, where A" is the dual abelian variety).

Now Lemma 8.4.5 and Proposition 8.5.1 imply that B is semisimple as a Q-algebra,
with

-
B =~ I—[ Mni (Dl)
i=1
where each D; C B is a division algebra. It follows that A is isogenous to a product
AT XX AT

where ny,...,n, > 0and Ay, ..., A, are simple pairwise nonisogenous abelian sub-
varieties of A such that D; = End(A;) ®z Q.
We therefore reduce to the case where A is simple, and D := End(A) ® Q is a
division algebra. Let K := Z(D) be the center of D and let
Ko=KV={aeKk:a"=a}

be the subfield of K where T acts by the identity.
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Lemma 8.5.3. K| is a totally real number field, i.e., every embedding Ky — C factors
through R, and if T acts nontrivially on K, then K is a CM field, i.e., K is a totally
imaginary extension of K.

Proof. The positive involution ' restricts to complex conjugation on Z(D) by Propo-
sition 8.4.7, so for all embeddings K < C, the image lies in R. For the same reason,
we cannot have T acting nontrivially on K and have an embedding K < R. O

The following theorem of Albert classifies the possibilities for D.

Theorem 8.5.4 (Albert). Let D be a (finite-dimensional) division algebra over Q with
positive involution © and center K = Z(D), let Ko := KT and n := [Ky : Q]. Then
Ky is a totally real number field, and one of the four following possibilities holds:

(I) D =K = Ko and " is the identity;
(Il) K = Ko and D is a quaternion algebra over Ky such that

D ®gR =~ My(R)",

and there exists 4 € D> such that u> = d € K is totally negative and af =

wlau forall a € D;
() K = Ky and D is a quaternion algebra over K such that

D ®gR ~H",

and T is the standard involution; or
aIV) K 2 Ky and
D ®gR = My (C)"

*

for some d > 1, and T extends to the conjugate transpose * on each factor

M, (C).

Proof. We have assembled many of the tools needed to prove this theorem, and
hopefully motivated its statement sufficiently well—but unfortunately, a proof remains
just out of reach: we require some results about quaternion algebras over number
fields not yet in our grasp. For a proof, see Mumford [Mum70, Application I, §21] or
Birkenhake—Lange [BL2004, §§5.3-5.5].

To connect a few dots as well as we can right now, we give a sketch in the case
where K = K| for the reader who is willing to flip ahead to Chapter 14. In this case,
D is a central division algebra over K = K and has a Ky-linear involution giving an
isomorphism D = D°P of Kj-algebras. Looking in the Brauer group Br(Kj), we
conclude that [D] = [D°P] = [D]~!, so [D] € Br(Kjp) has order at most 2. By class
field theory (see Remark 14.6.10), we conclude that either D = K or D is a (division)
quaternion algebra over K. If D = K, we are in case (I), so suppose D is a quaternion
algebra over Ko. We have D ®q R ~ [], |, Dy a direct product of n quaternion
algebras D, over R indexed by the real places v of Ky. We have D, =~ M;(R) or
D, =~ H, and our positive involution induces a corresponding positive involution on
each D,. If there exists v such that D, ~ H, then by Corollary 8.4.10, the positive
involution on D, is the standard involution, so it is so on D, and then all components
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must have D,, ~ H as the standard involution is not positive on M, (R)—and we are in
case (II). Otherwise, we are in case (III), with Proposition 8.4.7 and Example 8.4.15
characterizing the positive involution. |

Exercises

Let F be a field.

1. Let By, B, be quaternion algebras over F, with standard involution written ~ in
both cases. Let A := B; ® B;.

(a) Showthatthemapo: A — Adefinedby a;®a, — @1®a; fora; € B; and
ay € B, extends to an involution on A, but it is not a standard involution.
[Hint: consider sums.]

(b) Suppose that char F # 2. Diagonalize A = A* & A™ into +1 and —1
eigenspaces for . Show that

A*=F® (B ®B;) and A" =(B]®F) @& (F®B;).

b ,b
» 2. Suppose char ' # 2 and let By := (aTl) and B, = (an

) be quaternion
algebras over F.
(a) Let B3 be the F-span of 1, i3 := i1 ® 1, j3 := j1 ® jo, and k3 := i3j3 =
i1j1 ® jo inside By ® B,. Show that B3 ~ (&Flbz) as F-algebras.
(b) Similarly, let B4 be the F-span of 1, i4 := 1 ® ja, j4 := (i1 ® k2)/a, and
k4 :=i4j4. Show that By ~ (bz’}:bz) = M, (F).
(c) Show that

B| ® By ~ B3 ® B4 ~ M,(B3).

[Hint: Show that B3 and B4 are commuting subalgebras, or consider the
map B3 ® By — B| ® B; given by multiplication. |
(d) Restore symmetry and repeat (a)—(c) to find algebras B} ~ B3 and B} =~

bi=bi) .
(lTl) with B ® B = B, ® B}, = Mx(B}).

3. Suppose char F' # 2. Show that B| ® By ~ My (F) if and only if the Albert form
Q(Bj1, B») is totally hyperbolic.

4. Let G be a finite group. Show that the map induced by g — g~! for g € G
defines an positive involution on R[G]. Then show that this map composed with
coordinatewise complex conjugation defines a positive involution on C[G] (as
an R-algebra).

» 5. Show that if ~ is the equivalence relation (8.3.1) on CSA(F), then ~ is compat-
ible with tensor product, i.e., if A, A’ € CSA(F) and A’ ~ A”" € CSA(F) then
ARA ' ~ARA".
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Show that every class in the Brauer group Br(F) contains a unique division
F-algebra, up to isomorphism.

Show that Br F = {1} if F is separably closed, and that Br(R) =~ Z/27Z and
Br(F,) = {1}.

Let B € CSA(F) and suppose that B has an involution (not necessarily standard).
Show that [B] has order at most 2 in Br F.

Let K 2 F be a field extension. Show that the map A — A ®f K induces
a group homomorphism Br FF — Br K. Conclude that the set of isomorphism
classes of central division F-algebras D such that D ® K ~ M,,(K) for some
n > 1 forms a subgroup of Br F, called the relative Brauer group Br(K | F).

In this exercise, we give an example of a central simple algebra of infinite
dimension, called the Weyl algebra.

Suppose char F = 0, let F[x] be the polynomial ring over F in the variable x.
Inside the enormous algebra Endg F[x] is the operator f(x) — x f(x), denoted
also x, and the differentiation operator ¢ : F[x] — F[x]. These two operators
are related by the product rule:

6(xf(x)) —x6(f(x)) = f(x).

Accordingly, the subalgebra of Endr F[x] generated by ¢, x is isomorphic to an
algebra given in terms of generators and relations:

W = F{(6,x)/{6x —x6 — 1),

the quotient of the “noncommutative polynomial ring” in two variables F (8, x)
by the two-sided ideal generated by éx — xd — 1.

(a) Show that every element of W can be written in the form }." fi(x)o!
where f;(x) € F[x] for all i, i.e., W has F-basis elements x'6” fori, j > 0.

(b) Show that Z(W) = F.

(c) Let I be a two-sided of W. Show that if there exists nonzero f(x) €
F[x] NI, then I = W. Similarly, show that if 6" € I for some n > 0, then
I=W.

(d) Show that W is simple. [Hint: argue by induction. ]

Let B be a finite-dimensional R-algebra with positive involution *: B — B. Let
P(B,”) :={u € B: u* =y and u is positive definite for *}.

(a) Show that B acts on P(B,*) by 8- u = B*up.

(b) Show that P(B,*) is a convex open subset of {& € B : a* = «a}, an
R-vector subspace of B.

(c) Let y: B — B be an R-algebra automorphism or anti-automorphism.
Show that ' := ' ((a)*) defines a positive involution for o € B, and
that » maps P(B, ") bijectively to P(B, ¥).
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Chapter 9

Lattices and integral quadratic forms

In many ways, quaternion algebras are like “noncommutative quadratic field exten-
sions”: this is apparent from their very definition, but also from their description as
wannabe 2 x 2-matrices. Just as the quadratic fields Q(Vd) are wonderously rich,
so too are their noncommutative analogues. In this part of the text, we explore these
beginnings of noncommutative algebraic number theory.

In this chapter, we begin with some prerequisites from commutative algebra,
embarking on a study of integral structures and linear algebra over domains.

9.1 » Integral structures

Just as we find the integers Z inside the rational numbers Q, more generally we want
a robust notion of integrality for possibly noncommutative algebras: this is the theory
of orders over a domain.

We first have to understand the linear algebra aspects of this question. Let R
be a domain with field of fractions F' := Frac R, and let V be a finite-dimensional
F-vector space. An R-lattice in V is a finitely generated R-submodule M C V with
MF = V. If R is a PID (for example, R = Z), then M is an R-lattice if and only if
M = Rx; @ --- ® Rx,, where x1,...,Xx, is a basis for V as an F-vector space.

Between M and V lies intermediate structures, where instead of allowing all
denominators (in the field of fractions), we only allow certain denominators; these are
the localizations of M. To fix ideas, suppose R = Z, so M ~ Z"; we call a Z-lattice
simply a lattice. For a prime p, we define the localization of Z away from p to be

Z(p) ::{a/bEQ:p{b}CQ.

In the localization, we can focus on those aspects of the lattice concentrated at the
prime p. Extending scalars, M () := MZ,) C VisaZ)-lattice in V, again called the
localization of M at p. These localizations determine the lattice M in the following
strong sense (Theorem 9.4.9).

Theorem 9.1.1 (Local-global dictionary for lattices). Let V be a finite-dimensional
Q-vector space, and let M C V be a lattice. Then the map N — (N(p)), establishes

135
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a bijection between lattices N and collections of lattices (N(p))p (indexed by primes
p) where M,y = N, for all but finitely many primes p.

By this theorem, the choice of “reference” lattice M is arbitrary. Because of the
importance of this theorem, a property of a lattice that holds if and only if it holds over
every localization is called a local property.

Finally, often vector spaces come equipped with a measure of length, or more
generally a quadratic form; we can restrict these to the lattice M € V with V a Q-
vector space. More intrinsically, we define a quadratic form Q: M — Z to be a map
satisfying:

(i) Q(ax) =a*Q(x)foralla € Zand x € M, and
(ii) The associated map T: M X M — Zby T(x,y) = Q(x+y) — Q(x) — Q(y) is
(Z-)bilinear.

Condition (i) explains (partly) the ‘quadratic’ nature of the map, and part (ii) is the usual
way relating norms (quadratic forms) to bilinear forms. Choosing a basis ey, ..., e,
for M ~ Z", we may then write

O(xie; ++ - +xpe,) = allx% +apxixy -+ an,,)c,z1 €Z[x1,...,xu] (9.1.2)

as a homogeneous polynomial of degree 2.

9.2 Bits of commutative algebra

We begin with a brief review of some bits of commutative algebra relevant to our
context: we need just enough to do linear algebra over (commutative) domains with
good properties. Good general references for the basic facts from algebra we use
(Dedekind domains, localization, etc.) are Atiyah—-Macdonald [AM69], Matsumura
[Mat89, Chapter 8], Curtis—Reiner [CR81, §1, §4], Reiner [Rei2003, Chapter 1], and
Bourbaki [Bou98].

Throughout this chapter, let R be a (commutative) noetherian domain with field of
fractions F' := Frac R.

9.2.1. An R-module P is projective if it is a direct summand of a free module;
equivalently, P is projective if and only if every R-module surjection f: M — P
of R-modules has a section, i.e., an R-module homomorphism g: P — M such that
fog=idp.

Accordingly, a free R-module is projective. A projective R-module M is necessar-
ily torsion free over R, which is to say, if rx =0 withr € Rand x € M, then r = 0 or
x=0.

9.2.2. A fractional ideal of R is a nonzero finitely generated R-submodule b C F, or
equivalently, a subset of the form b = da where a C R is a nonzero ideal and d € F*.
Two fractional ideals a, b of R are isomorphic (as R-modules) if and only if there exists
¢ € F* such that b = ca: indeed, given an isomorphism a ~ b, we may extend scalars
to F to obtain an F-linear map F ~ F, which must be given by ¢ € F*, and conversely.
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A Dedekind domain is a noetherian, integrally closed domain such that every
nonzero prime ideal is maximal.

Example 9.2.3. A field or a PID is a Dedekind domain; in particular, the rings Z and
F, [¢] are Dedekind domains. If F is a finite extension of Q or F, (¢), then the integral
closure of Z or F,, [t] in F respectively is a Dedekind domain.

9.2.4. Suppose R is a Dedekind domain. Then a finitely generated R-module is
projective if and only if it is torsion free. Moreover, every nonzero ideal a of R can be
written uniquely as the product of prime ideals (up to reordering). For every fractional
ideal a of R, the set a™! := {a € F : aa C R} is a fractional ideal with aa™! = R.
Therefore the set of fractional ideals of R forms a group under multiplication. The
set of principal fractional ideals comprises a subgroup, and we define CI R to be the
quotient, or equivalently the group of isomorphism classes of fractional ideals of R.

9.3 Lattices

Let V be a finite-dimensional F-vector space.

Definition 9.3.1. An R-lattice in V is a finitely generated R-submodule M C V with
MF =V. We refer to a Z-lattice as a lattice.

The condition that MF = V is equivalent to the requirement that M contains a
basis for V as an F-vector space.

Example 9.3.2. An R-lattice in V = F is the same thing as a fractional ideal of R.

We will be primarily concerned with projective R-lattices; if R is a Dedekind
domain, then a finitely generated R-submodule M C V is torsion free and hence
automatically projective (9.2.4).

9.3.3. If there is no ambient vector space around, we will also call a finitely generated
torsion free R-module M an R-lattice: in this case, M is a lattice in the F-vector space
M ®g F because the map M — M ®g F is injective (as M is torsion free).

Remark 9.3.4. Some authors omit the second condition in the definition of an R-lattice
and say that M is full if MF = V. We will not encounter R-lattices that are not full
(and when we do, we call them finitely generated R-submodules), so we avoid this
added nomenclature.

By definition, an R-lattice can be thought of an R-submodule that “allows bounded
denominators”, as follows.

Lemma 9.3.5. Let M C V be an R-lattice and let J C V be a finitely generated
R-submodule. Then the following statements hold.

(a) Forall x €V, there exists nonzero r € R such that rx € M.
(b) There exists nonzeror € R such thatrJ C M.
(¢) J is an R-lattice if and only if there exists nonzero v € R such thatrM C J C
-1
rM.
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Proof. First (a). Since FM =V, the R-lattice M contains an F'-basis x1, ..., x, for V,
so in particular M 2 Rx| @ - - - ® Rx,,. For all x € V, writing x in the basis xy, ..., x,
and clearing (finitely many) denominators, we conclude that there exists nonzeror € R
such that rx € M.

For (b), let yy, . ..,y generate J as an R-module; then for each i, there existr; € R
nonzero such that r;y; € M hence r := [[; r; # O satisfies rJ C M, and therefore
J C r'M. For (c), we repeat (b) with M interchanged with J to find nonzero s € R
such that sM C J, so then

rsMCsMCJCr'Mc(rs)”'M. O

For the rest of this section, we suppose that R is a Dedekind domain and treat lattices
over R; for further references, see Curtis—Reiner [CR62, §22], O’Meara [O’Me73,
§81], or Frohlich-Taylor [FT91, §11.4]. It turns out that although not every R-lattice
has a basis, it can be decomposed as a direct sum, as follows.

Theorem 9.3.6. Let R be a Dedekind domain, let M C V be an R-lattice and let
Y1, ..., Yn be an F-basis for V. Then there exist x1, . ..,Xx, € M and fractional ideals
ag,...,a, such that

M=ax & - ®a,x, 9.3.7)

andxj € Fyi+---+Fyjforj=1,...,n

Accordingly, we say that every R-lattice M is completely decomposable (as a
direct sum of fractional ideals), and we call the elements x1,...,x, a pseudobasis
for the lattice M with respect to the coefficient ideals ai, ..., a,. The matrix with
rows x; in the basis y; is lower triangular by construction; without loss of generality
(rescaling), we may suppose that the diagonal entries are equal to 1, in which case we
say that the pseudobasis for M is given in Hermite normal form.

More generally, if M = ajx; + - - - + a;, X, the sum not necessarily direct, then we
say that the elements x; are a pseudogenerating set for M with coefficient ideals a;.

Proof of Theorem 9.3.6. We argue by induction on n, the case n = 1 corresponding to
the case of a single fractional ideal.

LetW :=Fy;+---+ Fy,_1,and let N = M N W. Then there is a commutative
diagram

0 N M M/N —=0
j l l (9.3.8)
0 w 1% V/W—=0

Since N = W N M, we have M/N — V/W, and V/W = F projecting onto Fy,,.
Since M /N is nonzero and finitely generated, by 9.2.4 we conclude M /N ~ a C F'is
a fractional ideal, hence projective. Therefore the top exact sequence of R-modules
splits (the surjection has a section), so there exists x € M such that M = N & ax as
R-modules. The result then follows by applying the inductive hypothesis to N. O

An argument generalizing that of Theorem 9.3.6 yields the following [O’Me73,
81:11].
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Theorem 9.3.9 (Invariant factors). Let R be a Dedekind domain and let M, N C V be
R-lattices. Then there exists a common pseudobasis x1, . ..,x, for M,N; i.e., there
exists a basis x1, . . ., x, forV and fractional ideals a1, . . ., a, and by, . .., b, such that

M=qx @ P a,x,
N=bix;®---®b,x,

Moreover, letting d; = biai‘1 we may further take ®1 | - - - | Dy, and then such d; are
unique.
The unique fractional ideals dy,...,D, given by Theorem 9.3.9 are called the

invariant factors of N relative to M.

9.3.10. Let M C V be an R-lattice with pseudobasis as in (9.3.7). The class
[a;---a,] € CIR is well-defined (Exercise 9.7) and called the Steinitz class.

In fact, if we do not require that x; € Fy{ +---+ Fy; for j = 1,...,n in Theorem
9.3.6, then we can find a pseudobasis for M witha; =--- =a,_; = R, i.e.,

M=Rx1®---®Rx,_1 ® ax,

with [a] the Steinitz class of M.

9.4 Localizations

Properties of a domain are governed in an important way by its localizations, and
consequently the structure of lattices, orders, and algebras can often be understood by
looking at their localizations (and later, completions).

For a prime ideal p C R, we denote by

Ry ={r/s€F:sgp}CF 9.4.1)

the localization of R at p. (We reserve the simpler subscript notation for the completion,
defined in section 9.5.)

Example 9.4.2. If R = Z and p = (2), then Ry = {r/s € Q : 5is odd} consists of
the subring of rational numbers with odd denominator.

Since R is a domain, the map R < Ry is an embedding and we can recover R as
an intersection

R=(\Rp=()Rm S F (9.4.3)
P m

where the intersections are over all prime ideals of R and all maximal ideals of R,
respectively.
Let V be a finite-dimensional F-vector space and let M C V be an R-lattice. For a
prime p of R, let
M) == MRy €V
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be the extension of scalars of M over R(y; identifying V = MF ~ M ®g F under
multiplication, we could similarly define

M) =M ®r Rey).

In either lens, My, is an R(p-lattice in V. In this way, M determines a collection
(M p))p indexed over the primes p of R.

9.4.4. Returning to 9.2.1, a finitely generated R-module M is projective if and only if
it is locally free, i.e., My is free for all prime ideals of R.

The ability to argue locally and then with free objects is very useful, and so very
often we will restrict our attention to projective (equivalently, locally free) R-modules.

9.4.5. The localization of a Dedekind domain R is a discrete valuation ring (DVR). A
DVR is equivalently a local PID that is not a field. In particular, a DVR is integrally
closed, and every finitely generated module over a DVR is free.

Consequently, if R is a Dedekind domain, then every fractional ideal of R is
locally principal, i.e., if a C F is a fractional ideal, then for all primes p of R we have
a(p) = apR(y) for some a, € F*.

We now prove a version of the equality (9.4.3) for R-lattices (recall Definition
9.3.1).

Lemma 9.4.6. Let M be an R-lattice in V. Then
M = mM(p) = ﬂM(m) cv
P m

where the intersection is over all prime (maximal) ideals p.

Proof. It suffices to prove the statement for maximal ideals since My C M(y) when-
ever m 2 p. The inclusion M C (), M(m) is clear. Conversely, let x € V satisfy

X € My for all maximal ideals m. Let
a:={reR:rxeM}.

Then a is an ideal of R and nonzero by Lemma 9.3.5(a). For a maximal ideal m of R,
since x € My, there exists 0 # ry € R \ m such that r,,x € M. Thus ryy € aand ais
not contained in any maximal ideal of R. Therefore a = R and hence x € M. O

Corollary 9.4.7. Let M, N be R-lattices in V. Then the following are equivalent:

(i) M CN;
(ii) M(p) C N(yp) for all prime ideals p of R; and
(iii) M(m)y € Nm) for all maximal ideals m of R.

Proof. The implications (i) = (ii) = (iii) are direct; for the implication (iii) = (i), we
have M = (y M(m) S (Vg N(m) = N by Lemma 9.4.6. O

In particular, it follows from Corollary 9.4.7 that M = N for R-lattices M, N if and
only if M(p) = N(y) for all primes p of R.
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9.4.8. A property that holds if and only if it holds locally (as in Corollary 9.4.7, for
the property that one lattice is contained in another) is called a local property.

To conclude this section, suppose that R is a Dedekind domain. We characterize
in a simple way the conditions under which a collection (M y)), of R(y)-lattices arise
from a global R-lattice. Recall that a fractional ideal of R can be factored uniquely into
a product of prime ideals, and hence by the data of these primes and their exponents;
so as in 9.4.5, localization furnishes a bijection between fractional R-ideals a C F
and collections of fractional R(p-ideals (a(p)), indexed by the primes p satisfying
a(p) = R(yp) for all but finitely many primes p. So too can a lattice be understood by
a finite number of localized lattices, once a “reference” lattice has been chosen (to
specify the local behavior of the lattice at other primes).

Theorem 9.4.9 (Local-global dictionary for lattices). Let R be a Dedekind domain,
and let M C 'V be an R-lattice. Then the map N +— (N(y))y establishes a bijection
between R-lattices N C 'V and collections of lattices (N y))p indexed by the primes p
of R satisfying M) = N(y) for all but finitely many primes p.

In Theorem 9.4.9, the choice of the “reference” lattice M is arbitrary: if M’ is
another lattice, then by Theorem 9.4.9, we have M) = M, (’ ") for all but finitely many
primes p, so we get the same set of lattices replacing M by M’. In particular, any
lattice N C V agrees with any other one at all but finitely many localizations.

Remark 9.4.10. In Theorem 9.4.9, there is a bit of notational abuse: when we write a
collection (N(p))p, we do not mean to imply that there is (yet) an R-lattice N such that
the localization of N at p is equal to N(y). This conclusion is what is provided by the
theorem (the statement of surjectivity), so the notational conflict is only temporary.

Proof of Theorem 9.4.9. Let N C V be an R-lattice. Then there exists 0 # r € R such
that rM C N C r~'M. But r is contained in only finitely many prime (maximal)
ideals of R, so for all but finitely many primes p, the element r is a unit in Ry and
thus M) = N(y).

So consider the set of collections (N (y) ), of lattices where Ny is an R y,)-lattice for
each prime p with the property that M) = Ny for all but finitely many primes p of R.
Given such a collection, we define N = (), N(y) € V. Then N is an R-submodule of V.
We show it is an R-lattice in V. For each p such that M) # Ny, there exists 7, € R
such that ryMy) € N(p) € ry' M(y). Therefore, if r = [T, ry is the product of these
elements, then rM () € N(p) C 7'My for all primes p with My, # N(p). On the
other hand, if M) = N(y) then already rM () € M) = Np) € r_lN(p) = r_lM(p).
Therefore by Corollary 9.4.7, we have rM € N C r~'M, and so N is an R-lattice.

By Lemma 9.4.6, the association (N(p))p = (1, N(yp) is a left inverse to N —
(N(p))p- Conversely, given a collection (N(y))y and letting N’ := (|, N(p), we claim
that N Ev) = N(y) for all p (providing a right inverse). Indeed, the inclusion (C) is
immediate, so we prove (2). So let g be prime and let x € N(q); we show x € N{ ..
As in the proof of Lemma 9.4.6, consider the ideal

a:={ae€R:axeN'} ={a € R:ax € N forall p}. (9.4.11)
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Then again a is nonzero, and
a(q) = {a € R(q) 1 ax € N(g} = R

since x € N(q). Thus, there exists a € a \ q (since a # qa by unique factorization), so

a € R* .. From ax € N’ we conclude ax € N/ . and thenx € N’ .. |
() (@) (9)

9.5 Completions

Next, we briefly define the completion and show that the local-global dictionary holds
in this context as well. (We will consider completions in the context of local fields
more generally starting in chapter 12, so the reader may wish to return to this section
later.) For a general reference on completions (and the induced topology), see e.g.
Atiyah—Macdonald [AM69, Chapter 10], Matsumura [Mat89, Chapter 8], Bourbaki
[Bou98, Chapter III, §3].

To avoid diving too deeply into commutative algebra we suppose that R is a DVR,
with maximal ideal p: for example, we might take the localization of a Dedekind
domain R at a prime ideal by 9.4.5. There is a natural system of compatible projection
maps R/p"*! — R/p" indexed by integers n > 1, and we define the completion of R
at p to be the inverse (or projective) limit under this system:

— 11 n
R, = gnR/p

n

oo 9.5.1)
= {a = (ap)n € l_[R/p” D dpe1 = a, (mod p”) forall n > 1} .

n=1

The completion Ry is again a commutative ring, and we have a natural map R — R,
defined by a — (a),. Since R has a discrete valuation we have (>, p"* = {0}, so this
map is injective. Moreover, since p is maximal, then in fact this inclusion factors via
R — R() = Ry inducing isomorphisms (Exercise 9.8)

R/p¢ = Rip)/P°R(p) = Ryp/P°Ry (9.5.2)

for all e > 1; in particular, the operation of completion is in a sense ‘stronger’ than
the operation of localization, and the valuation on R extends naturally to Ry, so
R = FN R, € F,. However, once local the completion looks rather similar in the

context of lattices, as follows. Let F, := F ®g Ry and V, :=V ®F Fj.
Lemma 9.5.3. Let R be a DVR with maximal ideal p C R. Then the maps

M My =M ®g R,

(9.5.4)
M,NV — M,

are mutually inverse bijections between the set of R-lattices in V and the set of R,-
lattices in V.
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Proof. Let M C V be an R-lattice. By 9.4.5 we have M ~ R" free over R; choose
abasis M = Rx; @ --- ® Rx,. Then M, = M ®gr Ry =~ Ryx1 ® --- ® Rpx,. Let
M’ = M,nV C V,. Then x" € M’ if and only if x" = ajx; +--- + a,x, with
ai € RyNF =R,soindeed M’ = M.

Conversely, let M, C V, and let M’ := M, N V. Then (M’), C M,, and we
prove the opposite inclusion. First, a bit of setup. Let yj,...,y, be an F-basis for
V,andlet N = Ry; @ --- ® Ry,. By Lemma 9.3.5, there exists nonzero r € Ry, such
that rN, € My, C r~'N,. Choosing an element s € R with the same valuation as r,
we have r/s € R so in fact may suppose that € R. Rescaling the basis vectors
y: and replacing r* by r we may suppose that (rN), = rNy € M, C N,. From the
previous paragraph, we have rNp = rN ®g Ry, € Mj. Letting (r) = p° and taking
(9.5.2) on each coordinate, we have an isomorphism ¢: N/rN = N,/rN, induced
from the natural inclusion N < N,. Now to show the inclusion, let y € M,. Let
x € N C V be such that ¢(x + rN) = y + rNy; lifting to N, we find that there exists
Z€rNy C (M), C Mpsuchthatx =y+zeM,NV,soy=x—-z€ (M'),. O

In particular, Lemma 9.5.3 implies that in the local-global dictionary for lattices
over a Dedekind domain R (Theorem 9.4.9), we may also work with collections of
Ry-lattices (Np), over the completions at primes.

9.6 Index

Continuing with R a noetherian domain, let M, N C V be R-lattices.

Definition 9.6.1. The R-index of N in M, written [M : N]g, is the R-submodule of
F generated by the set

{det(6) : 6 € Endp (V) and 6(M) C N}. (9.6.2)

The style of Definition 9.6.1, given by a large generating set (9.6.2), is the replace-
ment for being able to work with given bases; this style will be typical for us in what
follows. The determinants det(§) are meant in the intrinsic sense, but can be computed
as the determinant of a matrix upon choosing a basis for V.

Lemma 9.6.3. The index [M : N]g is a nonzero R-module, and if @ € Autg (V) then
[a@M : N] =det(a)"'[M : N].

Proof. Exercise 9.9. [

Lemma 9.6.4. If M, N are free (as R-submodules), then [M : N]g is a free R-module
generated by the determinant of any 6 € Endp (V) giving a change of basis from M to
N.

Proof. Let x1,...,x, be an R-basis for M, thereby an F-basis for V. Let yi,...,y,
be an R-basis for N; then the map x; — y; first extends to an R-linear isomorphism
M = N and thereby to an F-linear map 6 € Endg(V), and of course 6(M) C N
by construction, so det(§) € [M : N]g. Conversely, let 6’ € Endp(V) be such
that 6’(M) C N. The map 6’6"': N — N is an R-linear map, so det(6’6"!) =
det(6”) det(6)~! € R, so det(8’) € det(S)R. o
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Example 9.6.5. If N = rM with r € R, then [M : N]g = r"R where n = dimg V.

Example 9.6.6. If R = Z and N C M, then [M : N]z is the ideal generated by
#(M/N), the usual index taken as abelian groups. In this case, for convenience we
will often identify [M : N]z with its unique positive generator.

Forming the R-index commutes with localization, as follows.

Lemma 9.6.7. Let p be a prime of R. Then

(M) : Nwy IR, = (IM 2 N1R) (p).-

Proof. If §(M) C N, then 6(M(y)) € N(p) by R(p-linearity, giving the inclusion
(2). For (<), let 6 € Endr (V) be such that §(M(y)) € N(p). For any x € M, we
have 6(x) € 6(M) C 6(M()) S N(p), so there exists y € N and s € R \ p such
that s6(x) = y € N. Let x1,...,x,, generate M as an R-module, and for each i,
let s; € R \ p be such that s;6(x;) € N. Let s := [[;s;. Then s6§(M) C N, so
det(sd) = s" det(5) € [M : N]g, if n := dimg V. Finally, s € Rz‘p), we conclude that
detd € ([M : N]R)(p). as desired. O

Proposition 9.6.8. Suppose that M, N are projective R-modules. Then [M : N]g is a
projective R-module. Moreover, if N € M then [M : N|gr = R ifand only if M = N.

Proof. Let p be a prime of R and consider the localization ([M : N]gr)(p) at p. Since
M, N are projective R-modules, they are locally free (9.2.1). By Lemma 9.6.4, the
local index [My) : N(p)IRr,, is a principal R(y)-ideal. By Lemma 9.6.7, we conclude
that [M : N]g is locally principal, therefore projective.

The second statement follows in a similar way: we may suppose that R is local and
thus N C M are free, in which case M = N if and only if a change of basis matrix
from N to M has determinant in R*. O

For Dedekind domains, the R-index can be described as follows.

Lemma 9.6.9. If R is a Dedekind domain and N C M, then [M : N]R is the product
of the invariant factors (or elementary divisors) of the torsion R-module M| N.

Proof. Exercise 9.11. O

9.7 Quadratic forms

In setting up an integral theory, we will also have need of an extension of the theory
of quadratic forms integrally, generalizing those over fields (Section 4.2). For further
reading on quadratic forms over rings, we suggest the books by O’Meara [O’Me73],
Knus [Knu88], and Scharlau [Scha85].

Definition 9.7.1. A quadratic map is a map Q: M — N between R-modules,
satisfying:

() Q(rx) =r*Q(x) forallr € R and x € M; and
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(i) Themap T: M x M — N defined by
T(x,y)=0Q(x+y)-Q(x)-Q(y)
is R-bilinear.
The map 7 in (ii) is called the associated bilinear map.

Remark 9.7.2. The bilinearity condition (ii) can be given purely in terms of Q: we
require

Q(x+y+2)=0(x+y)+0(x+2)+0(y+2) - 0(x) -0y - 0(2)
forallx,y,ze M.

Definition 9.7.3. A quadratic module over R is a quadratic map Q: M — L where
M is a projective R-module of finite rank and L is a projective R-module of rank 1. A
quadratic form over R is a quadratic module with codomain L = R.

A quadratic module Q: M — L is free if M and L are free as R-modules, and a
quadratic form Q: M — R is free if M is free as an R-module.

Example 9.7.4. Let Q: V — F be a quadratic form. Let M C V be an R-lattice such
that Q(M) C L where L is an invertible R-module. (When R is a Dedekind domain,
we may take L = Q(M), see Exercise 9.12.) Then the restriction Q|p;: M — Lisa
quadratic module over R.

Conversely, if 0: M — L is a quadratic module over R, then the extension
Q: M®r F — L®g F ~ F is a quadratic form over F. Moreover, at the slight
cost of some generality (replacing an object by an isomorphic one), by choosing an
isomorphism L®g F = F we may suppose that O takes values in an invertible fractional
ideal [ C F.

Example 9.7.5. If O: M — L is a quadratic module and a C R is a projective R-ideal,
then Q extends naturally by property (i) to a quadratic module aM — a°L.

Definition 9.7.6. A similarity between two quadratic modules Q: M — L and
Q’: M’ — L’ is a pair of R-module isomorphisms f: M = M’ and h : L = L’
such that Q’(f(x)) = h(Q(x)) for all x € M, i.e., such that the diagram

M——1L

Zl f zjh 9.7.7)
M/ ; LI
commutes. An isometry between quadratic modules is a similarity with L = L” and h

the identity map.

Definition 9.7.8. Let Q: M — L be a quadratic module over R. Then Q is nonde-

generate if the R-linear map
T: M - Homg(M, L
=(M. L) (9.7.9)
x> (y T(x,y)

is injective; and Q is nonsingular (or regular) if the map (9.7.9) is an isomorphism.
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Example 9.7.10. If R = F is a field, then (by linear algebra) Q is nondegenerate if
and only if Q is nonsingular.

Example 9.7.11. A quadratic module is nondegenerate if and only if its base extension
O MQrF - LQrF =~F

is nondegenerate, since the kernel can be detected over F. Recalling the definition
of discriminant (Definition 4.3.3 for char F' # 2 and Definition 6.3.1 in general), we
conclude that Q is nondegenerate if and only if disc Qf # 0.

The apparent notion of discriminant of a quadratic module needs some care in
its definition in this generality; it is delayed until section 15.3, where discriminantal
notions are explored in some detail.

Example 9.7.12. Borrowing from the future (see Lemma 15.3.8): if M ~ R" is free,
then choosing a basis for M and computing (half-)discriminant disc Q, we will see that
M is nonsingular if and only if disc Q € R*.

We now define the notions of genus and classes.

Definition 9.7.13. Let Q: M — L be a quadratic module. The genus Gen Q is the set
of quadratic modules that are locally isometric to Q, i.e., QEn) ~ Q(p) for all primes
p C R. The class set C1 Q is the set of isometry classes in the genus.

We conclude with some comments on the codomain of a quadratic map.

Definition 9.7.14. A quadratic module Q: M — L is primitive if Q (M) generates L
as an R-module.

9.7.15. If O: R" — R is a quadratic form, written

O(x1,...,xp) = Z a;jxixj € R[xi,...,x,],

1<i<j<n

then Q is primitive if and only if the coefficients a;; generate the unit ideal R.

If R is a Dedekind domain, then Q(M) C L is again projective (locally at a prime
generated by an element of minimal valuation), so one can always replace Q: M — L
by O: M — Q(M) to get a primitive quadratic module; when R is a PID, up to
similarity we may divide through by greatest common divisor of the coefficients a;;
in the previous paragraph.

9.7.16. In our admittedly abstract treatment of quadratic modules so far, we have
specifically allowed the codomain of the quadratic map to vary at the same time as the
domain—in particular, we do not ask that they necessarily take values in R.

Remark 9.7.17. In certain lattice contexts with R a Dedekind domain, a quadratic form
with values in a fractional ideal a is called an a-modular quadratic form. Given the
overloaded meanings of the word modular, we do not employ this terminology. In the
geometric context, a quadratic module is called a line-bundle valued quadratic form.
Whatever the terminology, we will see in Chapter 22 that it is important to keep track
of the codomain of the quadratic map just as much as the domain, and in particular we
cannot assume that either is free when R is not a PID.
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9.8 Normalized form

To conclude this chapter, we discuss an explicit normalized form for quadratic forms.
Let R be a local PID; then R is either a field or a DVR. In either case, R has valuation
v: R — Zso U {00} and uniformizer xr; when R is a field, we take a trivial valuation
and r = 1.

Let O: M — R be a quadratic form over R. Then since R is a PID, M ~ R" is
free. We compute a basis for M in which Q has a particularly nice form, diagonalizing
Q as far as possible. In cases where 2 € R*, we can accomplish a full diagonalization;
otherwise, we can at least break up the form as much as possible, as follows. For
a,b,c € R, the quadratic form Q(x, y) = ax? + bxy + cy2 on R? is denoted [a,b,c].

Definition 9.8.1. A quadratic form Q over R is atomic if either:

(1) Q = {(a) for some a € R*, or
(ii) 2 ¢ R* and Q = [a, b, c] with a, b, ¢ € R satisfying

v(b) <v(2a) £v(2¢) and v(a)v(b) =0.
In case (ii), we necessarily have v(2) > 0 and v(b* — 4ac) = 2v(b).

Example 9.8.2. Suppose R = Z; is the ring of 2-adic integers, so that v(x) = ord, (x)
is the largest power of 2 dividing x € Z;. Recall that Z /Z;2 is represented by the
elements *1, +5, therefore a quadratic form Q over Z, is atomic of type (i) above
if and only if Q(x) =~ +x? or Q(x) =~ +5x2. For forms of type (ii), the conditions
v(b) < v(2a) = v(a) + 1 and v(a)v(b) = 0 imply v(b) = 0, and so a quadratic
form Q over Z, is atomic of type (ii) if and only if Q(x,y) =~ ax® + xy + cy* with
ordy(a) < ordy(c). Replacing x by ux and y by u~'y for u € Z5 we may suppose
a=+2"ora=+5-2" witht > 0, and then the atomic representative [a, 1, c] of the
isomorphism class of Q is unique.

A quadratic form Q is decomposable if Q can be written as the orthogonal sum
of two quadratic forms (Q =~ Q; & Q») and is indecomposable otherwise. It follows
by induction on the rank of M that Q is the orthogonal sum of indecomposable forms.
We will soon give an algorithmic proof of this fact and write each indecomposable
form as a scalar multiple of an atomic form. We begin with the following lemma.

Lemma 9.8.3. An atomic form Q is indecomposable.

Proof. If Q is atomic of type (i) then the space underlying Q has rank 1 and is therefore
indecomposable. Suppose Q = [a, b, c] is atomic of type (ii) and assume for purposes
of contradiction that Q is decomposable. It follows that if x, y € M then T'(x, y) € 2R.
Thus we cannot have v(b) = 0, so v(a) = 0, and further v(b) > v(2) = v(2a); this
contradicts the fact that Q is atomic. ]

Proposition 9.8.4. Let R be a local PID and let Q: M — R be a quadratic form.
Then there exists a basis of M such that the form Q can be written

Q=n0Q18 - -Br"Qy

where the forms Q; are atomic and 0 < e; < --- < e, < 00.
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In the above proposition, we interpret 7°° = 0. A form as presented in Proposition
9.8.4 is called normalized; this normalized form need not be unique.

Proof. When R = F is a field with char F # 2, we are applying the standard method
of Gram—Schmidt orthogonalization to diagonalize the quadratic form. This argument
can be adapted to the case where R = F'is a field with char F' = 2, see e.g. Scharlau
[Scha85, §9.4]. For the general case, we make further adaptations to this procedure:
see Voight [Voi2013, Algorithm 3.12] for a constructive (algorithmic) approach. 0O

Exercises
Let R be a noetherian domain with field of fractions F' := Frac R.
1. Let V be a finite-dimensional F-vector space and let M, N C V be R-lattices.

Show that M + N and M N N are R-lattices.

» 2. Let B be an F-algebra and let / ¢ B be an R-lattice. Show that there exists a
nonzeror € RN 1.

3. Give an example of a non-noetherian ring R and modules N ¢ M such that M
is finitely generated but N is not finitely generated.

4. Let k be afield and R = k[x, y]. Show that the R-module (x, y) is not projective.

5. Let R be a Dedekind domain. Show that every ideal of R is projective, as
follows. Let a C R be a nonzero ideal. (The zero ideal is trivially projective.)
Since aa™! !

= R, we may write 1 = 3" | a;b; witha; € aand b; € a™'.
(a) Define the map ¢: R" — aby ¢(xy,...,x,) = X1, a;x;. Observe that ¢
is an R-module homomorphism, and construct a right inverse ¥ to ¢, i.e.,

Y = id,.

(b) Using (a), show that a is a direct summand of R", so a is projective.
6. Let m C R be a maximal ideal and let M be a finitely generated R-module. Let
anng M :={reR:rx=0forallx e M}
be the annihilator of M. Show that My, = {0} if and only if m+anng M = R.

7. Suppose R is a Dedekind domain. Let V be a finite-dimensional F'-vector space
and let M C V be an R-lattice. Given a pseudobasis M = a;x; & - - - ® a,x, as
in (9.3.7), let [a; - - - a,] € CI R. Show that this class (the Steinitz class, 9.3.10)
is well-defined for M independent of the choice of pseudobasis.

8. Let R be a DVR with maximal ideal m. Show that if s ¢ m then 1/s € Ry, so
there are natural inclusions

R — R(m) — Rm
from the domain into its localization into the completion, inducing isomorphisms
R/me = R(m)/m“’R(m) = Rm/meRm

foralle > 1.
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0.

10.
11.

12.

13.

14.

15.

Let V be a finite-dimensional F-vector space and let M, N C V be R-lattices.

(a) Show that the index [M : N]g is a nonzero R-module. [Hint: use Lemma
9.3.5.]
(b) For a € Autg(V), show [aM : N] = det(a)™'[M : N].

Find R-lattices M, N C V such that [M : N]Jg = Rbut M # N.

Prove Lemma 9.6.9, as follows. Suppose R is a Dedekind domain, and let
N € M C V be R-lattices in a finite-dimensional vector space V over F. Prove
that [M : N]g is the product of the invariant factors (or elementary divisors) of
the torsion R-module M /N.

Suppose R is a Dedekind domain. Let Q: V — F be a quadratic form over F,
let M C V be an R-lattice, and let L := Q(M) C F be the R-submodule of F
generated by the values of Q. Show that L is a fractional R-ideal.

Consider the ternary quadratic form Q(x,y,z) = xy + xz over Z;. Compute a
normalized form for Q.

Consider the following ‘counterexamples’ to Theorem 9.4.9 for more general
integral domains as follows. Let R = Q[x, y] be the polynomial ring in two
variables over Q, so that F = Q(x,y). LetV = F and I = R.

(a) Show that yR has the property that yR, # R, for infinitely many prime
ideals p of R.

(b) Consider the collection of lattices given by J, = f(x)R, if p = (y, f(x))
where f(x) € Q[x] is irreducible and J, = R, otherwise. Show that

ﬂp Jp = (0).

[Instead, to conclude that a collection (J;), of Rp-lattices arises from a global
R-lattice J, one needs that the collection forms a sheaf.]

In this advanced exercise, we consider generalizations of the notion of lattices to
a geometric context; we assume background in algebraic geometry at the level
of Hartshorne [Har77, Chapter II].

Let X be a separated, integral scheme—so for each open U, the ring Ox (U) is
a(n integral) domain—and let Ox be its structure sheaf. Let F be the function
field of X (so F = Ox({n}) where n is the generic point of X). Let V be a
finite-dimensional F-vector space.

Define a sheaf of Ox-lattices in V (also called an Ox-lattice in V), to be a sheaf
A of Ox-modules such that for each affine open set U C X, the set # (U) is an
Ox (U)-lattice in V. As usual, for P € X a point, we denote by A (p) the stalk
of M at P.

(a) Show that a sheaf of Ox-lattices in V is naturally a subsheaf of the constant
sheaf V over X.

(b) Let X = |J; U; be an affine open cover of X, with U; = Spec R;. Since X
is separated, each intersection U; N U; = Spec R;; is affine, so there are
natural inclusions R;, R; < R;; € F of rings for each i, j. Show that a
sheaf of Ox-lattices is specified uniquely by R;-lattices M; C V for each i,
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subject to the condition that M; R;; = M;R;; for each i, j. [Hint: this is an
easy case of gluing, where isomorphism is replaced by equality in V]
Now suppose further that X is noetherian, normal, and of dimension < 1
(also called a Dedekind scheme). Then the local rings of X at closed
points are DVRs with fraction field F, and nonempty affine open subsets
of X are the complements of finite subsets of closed points and of the form
U = Spec R with R an Dedekind domain. (For example, we may take
X = Spec R for R a Dedekind domain or X a smooth projective integral
curve over a field.)

Extend the local-global dictionary for lattices to X, in the following way.
Let U = Spec R € X be a nonempty affine open subset, and let M C V
be an R-lattice. Show that the map //* — (/(p))p establishes a bijection
between Ox-lattices /" in V and collections of lattices (N(p))p indexed
by the points P € X, such that for all but finitely many P € U given by the
prime p C R, we have M(,) = Np) C V.



Chapter 10

Orders

In this chapter, continuing with a second background installment, we study when
lattices over a domain are closed under a multiplication law: these will be orders, an
integral analogue of algebras over fields.

10.1 » Lattices with multiplication

We begin with a brief indication of the theory of orders over the integers. Let B be a
finite-dimensional Q-algebra. An order O C B is a lattice that is also a subring of B
(in particular, 1 € O). The property of being an order is a local property for a lattice,
i.e., one may check that it is closed under multiplication in every localization O, for
p prime.

An order is maximal if it is not properly contained in another order. For example,

s

b
if we start with the quaternion algebra B := (%) with a, b € Z nonzero, then the

lattice
O:=Z+Zi+Zj+ZijCB

is closed under multiplication, and so defines an order—but it is never a maximal order.

An important construction of lattices comes about as follows: if / C B is a lattice,
then
O(I) ={aeB:al CI}

is an order, called the left order of /; we similarly define the right order.

If O c Bis an order and @ € O, then « is integral (over Z), satisfying a monic
polynomial with integer coefficients. If B is a quaternion algebra, then « € B satisfies
its reduced characteristic polynomial of degree 2, and « is integral if and only if
trd(@),nrd(@) € Z (Corollary 10.3.6). When B = F is a number field, the most
important order in F is the ring of integers, the set of all integral elements: it is the
unique maximal order.

Unfortunately, this construction does not work in the noncommutative setting: the
set of all integral elements does not form an order. For one thing, if O C B is a
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maximal order and @ € B*, then «Oa~! C B is a maximal order and when B is
noncommutative, we may have aOa~! # O. But there are more serious problems, as
the following example indicates.

0 0 1/2 0
@’ = % = 0, so @, B8 are integral over R = Z, but @ + 8 and a3 are not integral since
nrd(a + 8) = —1/4 and trd(afB) = 1/4. (Such a counterexample does not require the
existence of zerodivisors: see Exercise 10.10.)

Example 10.1.1. Let B = M;(Q) and let a = (O 1/2) and B8 = ( 0 0). Then

Understanding orders in quaternion algebras is a major task of this second part of
the text. In the simplest case B = M, (Q), every maximal order is conjugate (and thus
isomorphic) in B to M;(Z). The reader may wish to skip ahead to Chapter 11 to get
to know the Hurwitz order before returning to study orders more generally.

10.2 Orders

Throughout, let R be a noetherian domain with field of fractions F' := Frac(R), and let
B be a finite-dimensional F-algebra. For further reference about orders (as lattices),
see Reiner [Rei2003, Chapter 2] and Curtis—Reiner [CR81, §§23, 26].

Definition 10.2.1. An R-order O C B is an R-lattice that is also a subring of B.

In particular, if O is an R-order, then since O is a subring we have 1 € O, and since
O is an R-module we have R € O. We will primarily be concerned with R-orders that
are projective as R-modules, and call them projective R-orders.
10.2.2. An R-algebra is a ring O equipped with an embedding R <— O whose image
lies in the center of O. An R-order O has the structure of an R-algebra, and if O is
an R-algebra that is finitely generated as an R-module, then O is an R-order of the

F-algebra B=0O®g F.

Example 10.2.3. The matrix algebra M,,(F) has the R-order M,,(R). The subring
R[G] = @geG Rg is an R-order in the group ring F[G].

Example 10.2.4. Leta, b € R\{0} and consider the quaternion algebra B = (a, b | F).
Then O = R ® Ri @ Rj & Rk is an R-order, because it is closed under multiplication
(e.g.,ik =i(ij) =aj € O).

Let I C B be an R-lattice in the F-algebra B.
10.2.5. An important construction of orders comes as follows. Let

O.(I) ={aeB:al CI}. (10.2.6)

Lemma 10.2.7. O_(I) C B is an R-order.
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Proof. Then O () is an R-submodule of B which is a ring. We show it is also an
R-lattice. For all @ € B, by Lemma 9.3.5(b), there exists nonzero r € R such that
r(al) C I, hence O (I)F = B. Also by this lemma, there exists nonzero s € R such
thats =s-1 € I;thus O (I)s € I so O, (1) C s~'I. Since R is noetherian and s~ ' is
an R-lattice so finitely generated, we conclude that Oy (1) is finitely generated and is
thus an R-lattice. O

Definition 10.2.8. The order O (/) = {a@ € B : al C I} in (10.2.6) is called the left
order of /. We similarly define the right order of I by

Or(I) :={a € B:la CI}.

Example 10.2.9. It follows from Lemma 10.2.7 that B has an R-order: the R-span of
an F-basis for B defines an R-lattice, so O, (/) is an R-order. (This is a nice way of
“clearing denominators” from a multiplication table to obtain an order.)

We can read other properties about lattices from their localizations, such as in the
following lemma.

Lemma 10.2.10. Let B be a finite-dimensional F-algebra and let I C B be an R-lattice.
Then the following are equivalent:

(i) I is an R-order;
(i) I(p) is an Ry)-order for all primes p of R; and
(iii) I(m) is an Ry)-order for all maximal ideals m of R.

Proof. For (i) = (ii) = (iii), if / is an R-order then /(y) is an R(y)-order for all primes
p, hence a fortiori for all maximal ideals m.

To conclude, we prove (iii) = (i), and suppose that /() is an Ry)-order for all
maximal ideals m. Then (", /(m) = I by Lemma 9.4.6. Thus 1 € (), /() = 1, and for
all a, 8 € I we have a8 € (), I(m) = 1, so I is a subring of B and hence an order. O

Remark 10.2.11. The hypothesis that R is noetherian is used in Lemma 10.2.7, but it is
not actually needed; the fact that Oy (1) is an order follows by a process often referred
to as noetherian reduction. A basis of B yields a multiplication table, consisting
of finitely many elements of F'; moreover, we know that [ is finitely generated as an
R-module. Writing these generators in terms of a basis we can express these generators
over the basis using finitely many elements of F. Let R be the subring of R generated
by these finitely elements, with field of fractions Fy, let By be the F-algebra with the
same multiplication table as B; let Iy be the Rg-submodule generated by the generators
for I written over Ry. Then B = By ®F, F and I = Iy ®g, R. But now Ry is a finitely
generated commutative algebra over its prime ring (the subring generated by 1), so by
the Hilbert basis theorem, Ry is noetherian. The argument given then shows that I is
finitely generated as an Ryp-module, whence [/ is finitely generated as an R-module.

Noetherian reduction applies to many results in this text, but non-noetherian rings
are not our primary concern; we retain the noetherian hypothesis for simplicity of
argument and encourage the interested reader to seek generalizations (when they are
possible).
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10.3 Integrality

Orders are composed of integral elements, defined as follows. If @ € B, we denote by
R[a] = Y, Ra? the (commutative) R-subalgebra of B generated by a.

Definition 10.3.1. An element a € B is integral over R if « satisfies a monic polyno-
mial with coefficients in R.

Lemma 10.3.2. For a € B, the following are equivalent:

(1) «a is integral over R;
(ii) R[] is a finitely generated R-module;
(iii) « is contained in a subring A that is finitely generated as an R-module.

Proof. This lemma is standard; the only extra detail here is to note that in (iii) we do
not need to assume that the subring A is commutative: (ii) = (iii) is immediate taking
A = R[], and for the converse, if A C B is a subring that is finitely generated as an
R-module, then R[a] C A and since R is noetherian and A is finitely generated as an
R-module, it follows that R[] is also finitely generated as an R-module. O

Corollary 10.3.3. If O is an R-order, then every a € O is integral over R.

10.3.4. We say R is integrally closed (in F) if whenever o € F is integral over R,
then in fact @ € R. Inside the field F, the set of elements integral over R (the integral
closure of R in F) forms a ring: if a, 8 are integral over R then @ + 8 and af3 are
integral since they lie in R[«, 8] which is a finitely generated submodule of F. The
integral closure of R is itself integrally closed.

Lemma 10.3.5. Suppose that R is integrally closed. Then « € B is integral over R if
and only if the minimal polynomial of a over F has coefficients in R.

Proof. Let f(x) € R[x] be amonic polynomial that « satisfies, and let g(x) € F[x] be
the minimal polynomial of a. Let K be a splitting field for g(x), and let /q, . . ., @, be
the roots of g(x) in K. Since g(x) | f(x), each such «; is integral over R, and the set
of elements in K integral over R forms a ring, so each coefficient of g is integral over
R and belongs to F'; but since R is integrally closed, these coefficients must belong to
R and g(x) € R[x]. O

Corollary 10.3.6. If B is an F-algebra with a standard involution, and R is integrally
closed, then a € B is integral over R if and only if trd(@),nrd(a) € R.

We may characterize orders in separable algebras as follows.

Lemma 10.3.7. Let O C B be a subring of a separable F-algebra B such that OF = B.
Then O is an R-order if and only if every a € O is integral.

Proof. Let O C B be a subring of an F-algebra B such that OF = B. Recall from
Theorem 7.9.4 that a separable F-algebra is a semisimple F-algebra such that the
symmetric bilinear pairing («, 8) + trd(af) is nondegenerate.
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We need to show that O is finitely generated. Let ay,..., @, be an F-basis for B
contained in O. If 8 € O then B = }; a;@; with a; € F. We have Ba; € O since O is
aring, so trd(Ba;) = 2 ; a; trd(a;a;) with trd(a;e;) € R. Now since B is separable,
the matrix (trd(@;;));, j=1,...,n is invertible, say r = det(trd(a;a;)), so we can solve
these equations for a; using Cramer’s rule and we find that a; € r~'R. Consequently
O ¢ r"'(Ra; ® - -- ® Ra,,) is a submodule of a finitely generated module so (since R
is noetherian) O is finitely generated. O

10.4 Maximal orders

The integral closure of R in F is the largest ring containing integral elements. Accord-
ingly, we make the following more general definition.

Definition 10.4.1. An R-order O C B is maximal if it is not properly contained in
another R-order.

If B is a commutative F-algebra and R is integrally closed in F, then the integral
closure S of R in K is integrally closed and therefore S is a maximal R-order in
K. However, if B is noncommutative, then the set of elements in B integral over R
is no longer necessarily itself a ring, and so the theory of maximal orders is more
complicated. (This may seem counterintuitive at first, but certain aspects of the
noncommutative situation are quite different!) The problem in the noncommutative
setting is that although R[a] and R[B] may be finitely generated as R-modules for
a, B € B, this need not be the case for the R-algebra generated by a and S.

10.4.2. It follows from Lemma 10.3.7 that a separable F-algebra B has a maximal
R-order, as follows. By Lemma 10.2.7, B has an R-order O (since it has a lattice, taking
the R-span of an F-basis), so the collection of R-orders containing O is nonempty.
Given a chain of R-orders containing O, by Lemma 10.3.7 the union of these orders is
again an R-order. Since R is noetherian, there exists a maximal element in a chain.

For the rest of this section, we restrict attention and suppose that R is a Dedekind
domain. We begin by showing that the property of being a maximal order is a local

property.

Lemma 10.4.3. An R-order O C B is maximal if and only if Oy is a maximal
R py-order for all primes p of R.

Proof. If Oy) is maximal for each prime p then by Corollary 9.4.7 we see that O is
maximal. Conversely, suppose O is maximal and suppose that O(,) & Ozp) is a proper

containment of orders for some nonzero prime p. Then the set O’ = (ﬂqip O)n Ozp)
is an R-order properly containing O by Lemma 10.2.10 and Theorem 9.4.9. O

Lemma 10.4.4. Let O C B be an R-order. Then for all but finitely many primes p of
R, we have that O(y) = O ®g Ry) is maximal.
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Proof. By 10.4.2, there exists a maximal order O’ 2 O. By the local-global principle
for lattices (Theorem 9.4.9), we have Ozp) = Oy for all but finitely many primes

p. O

The structure of (maximal) orders in quaternion algebras over domains of arithmetic
interest is the subject of the second part of this text.

10.5 Orders in a matrix ring

In this section, we study orders in a matrix ring; we restore generality, and let R be a
noetherian domain with F = Frac R.

The matrix ring over F is just the endomorphism ring of a finite-dimension vector
space over F, and we seek a similar description for orders as endomorphism rings of
lattices (cf. 10.2.5).

Let V be an F-vector space with dimp V = n and let B = Endg (V). Choosing a
basis of V gives an identification B = Endg (V) ~ M,,(F). Given an R-lattice M C V,
we define

Endg(M) :={f € Endp(V): f(M) C M} CB. (10.5.1)

The left order (10.2.5) is the special case of (10.5.1) where M =1 C V = B.

Example 10.5.2. If V=Fx & ---®Fx,and M = Rx| & - - ® Rx,,, then Endg (M) =~
M, (R).

More generally, if M is completely decomposable, i.e. M = ajx; @ - - ® a,x,
with each a; C F invertible fractional ideals, then we have Endg (M) C M,,(F) the
subring of matrices whose ij-entry belongs to the R-module

(lj(ll-_l >~ HOIIlR((l,', Cl]') c HomF(F, F) ~ F
where the isomorphisms come from multiplication. For example, if n = 2 then

R ma;!

EndR(M) = (ala—] R
2

) C M (F).

(Note how the cross terms are aligned correctly in the multiplication!) For example, if

-1
M = Rx; + axa, then Endg (M) = ({: “R )
Lemma 10.5.3. Let M be an R-lattice of V. Then Endg (M) is an R-order in B =
Endp (V)

Proof. As in the proof of Lemma 10.2.7, we conclude that Endg(M)F = B. Let
al,a,...,a, be an F-basis for V and let N = Ra; @ - - - @ Ray,. Thus Endg(N) =~
M,, (R) is finitely generated as an R-module.

By Lemma 9.3.5 there exists nonzero r € R such that 7N C M C r~'N. Therefore,
if ¢ € Endg(M), so that (M) C M, then

(r*¢)(N) =r¢(rN) Cr¢(M) CrM C N

and thus Endg (M) C r~2Endg(N); since R is noetherian, this implies that Endg (M)
is finitely generated as an R-module and Endg (M) is an R-order in B. O
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Lemma 10.5.4. Let O C B = Endg (V) be an R-order. Then O C Endg (M) for some
R-lattice M C V. In particular, if O C B is a maximal R-order, then O = Endg (M)
for some R-lattice M.

Proof. Quite generally, if N is any R-lattice in V,then M = {x € N : Ox C N} is an
R-submodule of N with FM =V (as in Lemma 10.2.7), thus M is an R-lattice in V
and O C Endg(M). If further O is maximal, then the other containment so equality
holds. =

Corollary 10.5.5. If R is a PID, then every maximal R-order O C B ~ M,,(F) is
conjugate in B to My, (R).

Proof. The isomorphism B ~ M, (F) arises from a choice of basis xi, ..., x, for V;
letting N = €B'_, Rx; we have Endg(N) =~ M,,(R). The R-order M,,(R) is maximal
by Exercise 10.6, since a PID is integrally closed.

By Lemma 10.5.4, we have O C Endg (M) for some R-lattice M C V, so if O is
maximal then O = Endg(M). If R is a PID then M is free as an R-module, and we
can write M = Ry; @ - - - ® Ry,; the change of basis matrix from x; to y; then realizes
Endg (M) as a conjugate of Endg (N) = M, (R). O

Exercises

Let R be a noetherian domain with field of fractions F.

1. Let ¢ C R be an ideal. Show that

[ Rl D) erm e aran

is an R-order in M, (F). Note further that if ¢ is projective (equivalently, locally
free) as an R-module, then this R-order is projective as an R-module.

2. Let B be a finite-dimensional F-algebra with a standard involution and let O C B
be an R-order. Suppose that R is integrally closed in F. Verify thatnrd: O — R
is a quadratic form over R.

3. Let O, O’ C B be R-orders in an F-algebra B.

(a) Show that O N O’ is an R-order.
(b) If O € O, show that O"™* N O = O*.

4. Let O C B be an R-order in an F-algebra B and suppose that R is integrally
closed. Show that F N O = R.

5. LetAy,..., A, be F-algebras and let B= A} X---X A,. Show that O C B is an
R-order if and only if O is an R-lattice in B and O N A; is an R-order for each i.

6. Let R be integrally closed. Show that M,,(R) is a maximal R-order in M,,(F).

7. Let B = (K, b | F) be a quaternion algebra with b € R and let S be an R-order
in K. Let O = §+ §j. Show that O is an R-order in B.
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Suppose that R is a PID, and let O C B be an R-order in the quaternion algebra
B. Let @ € O be such that § = R[a] is a (commutative) domain that is a
maximal R-order in its field of fractions.

(a) Show that 1, a extends to an R-basis for O.
(b) If moreover S is a PID, show that there exists 8 € O such that 1, a, 8, a8
is an R-basis for O.

Let B be an F-algebra with a standard involution and let @ € B. Show that if «
is integral over R then trd(a™) € R for all n € Z. Is the converse true?

Generalize Example 10.1.1: Exhibit a division quaternion algebra B over Q and
elements @, 8 € B such that «, § are integral over Z but both a + 8 and af are
not.

Let @ € M,,(F) have characteristic polynomial with coefficients in R. Show that
«a is conjugate by an element 8 € GL,,(F) to an element of M, (R). Explicitly,
how do you find such a matrix 8?

Let B = M, (F) and let I C B be an R-lattice. Let I* = {a* : @ € I} be the
transpose lattice. Show that O (I*) = Og(I)*.

Let I,J € B be R-lattices. Let IJ be the R-submodule of B generated by
products e where @ € I, 5 € J; i.e.,

1 :={Y5 aipi - i € 1B € J}.

(a) Show that 1J is an R-lattice.
(b) Let p be a prime of R. Show that products commute with localization in
the sense that

(1J) ®r R(p) = (I ®r R(p))(J ®& R(y)) € B(y) = B.

Let O C B be an R-order in an F-algebra B.
(a) Show that O, (O) = Or(0O) = 0.
(b) Let @ € B, and let O = {aB : B € O}. Show that @O is an R-lattice
and that O, (aO) = aOa~!.

Let O C B be an R-order in an F-algebra B. Lety € O and let N : BX — F*
be a multiplicative map. Show that y € O* if and only if N(y) € R*, and in
particular, if B has a standard involution, then y € O* if and only if nrd(y) € R*.



Chapter 11

The Hurwitz order

With the preceding chapters on lattices and orders in hand, we are now prepared
to embark on a general treatment of quaternion algebras over number fields and the
arithmetic of their orders. Before we do so, for motivation and pure enjoyment, in this
chapter we consider the special case of the Hurwitz order. Not only is this appropriate
in a historical spirit, it is also instructive for what follows; moreover, the Hurwitz order
has certain exceptional symmetries that make it worthy of specific investigation.

11.1 » The Hurwitz order

Hurwitz developed the theory of integral quaternions in a treatise [Hur19] in 1919. A
more modern treasure trove of detail about quaternion groups and the Hurwitz order
(as well as many other things) can be found in the book by Conway—Smith [CSm2003];
the review by Baez [Bae2005] also provides an accessible overview.

We consider in this chapter the restriction of the Hamiltonians from R to Q,

—1.-
namely, the quaternion algebra B = (T) We further restrict to those elements

with integer coordinates
Z,Jy=Z+Zi+Zj+Zk, (11.1.1)

where k :=ij. By Example 10.2.4, this is an order in B, called the Lipschitz order.
In the rest of this chapter, we will work over Z and so we will simply refer to lattices
and orders.

The Lipschitz order is not a maximal order, and maximal orders have better prop-
erties. This is analogous to the fact that the ring Z[V—3] is an order in Q(V-3) but is
not maximal (not integrally closed), properly contained in the better-behaved maximal
order Z[(~1 + V=3)/2] of Eisenstein integers. The comparison with the Eisenstein
integers is more than incidental: the element a = i + j + k satisfies @ + 3 = 0, so it is

natural to consider o
—-1+i+j+k
W= —
2

which satisfies w> + w + 1 = 0. We can enlarge the Lipschitz order to include
w—indeed, this is the only possibility.

159
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Lemma 11.1.2. The lattice
O=2Z+Zi+7Zj+2Zw =27, j) + Z{i, jw (11.1.3)
in B is the unique order that properly contains Z(i, j), and O is maximal.

The order O in (11.1.3) is called the Hurwitz order, and it contains Z(i, j) with
index 2. Note that if @ € O, then a € Z(i, j) if and only if trd(@) € 2Z.

Proof. By Exercise 11.1, the lattice O is an order.

Suppose that O’ 2 Z{i,j) and let @« = t + xi + yj + zk € O’ with t,x,y,z € Q.
Then trd(e) = 2t € Z by Corollary 10.3.6, so t € %Z. Similarly, @i € O’ therefore
trd(ai) = —2x € Z and x € %Z, and in the same way y,z € %Z. Finally, nrd(a) =
12 + x> + y? + 72 € Z, and considerations modulo 4 imply that ¢, x, y, z either all belong
toZortO%+Z;thusoz€OandsoO’=O. O

11.1.4. We can recast this calculation in terms of the local-global dictionary for
lattices (Theorem 9.1.1). Since O[%] = Z{i, j)[%], for every odd prime p we have
Op) = Zi, j)(py»- and O(2) 2 Zi, j)(2)-

11.2 > Hurwitz units

We now consider unit groups; in this section, we take k := ij. An element y =
t+xi+yj+zk € Z{(i,j) is a unit if and only if nrd(y) = > + x> + y> + 7% € Z*,
i.e. nrd(y) = 1, and since 7, x, y, z € Z we immediately have

Z{, j)Y = {x1,+i,+j, +k} = Qg

is the quaternion group of order 8. In a similar way, taking y € O in the Hurwitz
order and allowing ¢, x, y, z € %Z so that 2¢, 2x, 2y, 2z all have the same parity, we find
that

O"=QgU(xl+ixj+k)/2

is a group of order 24.

We have O* # S, (the symmetric group on 4 letters) because there is no embedding
Qs — S4. (The permutation representation Qg — S4 obtained by the action on the
cosets of the unique subgroup (—1) of index 4 factors through the quotient Qg —
Qg/{x1} = V4 — S4, where V4 is the Klein 4-group.) There are 15 groups of order
24 up to isomorphism! We identify the right one as follows.

Lemma 11.2.1. We have O* ~ SL,(F3).
Proof. We reduce modulo 3. There is a ring homomorphism

-1,-1
O — 0/30 = Fs(i, j) =~ (—)
F3
Any quaternion algebra over a finite field is isomorphic to the matrix ring by Wed-
derburn’s little theorem (Exercises 3.16, 6.16, and 7.29). Specifically, the element
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€=1i+j+khase?=0e O/30. The left ideal I generated by € is an F3-vector space,
and we compute that it has basis € and ie = —1 — j + k. As in (7.6.3) (Proposition
7.6.2) this yields an isomorphism

O/30—)M2(F3)
oo -y ot
LI o)l 1

(a statement that can be explicitly and independently verified in Exercise 11.4). We
obtain a group homomorphism O* — SL;(F3), since the reduced norm corresponds
to the determinant and nrd(O*) = {1}, and this homomorphism is injective because if
vy € O* has y — 1 € 30 then y = 1, by inspection. Since #O* = #SL,(F3) = 24, the
map O* — SL,(F3) is an isomorphism. O

11.2.2. The group SL;,(FF3) acts on the left on the set of nonzero column vectors
F% up to sign, a set of cardinality (9 — 1)/2 = 4. (More generally, SL>(F,) acts
on PI(F,) = (]F’?7 N {(0,0)})/F%, a set of cardinality p + 1.) This action yields a
permutation representation SL;(F3) — S4; the kernel of this map is the subgroup
generated by the scalar matrix —1 and so the representation gives an injective group
homomorphism from PSL;(F3) := SL,(F3)/{£1} into S4. Since A4 < Sy is the
unique subgroup of size 24/2 = 12, we must have PSL,(F3;) ~ A4, giving an exact
sequence

1 > {1} >0 > Ay — 1. (11.2.3)

11.2.4. We can also visualize the group O* and the exact sequence (11.2.3), thinking
of the Hamiltonians as acting by rotations (section 2.4). Recall there is an exact
sequence (Corollary 2.4.21)

1 - {1} > H' - S03) > 1 (11.2.5)

obtained by the left action a > ava~! for @ € H' and v € H? ~ R3; specifically, by
Proposition 2.4.18, a quaternion @ = cos + I(«) sin 6 acts by rotation through the
angle 20 about the axis /().

We have been considering

-1,-1 -1,-1
OHB:(W)C_)B@,QR:(T):H, (11.2.6)

and we now consider the corresponding embedding of groups O! = O* « H'. We
are led to think of the group O*/{£1} ~ A4 as the group of symmetries (rigid motions)
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of a tetrahedron (or rather, a tetrahedron and its dual), as in Figure 11.2.7.

Figure 11.2.7: Symmetries of a tetrahedron, viewed quaternionically

Inside the cube in R3 with vertices (21, +1,+1) = +i + j + k, we find four inscribed
regular tetrahedra, for example, the tetrahedron 7" with vertices

i+j+ki—-j—k,—i+j—k,—i—j+k.

Then the elements +i, +j, +k act by rotation about the x, y, z axes by an angle 7 (so
interchanging points with the same x, y, z coordinate). The element +w = (-1 +i +
J+k)/2 rotates by the angle 27 /3 fixing the point (1, 1, 1) and cyclically permuting the
other three points, and by symmetry we understand the action of the other elements of
O*. We therefore call O the binary tetrahedral group. Following Conway—Smith
[CSm2003, §3.3], we also write 2T = O* for this group; the notation A4 is also used.

The subgroup Qg < 2T is normal (as it is characteristic, consisting of all elements
of O of order dividing 4), and so we can write 2T = Qg >~ (w) where (w) =~ Z/3Z acts
on Qg by conjugation, cyclically rotating the elements i, j, k. Finally, the group 2T
has a presentation (Exercise 11.7)

2T = (r,s,t | r*=s=1 =rst =-1) (11.2.8)
viar=i,s=-w*=(1+i+j+k)/2,andt=(1+i—j+k)/2.

We conclude by noting that the difference between the Lipschitz and Hurwitz
orders is “covered” by the extra units.

Lemma 11.2.9. For every B € O, there exists y € O* such that By € Z{i, J).
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Proof. 1f B € Z(i, j) already, then we are done. Otherwise, 23 =t + xi + yj + zk with
all ¢, x, v,z € Z odd. Choosing matching signs, there exists y € O* such that 23 = 2y
(mod 40). Thus

(2B)y~' =2 (mod 40)

so By~! € Z+20 = Z(i, j), so we may take y~! for the statement of the lemma. O

11.3 > Euclidean algorithm

The Eisenstein order Z[(—1 + V—3)/2] has several nice properties. Perhaps nicest of
all is that it is a Euclidean domain, so in particular it is a PID and UFD. (Alas, the ring
Z[V-3] just fails to be Euclidean.)

11.3.1. The Hurwitz order also has a (left or) right Euclidean algorithm generalizing
the commutative case, as follows. There is an embedding B — B ®g R ~ H|, and
inside H ~ R* the Hurwitz order sits as a (Z-)lattice equipped with the Euclidean
inner product, so we can think of the reduced norm by instead thinking of distance.
In the Lipschitz order, we see by rounding coordinates that for all v € B there exists
u € Z{i,j) such that nrd(y — u) < 4 - (1/2)> = 1—a farthest point occurs at the
center (1/2,1/2,1/2,1/2) of a unit cube. But this is precisely the point where the
Hurwitz quaternions occur, and it follows that for all y € B, there exists 4 € O such
that nrd(y — p) < 1. (In fact, we can take nrd(y — p) < 1/2; see Exercise 11.8.)

Paragraph 11.3.1 becomes a right Euclidean algorithm as in the commutative case.

Lemma 11.3.2 (Hurwitz order is right norm Euclidean). Forall a, 8 € O with 8 # 0,
there exists y, p € O such that

a=pu+p (11.3.3)
and nrd(p) < nrd(B).

Proof. If nrd(a@) < nrd(B), we may take u = 0 and p = «, so suppose nrd(a) >
nrd(8) > 0. Lety = B~'a € B. Then by 11.3.1, there exists 4 € O such that
nrd(y — u) < 1. Let p = @ — Bu. Then by multiplicativity of the norm,

nrd(p) = nrd(a — Bu) < nrd(B). O

A similar statement to Lemma 11.3.2 holds on the left, i.e., in (11.3.3) we may
take @ = uf + p (with possibly different elements u, p € O, of course).

Proposition 11.3.4. Every right ideal I C O is right principal, i.e., there exists B € 1
such that I = BO.

Proof. Let I C O be aright ideal. If I = {0}, we are done. Otherwise, there exists an
element 0 # B € I with minimal reduced norm nrd(B) € Z-y. We claim that I = 8O.
For all @ € I, by the right Euclidean algorithm in Lemma 11.3.2, there exists u € O
such that @ = Bu + p with nrd(p) < nrd(B); but p = @ — Bu € I, so by minimality,
nrd(p) = 0 and p = 0, hence @ = Bu € BO as claimed. O
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Definition 11.3.5. Let @, 8 € O. We say S right divides « (or « is a right multiple
of B) and write B | « if there exists y € O such that @ = By.

A right common divisor of @, 8 € O is an element y € O such that y |g @, 8. A
right greatest common divisor of a, 8 is a common divisor y such that § |g y for all
common divisors ¢ of a, .

It follows from Lemma 11.3.2 in the same way as in the commutative case that if
a, 8 are not both zero, then there exists a right greatest common divisor of «, 3, taking
the last nonzero remainder in the right Euclidean algorithm.

Corollary 11.3.6 (Bézout’s theorem). For all a, € O not both zero, there exist
i, v € O such that au + Bv =y where vy is a right greatest common divisor of a, .

Proof. By Proposition 11.3.4, we may write O + 80 = yO for some y € O, and then
v € @O + BO implies there exists u, v € O such that ap + By = y. O

Proposition 11.3.7. Let O’ C B be a maximal order. Then there exists a € B* such
that O’ = o~ 'Oa, and in particular O’ ~ O as rings.

Proof. By clearing denominators, there exists nonzero a € Z such that a0’ C O.
Let I = aO’O be the right ideal of O generated by aO’. Then O’ € O, (I), and
equality holds since O’ is maximal. By Proposition 11.3.4, we have I = SO for some
B € BX. We have O_(I) = BOB~! by Exercise 10.14, so O’ = OB~ and we may
take @ = g, O

Example 11.3.8. The Lipschitz order Z(i, j) does not enjoy the property that every
right ideal is principal, as the following example shows.

Let ] =20 =2Z+2iZ+2jZ+ (1 +i+ j+k)Z Then I C Z(i,j) and I has
the structure of a right Z(i, j)-ideal, in fact I = 2Z{i, j) + (1 +i + j + k)Z{i, j). We
claim that I is not principal as a right Z(i, j)-ideal. Indeed, suppose I = @Z(i, j) with
a € 1. Since a € 20, we have 4 | nrd(a). But 2 € I so 2 = B with 8 € Z{i, j), so
4 = nrd(2) = nrd(a) nrd(B), whence nrd(«) = 4 and nrd(B) = 1 so B € Z(i, j)* and
s0 20 =1 = aZ{i, j) = 2Z(i, j). Cancelling the factor 2, we conclude O = Z(i, j), a
contradiction.

For more, see Exercise 11.11.

11.4 » Unique factorization

It does not follow that there is unique factorization in O in the traditional sense, as the
order of multiplication matters. Nevertheless, there is a theory of prime factorization
in O as follows.

Lemma 11.4.1. Let p be prime. Then there exists © € O such that i = nrd(7) = p.

Proof. We have nrd(1 +i) = 12 + 12 = 2, so we may suppose p > 3 is odd. Then
O/pO = (-1,-1| Fp) =~ M,(F,) by Wedderburn’s little theorem. There exists a right
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ideal I mod p ¢ O/pO with dimg,, (I mod p) = 2, for example / mod p = (S *)

Let
I'={ede€O:amodpelmodp}

be the preimage of I mod p in the map O — O/pO. Then pO C I € O. ThenI c O
is aright ideal, and I # O. But I = SO is right principal by Proposition 11.3.4.

We claim that nrd(8) = p. Since p € I, we have p = Bu for some u € O,
whence nrd(p) = p? = nrd(B8) nrd(u) so nrd(B) | p>. We cannot have nrd(8) = 1 or
nrd(f) = p?, as these would imply 7 = O or I = pO, impossible. We conclude that

nrd(B) = p. O

Remark 11.4.2. Once we have developed a suitable theory of norms, the proof that
nrd(B) = p above will be immediate: if we define N(7) := #(O/I) then N(I) = p? by
construction, and it turns out that N(I) = nrd(8)>.

Theorem 11.4.3 (Lagrange). Every integer n > 0 is the sum of four squares, i.e., there
existt,x,y,z € Z such that n = 2+ y2 + 72

Proof. We seek an element 8 € Z(i, j) such that nrd(8) = n. By multiplicativity of
the reduced norm, it is sufficient to treat the case where n = p is prime. We obtain
m € O such that nrd(wr) = p by Lemma 11.4.1. But now the result follows from
Lemma 11.2.9, as there exists y € O such that 7y € Z{i, j). O

Remark 11.4.4. A counterpart to Lagrange’s theorem (Theorem 11.4.3) is the following
theorem of Legendre and Gauss on sums of three squares: Every integer n that is not
of the form n = 4°m with m = 7 (mod 8) can be written as the sum of three squares
n = x>+ y% + z2. We will revisit this classical theorem in Chapter 30 as motivation
for the study of embedding numbers, and the number of such representations will be
given in terms of class numbers, following Gauss. A direct proof of the three square
theorem is given by Mordell [Mor69, §20, Theorem 1], but he notes that “no really
elementary treatment [of this theorem] is known”.

We finish this section with a discussion of ‘unique factorization’ in the Hurwitz
order.

Definition 11.4.5. Anelement r € Oisirreducible if whenever 7 = ¢ witha, 8 € O
then either @ € O* or 8 € O*.

Lemma 11.4.6. Let © € O. Then n is irreducible if and only if ntd(nr) = p € Z is
prime.

Proof. If nrd(zr) = p is prime and 7 = af then nrd(7) = p = nrd(e) nrd(B) so
either nrd(e) = 1 or nrd(B) = 1, thus @ € O* or B € O*. Conversely, suppose 7 is
irreducible and let p | nrd(x). Let I = 7O + pO = «O. Then nrd(e) | nrd(p) = p2.
We cannot have nrd(a) = 1, as every element of / has reduced norm divisible by
p. We similarly cannot have nrd(e) = p?, since this would imply 7 € pO; but
by Lemma 11.4.1, p is reducible, a contradiction. We conclude that nrd(a) = p.
From 7 € I = aO we obtain 7 = af with 8 € O; by irreducibility, 8 € O* and
nrd(7) = nrd(a@) = p. O
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Definition 11.4.7. An element a € O is primitive if @ ¢ nO for all n € Z,.

Theorem 11.4.8 (Conway—Smith). Let @ € O be primitive and let a = nrd(«@). Factor
a = p1pa--- py into a product of primes. Then there exists my, 7, ...,n, € O such
that

a=mny---7wy, andnrd(n;) = p; foralli. (11.4.9)

Moreover, every other such factorization is of the form

a=(my)(y'my) - (v 7) (11.4.10)
where y1, ...,y € O%.

Proof. Let I = aO + p0; as in the proof of Lemma 11.4.6, we find I = 7,0 with
nrd(m;) = p1, arguing that nrd(mry) # p% since @ € pO is in contradiction to @ being
primitive. Then 7| is unique up to right multiplication by a unit and @ = mja,. The
result then follows by induction. O

The factorization (11.4.10) is said to be obtained from @ = x| --- 7, by unit
migration.
Remark 11.4.11. To look at all possible prime factorizations of « as in (11.4.9), it is
necessary to consider the possible factorizations a = pj --- p,. Conway—Smith call
this process metacommutation [CSm2003, Chapter 5]; metacommutation is analyzed
by Cohn—Kumar [CK2015], Forsyth—Gurev—Shrima [FGS2016], and in a very general
context by Chari [Cha2020].

11.5 Finite quaternionic unit groups

We conclude this section by a discussion of quaternion unit groups extending the
discussion 11.2: we classify finite subgroups of H* and realize the possible subgroups
as coming from quaternionic unit groups.

11.5.1. To begin with the classification, suppose that I' C H* is a finite subgroup.
Then nrd(T’) is a finite subgroup of RZ ), hence identically 1, so I" € H!.

Similarly, if I' € HX/R* ~ H!'/{+1} is a finite subgroup, then it lifts via the
projection H' — H!/{+1} to a finite subgroup of H'.

So let T ¢ H! be a finite subgroup. Then
[/{x1} — H!/{1} ~ SO(3)

the latter isomorphism by Hamilton’s original (!) motivation for quaternion algebras
(Corollary 2.4.21). Therefore I'/{x1} C SO(3) is a finite rotation group, and these
groups have been known since antiquity.

Proposition 11.5.2. A finite subgroup of SO(3) is one of the following:

(1) a cyclic group;
(ii) a dihedral group;
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(iii) the tetrahedral group A4 of order 12;
(iv) the octahedral group S4 of order 24; or
(v) the icosahedral group As of order 60.

Cases (iii)—(v) are the symmetry groups of the corresponding Platonic solids and
are called exceptional rotation groups.

Proof. Let G < SO(3) be a finite subgroup with #G = n > 1; then G must consist of
rotations about a common fixed point (its center of gravity), which we may take to be
the origin. The group G then acts on the unit sphere, and every nonidentity element
of G acts by rotation about an axis, fixing the poles of its axis on the sphere. Let V be
the subset of these poles in the unit sphere; the set V will soon be the vertices of our
(possibly degenerate) polyhedron. Let

X ={(g,v): g€ G\ {1} and v is apole of g}.

Since each g € G \ {1} has exactly two poles, we have #X = 2(n — 1). On the other
hand, we can also count organizing by orbits. Choose a representative set vy, ...,V
of poles, one from each orbit of G on V, and let

n; = #Stabg (v;) =#{g € G : gv; = v;}

be the order of the stabilizer: this group is a cyclic subgroup about a common axis.
Then

2”_2=#X=2#(Gvi)(ni—1)=2£(ﬂi—1)=n2(1—%),

i=1 i=1 i=1
by the orbit—stabilizer theorem. Dividing both sides by n gives

r

2 1
2—;=Z(1—n—i). (11.5.3)

i=1

Since n > 1, we have 1 < 2 —2/n < 2; and since each n; > 2, we have 1/2 <
1 — 1/n; < 1. Putting these together, we must have r = 2, 3.

If r = 2, then (11.5.3) becomes 2 = n/ny + n/ny, with n/n; = #(Gv;) > 1, so
ny = np = n, there is only one axis of rotation, and G is cyclic.

If r = 3, then the only possibilities for (n,ny,n3) with ny < ny < n3 are
(2,2,0),(2,3,3),(2,3,4), (2,3,5); the corresponding groups have sizes 2¢, 12, 24, 60,
respectively, and can be identified with Dy, A4, S4, As by a careful but classical anal-
ysis of orbits. See Armstrong [Arm88, Chapter 19], Grove—Benson [GB2008, §2.4],
or Conway—Smith [CSm2003, §3.3]. O

In 11.2.4, we gave a quaternionic visualization of the binary tetrahedral group
(lifting the tetrahedral group to H'); we repeat this with the two other exceptional
rotation groups, taking again k :=ij.
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11.5.4. The octahedral group S, pulls back to the binary octahedral group 20 C H!
of order 24 - 2 = 48, whose elements act by rigid motions of the octahedron (or dually,
the cube). We make identifications following 11.2.4, shown in Figure 11.5.5.

@ i+tj—k

Figure 11.5.5: Symmetries of an octahedron and a cube, viewed quaternionically

The binary tetrahedral group 27" < 20 of order 24 acts as a subgroup of rigid
motions; the group 20 is generated by an element which maps to a rotation of order 4
around the 6 faces, i.e., one of the 12 elements

+1

H+

i xl+j £1+k
9 b ﬁ .

The group 20 has a Coxeter presentation

H+

[\
)

20 = (r,s,t | P =5 =t =rst = -1)

(with —1 central and (—1)% = 1). One also writes 20 =~ Sa.
Let F = Q(V2) and R = Z[V2]. If we consider the Hamiltonians restricted to F
-1,-1 .
as B = (T) then the group 20 C H' generates an R-order: letting i, j be the
standard generators and still k :=ij, and letting @ = (1 + i) /V2 and 8= (1+ j)/\/i,
then
O20 =R+ Ra+ RS + Rap; (11.5.6)

this order contains the scalar extension of the Hurwitz order to R and is in fact a
maximal R-order. (The extension of scalars is necessary: Ss contains an element
of order 4 which lifts to an element of order 8 in 20; such an element has trace

(L5 +45") = £V2)
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11.5.7. Finally, we treat the binary icosahedral group 2/ C H' of order 60 -2 = 120,
acting by rigid motions of the icosahedron—or dually, the dodecahedron. We choose
the regular dodecahedron to have vertices at

1

iorrj eV 2tk 2

ti+jtk, xTitT
where 7 = (1 + V5)/2 is the golden ratio. The elements of order 5 are given by
conjugates and powers of the element £ = (7 + 7~'i + j)/2, which acts by rotation
about a face. The group 21 can be presented as

2L =(r,s,t|rP=5 =1 =rst =—1)

and we have 2] =~ As =~ SLy(Fs). Letting now F = Q(V5) and R = Z[r], the
R-algebra generated by 21 is the maximal order

Oy =R+ Ri+R( +Ril. (11.5.8)

For further references, see Conway—Sloane [CSI188, §8.2], who describe the binary
icosahedral group in detail, calling it the icosian group.

We now consider the related possibilities over Q. (We will return to a general
classification in section 32.4.) To put ourselves in a situation like (11.2.6), let B =

b b o
L2 ) pea quaternion algebra over Q such that B ®g R = % ~ H: in this case,

Q
we say that B is definite. By Exercise 2.4, B is definite if and only if @, < 0. Let

O C B be an order in B; we would like to understand its unit group.
Lemma 11.5.9. The group O* = O is finite.

Proof. We may take B = (a,b | Q) with a,b < 0. Consider the reduced norm
nrd: B — Q, given by nrd(¢ + xi + yj + zij) = > + |a|x* + |b|y* + |ab|z?, so
nrd(B*) € Q. At the same time, nrd(O*) C Z* = {+1}, so we conclude O* = o'
This group is finite because the restriction nrd | of the reduced norm to O ~ Z* defines
a (still) positive definite quadratic form, so there are only finitely many elements of O
of any fixed reduced norm. (For a geometric perspective, viewing the elements of O!
as lattice points on an ellipsoid in R*), see Proposition 17.5.6.) O

In view of Lemma 11.5.9, the classification of finite rotation groups (Proposition
11.5.2) applies. We consider each case in turn.

11.5.10. Among the (nontrivial) cyclic groups, only subgroups of order 2,4, 6 are
possible over Q. Indeed, a generator satisfies a quadratic equation with integer coeffi-
cients and so belongs to the ring of integers of an imaginary quadratic field; and only
two imaginary quadratic fields have units other than +1, namely, the Eisenstein order
Z[(~1+ V=3)/2] of discriminant —3 and the Gaussian order Z[V—1] of discriminant
—4 with groups of size 4, 6, respectively. (The more precise question of whether or
not there is a unit of specified order is a question of embedding numbers, the subject
of Chapter 30.)
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11.5.11. Next, suppose that O*/{£1} is dihedral, and let j € O* \ {x1} act by
inversion (equivalently, conjugation) on a cyclic group (of order 2,3, by 11.5.10),
generated by an element i. Let K = Q(i). Since j acts by inversion, we have j> € Q,
and since j € O* we have j2 = —1. It follows that ja = @j for all « € K. Thus

)

-1
B ~ (T) and we have two possibilities:

(i) If i has order 4, then B =~ (—1,-1 | Q) and O contains the order generated
by i, j. This is the case treated in section 11.2: O is the Lipschitz order, and
O* ~ Qg is the quaternion group of order 8.

(ii) Otherwise, i = w has order 6, and B ~ (-3,—1 | Q). By Exercise 11.12(a),
we have (-3,-1 | Q) # (-1,-1 | Q). By an argument similar to Lemma
11.1.2—and boy, there is more of this to come in Chapter 32—we see that

O0=Z+Zw+Zj+Zwj (11.5.12)

is maximal. The group O*/{+1} =~ Dg is a dihedral group of order 6, and the
group O is generated by w, j with relations w3 = j2 = —=1 and jw = w™'j; in
other words, O* =~ C3 = Cy is the semidirect product of the cyclic group C3 of
order 3 by the action of the cyclic group C4 with a generator acting by inversion
on Cs. Because i2 = —1 is central, we also have an exact sequence

15Ce—>0"—>C —1

where Cg ~ (w) and C, =~ (j)/{x1}. This group is also called the binary
dihedral or dicyclic group of order 12, denoted 2Dg.

11.5.13. To conclude, suppose that O*/{£1} is exceptional. Each of these groups
contain a dihedral group, so the argument from 11.5.11 applies: the only new group
we see is the (binary) tetrahedral group obtained from the Hurwitz units (section 11.2).
Here is another proof: the group S4 contains an element of order 4 and As an element
of order 5, and these lift to elements of order 8, 10 in O*, impossible.

We have proven the following theorem.

Theorem 11.5.14. Let B = (a, b | Q) be a quaternion algebra over Q with a, b < 0,
and let O C B be an order. Then O is either cyclic of order 2,4, 6, quaternion of
order 8, binary dihedral of order 12, or binary tetrahedral of order 24.

Moreover, O* is quaternion, binary dihedral, or binary tetrahedral if and only
if O is isomorphic to the Lipschitz order, the order (11.5.12), or the Hurwitz order,
respectively.

Proof. Combine 11.5.10, 11.5.11, and 11.5.13. O

Exercises

» 1. Check directly that the Hurwitz order

l+i+j+k
O:Z+Zi+Zj+Z(+)
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-1,-1
is indeed an order in B = (T)

-1

1
), and let O C B be the Hurwitz order. For the normalizer

Np<(0) :={a@ € BX: a"'Oa = O}
show the equality Npx(Z(i, j)) = Npx(O). [Hint: consider units and their
traces.]

(a) Show that the Lipschitz order Z(i, j) is the unique suborder of the Hurwitz
order O with index 2 (as abelian groups).
(b) Show that
Z{i,J)y={a € O : trd(w@) is even}.

Check that the map
0O/30 — Mx(F3)
PN 0 -1} (1 1
S VIVl A § R

from Lemma 11.2.1 is an F3-algebra isomorphism.

. Generalizing the previous exercise, show that for an odd prime p that O/pO =~

M, (Fp).

Draw the subgroup lattice for SL; (FF3), indicating normal subgroups (and their
quotients).

Show explicitly that
2T =~ (r,s,t | rP =s> =13 =rst = 1)

(cf. (11.2.8)).

Let

A=2'+z(3, 10 ) cRr?
be the image of the Hurwitz order O under the natural embedding O < H ~ R*.
Show that for every x € R?, there exists A € A such that ||x — A||> < 1/2. [Hint:
without loss of generality we may take 0 < x; < 1/2 for all i; then show we may
take x1 + x3 + x3 + x4 < 1; conclude that the maximum value of ||x||> with these
conditions occurs at the point (%, %, 0,0).]

Let B be a quaternion algebra over Q and let O c B be an order. Show that O
is left Euclidean if and only if O is right Euclidean (with respect to a norm N).

Let O c B :=(—1,-1]| Q) be the Hurwitz order.

(a) Consider the natural ring homomorphism O — O/20 = O ®z F, giving
the reduction of the algebra O modulo 2. Show that O/20 is an F,-
algebra, that #(O/20) = 16, and that (O/20)* =~ A4 is isomorphic to
the alternating group on 4 elements. Conclude that O/20 # M;(F,) and
hence that O/20 is not a quaternion algebra over F,.
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(b) Show that the group of ring automorphisms of O/20 is
Aut(O/20) = S4.

(c) More generally, if F is a field of characteristic 2 show that there is an exact
sequence

1 - F? - Autp (O ®z F) — KX = Autp(K) — 1

where K := Fw] =~ F[x]/(x?>+x+1), and F? is considered as an additive
group. [Hint: let J = rad(O ®z F) be the Jacobson radical of the algebra,
and show that the sequence is induced by an F-linear automorphisms of
K := F|w] and the automorphisms w — w + € with € € J.]

[This kind of construction, considered instead over the octonions, arises
when constructing the exceptional group G in characteristic 2 [Wils2009,
§4.4.1].]

Although the Lipschitz order just misses being Euclidean with respect to the
norm (see Example 11.3.8), bootstrapping from the Hurwitz order we still obtain
a result on principality by restricting the set of ideals, as follows.
Let I C Z(i, j) be aright ideal.
(a) Show that 10 = BO for some 8 € IO NZ{i, j).
(b) Prove that I(5) = Z()(i, j) if and only if I is generated by elements of odd
reduced norm.
(c) If I(2) = Z(2)(i, j), show that IO N Z(i, j) = I and conclude that [ is right
principal. [Hint: Argue locally.]

Let B:=(-1,-3| Q), and let
1+ 1+
0:=24, (1+))/2) = Z+Zi+2% +Zi%.
(a) Show that B # (-1,-1] Q).
(b) Show that O is a maximal order in B.
(c) Show that O is Euclidean with respect to the reduced norm

nrd(t +xi+y(1+7)/2+zi(1+j)/2) = 2 +1y +x° +xz+y2 + 22
(d) Show that every maximal order in B is conjugate to O.

Let G < O(2) be a finite subgroup such that tr(g),det(g) € Q for all g € G.
Show that G is one of the following: (i) a cyclic group of order 1, 2, 3, 4, 6 that is
a subgroup of SO(2), or (ii) a dihedral group of order 2,4, 6, 8, 12, not contained
in SO(2).

Let p be an odd prime.

(a) The group GL,(Zp)) acts by right multiplication on the set of matrices
m € Ma(Z(p)y) with p || det(mr) (i.e., p exactly divides the numerator of
det(rr), written in lowest terms). Show that there are precisely p + 1 orbits,

represented by
_(p O
ol O
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and

1 0O
ﬂ—(a p)’ a=0,1,....,p—1.

[Hint: use column operations. |

(b) Repeat (a) but with SL>(Z(},)) acting on the set of matrices 7 € M2 (Z(p,))
with det(7r) = p, with the same conclusion.

(c) Show that the number of (left or) right ideals of O of reduced norm p is
equal to p + 1.

(d) Accounting for units, conclude that the number of ways of writing an odd
prime p as the sum of four squares is equal to 8(p + 1).

15. In the following exercise, we consider a computational problem, suitable for
those with some background in number theory algorithms (see e.g. Cohen
[Coh93]).

(a) Show that one can find x, y, z € Z such that x> + y? + z> = pm with p t m
in probabilistic polynomial time in log p.

(b) Describe the right Euclidean algorithm as applied to @ = xi + yj + zk and
p to obtain 7 € O with nrd(xr) = p. Adjust as in Lemma 11.2.9 to find a
solution to > + x> + y? + 72 = p with t,x, y, z € Z. Estimate the running
time of this algorithm.






Chapter 12

Ternary quadratic forms over local
fields

In this chapter, we classify quaternion algebras over local fields using quadratic forms;
this generalizes the classification of quaternion algebras over R.

12.1 » The p-adic numbers and local quaternion algebras

Before beginning, we briefly remind the reader about the structure of the p-adic
numbers. The p-adics were developed by Hensel, who wanted a uniform way to say
that a Diophantine equation has a (consistent) solution modulo p" for all n. In the
early 1920s, Hasse used them in the study of quadratic forms and algebras over number
fields. At the time, what is now called the local-global principle then was called the
p-adic transfer from the “small” to the “large”. As references on p-adic numbers, see
for example Gouvéa [Gou97], Katok [Kat2007], or Koblitz [Kob84].

Just as elements of R can be thought of infinite decimals, an element of Q,, can be
thought of in its p-adic expansion

00

a=(...az3ara1a0.a-1a-3---a_g)p = Z anp” (12.1.1)
n=—k
where each a; € {0, ..., p — 1} are the digits of a. We continue “to the left” because

a decimal expansion is a series in the base 1/10 < 1 and instead we have a base p > 1.
Put a bit more precisely, we define the p-adic absolute value on Q by defined by

[0], := 0 and
el p := p7P () for ¢ € Q, (12.1.2)

where v, (c) is the power of p occurring in ¢ in its unique factorization (taken to be
negative if p divides the denominator of ¢ written in lowest terms). Then the field Q,,
is the completion of Q with respect to | |,, that is to say, Q,, is the set of equivalence
classes of Cauchy sequences of rational numbers, and it obtains a topology induced by
the metric d, (x,y) = |x — y|,. We have |a|, = pk fora asin (12.1.1) with a_ # 0.

175
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Of course, all of the information in the p-adic absolute value is encoded in the p-adic
valuation v, : Q — R U {co}.

Inside Q), is the ring Z,, of p-adic integers, the completion of Z with respect to
| |p: the ring Z,, consists of those elements of Q,, with a,, = 0 for n < 0. (The ring Z,
might be thought of intuitively as Z/p*Z, if this made sense.)

Equipped with their topologies, the ring Z, is compact and the field Q, is lo-
cally compact. These statements can be understood quite easily by viewing Z,, in a
slightly different way, as a projective limit with respect to the natural projection maps
Z/anZ N Z/anZ

— 1 n
Z, =limZ/p"Z
n
o (12.1.3)
= {x =(xp)n € l_[Z/p"Z  Xp4l = X, (mod p") for all n > 1} .

n=1

In other words, each element of Z, is a compatible sequence of elements in Z/p" Z for
each n. The equality (12.1.3) is just a reformulation of the notion of Cauchy sequence
for Z, and so for the purposes of this introduction it can equally well be taken as a
definition.

As for the topology in (12.1.3), each factor Z/p"Z is given the discrete topology,
the product []7,Z/p"Z is given the product topology, and Z,, is given the subspace
topology. Since each Z/p"Z is compact (it is a finite set!), by Tychonoff’s theorem the
product []Z/p"Z is compact; and Z,, is closed inside this product (a convergent
limit of Cauchy sequences is a Cauchy sequence), so Z, is compact and still HausdorfT.
The topology on Z,, is a bit strange though, as Z,, is totally disconnected: every
nonempty connected subset is a single point. In fact, Z, is homeomorphic to the
Cantor set, which is itself homeomorphic to the product of countably many copies of
{0, 1}. (More generally, every nonempty totally disconnected compact metric space
with no isolated points is homeomorphic to the Cantor set.)

The set Z,, is a compact neighborhood of 0, as it is the closed ball of radius 1
around 0:

Zp,={x€Qp:|x|p <1} ={x €Qp :vp(x) = 0}. (12.1.4)

In a similar way, the disc of radius 1 around a € Q,, is a compact neighborhood of
a homeomorphic to Z,, so Q,, is locally compact. Being able to make topological
arguments like the one above is the whole point of looking at fields like Q,: our
understanding of infinite algebraic objects is informed by topology.

With this review, and topological arguments now at our disposal, we consider
quaternion algebras over Q,,. The ‘original’ quaternion algebra, of course, was the
division ring H of Hamiltonians over the real numbers (the ‘original’ field with a
topology), and indeed H is the unique division quaternion algebra over R (Corollary
3.5.8). We find a similar result over Q,, (a special case of Theorem 12.3.2), as follows.

Theorem 12.1.5. There is a unique division quaternion algebra B over Q,, up to
isomorphism; if p # 2, then
B ~ (2)
Qp
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where e € Z is a quadratic nonresidue modulo p.

For example, if p =3 (mod 4) then —1 is quadratic nonresidue and (-1, p | Qp)
is the unique division quaternion algebra over Q.

Because we have exactly two such possibilities, we define the Hilbert symbol:
fora,b € Q;, we have (a, b)Qp = 1, -1 according as the quaternion algebra (a, b |
Qp) = M2(Qp) is split or not. According to Theorem 12.1.5, the Hilbert symbol over
Qp uniquely identifies the two possible isomorphism classes of quaternion algebras
over Q,—just like it does over R.

Our approach to Theorem 12.1.5 uses quadratic forms: we use the classification
of isomorphism classes of quaternion algebras given in terms of similarity classes
of ternary quadratic forms (Theorem 5.1.1). The following proposition then implies
Theorem 12.1.5.

Proposition 12.1.6. There is a unique ternary anisotropic quadratic form Q over Qp,
up to similarity; if p # 2, then Q ~ (1,—e, —p) where e is a quadratic nonresidue
modulo p.

Happily, this proposition can be proved using some rather direct manipulations
with quadratic forms and gives a very “hands on” feel; it is also suggests the arguments
we use for a more general result. The main input we need is a quadratic Hensel’s
lemma, or more precisely, the following consequence.

Lemma 12.1.7. For p # 2, the classes in QZ / sz are represented by 1, e, p, ep where
e is a quadratic nonresidue modulo p.

Proof. Leta € Qj and letm := v, (a). Then a = bp™ with b := a/p™ € Z7;, and by
squaring a € Q;‘,z if and only if b € fo and m is even. We claim that b € Z;z if and
only if its reduction b modulo p is a square in (Z/pZ)*. With the forward implication
immediate, suppose b = ¢ (mod p) with ¢ € Z%, then b/c* € 1+ pZ,,. But squaring
is a bijection on 1 + pZ,, by expanding the square root as a convergent series (see
Exercise 12.1) and using that p # 2. Thus b/c? € Z%?, and the result follows. o

We now proceed with the proof when p # 2.

Proof of Proposition 12.1.6, p # 2. We start by showing that Q(x, y, z) = x> — ey? —
pz? is anisotropic. Suppose Q(x,y,z) = 0 with not all x,y,z € Qp zero. Rescaling
by p, we may assume that x,y,z € Z, and not all x,y,z € pZ,. We then reduce
modulo p to find that x> = ey? (mod p). If p 1 y, then (x/y)?> = e (mod p); but e is
a quadratic nonresidue modulo p, a contradiction. So p | y; thus p | (ey? + pz?) = x2,
so p | x; thus p? | (x? — ey?) = pz?, 50 p | z, a contradiction.

To show uniqueness, let Q be a ternary anisotropic form over Q,. Since p # 2,
we may diagonalize. In such a diagonal form taken up to similarity, we may also
rescale each coordinate up to squares as well as rescale the entire quadratic form.
Putting this together with Lemma 12.1.7, without loss of generality we may suppose
Q(x,v,2) = {1,-b,—c) = x> — by? — cz*> with b,c € {1, e, p,ep}, the signs chosen
for convenience. If b = 1 or ¢ = 1, the form is isotropic by inspection. So we are left
to consider the cases (b, c) = (e, e), (e, p), (e, ep), (p,p), (p,ep), (ep, ep).
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When (b, ¢) = (e, e), we have after rescaling x> +y? — ez”. We claim this form is
always isotropic. Indeed, the form reduces to a nondegenerate ternary quadratic
form over F,. Such a form is always isotropic by a delightful counting argument
(Exercise 5.5(b), or a second chance in Exercise 12.6!). Lifting, there exist
X,¥,2 € Zp, not all zero modulo p, such that x2 = —y2 + ez? (mod p). Since
e is a nonsquare, we have p { x (arguing similarly as in the first paragraph).
Let d := —y* + ez* € Q. By the possibilities in Lemma 12.1.7, we must have
d € Q?; solving x> = d for x € Q,, then shows that Q is isotropic.

The case (e, p) is our desired form.

In the third case (eep!), we substitute x < ex and divide by e to obtain the form
—y2 + ex? — pz?. We claim that there is an isometry (=1, ) =~ (1, —e): indeed,
in the first bullet we showed that the quadratic form (-1, e, —1) is isotropic,
so —x? + ey” represents 1; using this representation as the first basis vector,
extending to a basis, and diagonalizing, we conclude that (—1,e) ~ (1, b). By
discriminants, we have —e = b up to squares. This brings us back to the first
case.

In cases (p, p) or (ep, ep), replacing x < px and dividing gives the quadratic
forms x> + y? — pz? and x? + y? — epz?. If —1 € ZX?, then the form is isotropic;
otherwise, we may take e = —1 and we are back to cases (e, p), (e, ep).

¢ In the final case (keeping pep!), we substitute x < px and divide by —p to get
y? +ez? — px*. If —1 € Z?, then by substitution we change the middle sign
to return to the first case. Otherwise, we may take ¢ = —1, and the form is
isotropic, a contradiction.

This consideration of cases completes the proof. O

Although direct, the proof we just gave has the defect that quadratic forms behave
differently in characteristic 2, and so one may ask for a proof that works uniformly in
all characteristics: we give such a proof in the next chapter by extending valuations.

One of the nice applications of this classification is that it gives a necessary
condition for two quaternion algebras to be isomorphic. Let B = (a,b | Q) be a
quaternion algebra over Q and consider its scalar extension B, = B®g Q, = (a,b |
Qp). If B’ is another quaternion algebra over Q and B =~ B’, then this implies
B, =~ Bj, for all primes p, and of course the same is true over R. Perhaps surprisingly,
it turns out that the collection of all of these tests is also sufficient: if B, B’ become
isomorphic over R and over Q,, for all primes p, then in fact B =~ B’ are isomorphic
over Q! This profound and powerful principle—detecting global isomorphism from
local isomorphisms, a local-global principle—will be examined in chapter 14.

12.2 Local fields

In this section, we set up notation and basic results from the theory of local fields.
The theory of local fields is described in many places, including Neukirch [Neu99,
Chapters II, V], the classic texts by Cassels [Cas86] and Serre [Ser79]. Weil [Weil74]
approaches number theory from the ground up in the language of local fields, building
up the theory of local division rings.
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Our motivation for local fields is as follows: we want a topology compatible with
the field operations in which the field is Hausdorff and locally compact (every element
has a compact neighborhood), analogous to what holds over the real and complex
numbers. And to avoid trivialities, we will insist that this topology is not the discrete
topology (where every subset of F is open). To carry this out, we begin with some
basic definitions.

Definition 12.2.1. A topological group is a group equipped with a topology such that
the group operation and inversion are continuous. A homomorphism of topological
groups is a group homomorphism that is continuous.

A topological ring is a ring A equipped with a topology such that the ring oper-
ations (addition, negation, and multiplication) are continuous. A homomeorphism of
topological rings is a ring homomorphism that is continuous. A topological field is a
field that is also a topological ring in such a way that division by a nonzero element is
continuous.

One natural way to equip a ring with a topology is by way of an absolute value. To
get started, we consider such notions first for fields. Throughout this section, let F be
a field.

Definition 12.2.2. An absolute value on F is a map
[|: FF— Rxo
such that:

(i) |x| =0if and only if x = 0;
@i1) |xy| = |x||y| for all x, y € F; and
(iii) |x+y| < |x|+|y| for all x, y € F (triangle inequality).

An absolute value | | on F gives F the structure of a topological field by the metric
d(x,y) = |x — y|. Two absolute values ||, ||, on F are (strictly) equivalent if there
exists ¢ > 0 such that |x|; = |x|§ for all x € F; equivalent absolute values induce the
same topology on F.

Remark 12.2.3. If || is an absolute value on F, then it need not be the case that
x — |x|¢ for ¢ > 0 is again absolute value, because it need not satisfy the triangle
inequality. In particular, we will find it convenient to consider the square of the usual
absolute value on F' = C, which suffers from this deficiency. There are various ways
around this problem; perhaps the simplest is just to ignore it.

Definition 12.2.4. An absolute value is nonarchimedean if the ultrametric inequal-
ity
|x + y| < sup{|x|, |y[}

is satisfied for all x, y € F, and archimedean otherwise.

Example 12.2.5. The fields R and C are topological fields with respect to the usual
archimedean absolute value.
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Remark 12.2.6. A field with absolute value is archimedean if and only if it satisfies
the archimedean property: for all x € F*, there exists n € Z such that |nx| > 1. In
particular, a field F equipped with an archimedean absolute value has char F' = 0.

Example 12.2.7. Every field has the trivial (nonarchimedean) absolute value, defined
by |0] = 0 and |x| = 1 for all x € F*; the trivial absolute value induces the discrete
topology on F.

A nonarchimedean absolute value on a field F' arises naturally by way of a valuation,
as follows.

Definition 12.2.8. A valuation of a field F isamap v: F — R U {co} such that:

(i) v(x) = oo if and only if x = 0;
(i) v(xy) =v(x)+v(y) forallx,y € F; and
(iii) v(x +y) = min(v(x),v(y)) forall x,y € F.

A valuation is discrete if the value group v(F*) is discrete in R (has no accumulation
points).

Here, we set the convention that x + co = oo + x = oo for all x € RU {c0}. By
(ii), the value group v(F*) is a subgroup of the additive group R, and so whereas an
absolute value is multiplicative, a valuation is additive.

Example 12.2.9. Each x € Q* can be written x = p”a/b with a,b € Z relatively
prime and p { ab; the map v, (x) = r defines the p-adic valuation on Q.

Example 12.2.10. Let k be a field and F = k(t) the field of rational functions over
k. For f(t) = g(t)/h(t) € k(t) \ {0} with g(¢), h(¢) € k[t], define v(f(z)) :=
deg h(t) — deg g(¢). Then v is a discrete valuation on F.

Given the parallels between them, it should come as no surprise that a valuation
gives rise to an absolute value on F by defining

x| = ¢V (12.2.11)

for a fixed ¢ > 1; the induced topology on F' is independent of the choice of c. By
condition (iii), the absolute value associated to a valuation is nonarchimedean.

Example 12.2.12. The trivial valuation is the valuation v satisfying v(0) = co and
v(x) = 0 for all x € F*. The trivial valuation gives the trivial absolute value on F.

Two valuations v, w are equivalent if there exists a € R such that v(x) = aw(x)
for all x € F; equivalent valuations give the same topology on a field. A nontrivial
discrete valuation is equivalent after rescaling (by the minimal positive element in the
value group) to one with value group Z, since a nontrivial discrete subgroup of R is
cyclic; we call such a discrete valuation normalized.
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12.2.13. Given a field F' with a nontrivial discrete valuation v, the valuation ring is
R:={x e F:v(x) > 0}. Wehave R* = {x € F : v(x) = 0} since

v@) +vx D =vx ) =v(1) =0
for all x € F*. The valuation ring is a local domain with unique maximal ideal
p={xeF:v(x)>0}=R\R-

An element 7 € p with smallest valuation is called a uniformizer, and comparing
valuations we see that 7R = () = p. Since p C R is maximal, the quotient k := R/p
is a field, called the residue field of R (or of F).

Recall that a topological space is locally compact if each point has a compact
neighborhood (every point is contained in a compact set containing an open set).

Definition 12.2.14. A local field is a Hausdorf, locally compact topological field with
a nondiscrete topology.

In a local field, we can hope to understand its structure by local considerations in a
compact neighborhood, hence the name. Local fields have a very simple classification
as follows.

Theorem 12.2.15. A field F with absolute value is a local field if and only if F is one
of the following:

(1) F is archimedean, and F ~ R or F ~ C;
(ii) F is nonarchimedean with char F = 0, and F is a finite extension of Q, for some
prime p; or
(iii) F is nonarchimedean with char F' = p, and F is a finite extension of the Laurent
series field F,((t)) for some prime p; in this case, there is a (non-canonical)
isomorphism F =~ F,((t)) where q is a power of p.

A field F with absolute value | | is a nonarchimedean local field if and only if F is
complete with respect to | |, and | | is equivalent to the absolute value associated to a
nontrivial discrete valuation v: F — R U {co} with finite residue field.

Proof. See Neukirch [Neu99, Chapter II, §5], Cassels [Cas86, Chapter 4, §1], or Serre
[Ser79, Chapter II, §1]. O

Although a local field is only locally compact, the valuation ring is itself compact,
as follows.

Lemma 12.2.16. Suppose F is nonarchimedean. Then F is totally disconnected and
the valuation ring R C F is a compact, totally disconnected topological ring.

Proof. To see that F is totally disconnected (whence R too is totally disconnected),
by translation it suffices to show that the only connected set containing 0 is {0}. Let
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x € F* with |x| = ¢ > 0. The image | F*| C R is discrete, so there exists 0 < € < ¢
such that |y| < ¢ implies |y| < § — e for all y € F. Thus an open ball is a closed ball

D(0,6)={yeF:lyl<é}={yeF:|y|<6-—€}=D[0,5—¢€];

since x € F* and § > 0 were arbitrary, the only connected subset containing 0 is {0}.
Next, we show R is compact. There is a natural continuous ring homomorphism

¢: R—>ﬁR/p"

n=1

where each factor R/p”" is equipped with the discrete topology and the product is
given the product topology. The map ¢ is injective, since ()", " = {0} (every
nonzero element has finite valuation). The image of ¢ is obviously closed. Therefore
R is homeomorphic onto its closed image. But by Tychonoft’s theorem, the product
[1,; R/p" of compact sets is compact, and a closed subset of a compact set is compact,
thus R is compact. O

One key property of local fields we will use is Hensel’s lemma.

Lemma 12.2.17 (Hensel’s lemma, univariate). Let F be a nonarchimedean local field
with valuation v and valuation ring R, and let f(x) € R[x]. Let a € R satisfy
m = v(f(a)) > 2v(f’(a)). Then there exists a € R such that f(a) = 0and a = a
(mod p™).

Proof. The result is straightforward to prove using Taylor expansion or the same
formulas as in Newton’s method. O

Perhaps less well-known is the multivariate version.

Lemma 12.2.18 (Hensel’s lemma). Let F be a nonarchimedean local field with valu-
ation v and valuation ring R, and let f(xi,...,x,) € R[x1,...,x,| withn > 1.
Let a € R™ have m = v(f(a)) and suppose that

0
m > 2minv (—f(a)) > 0.
i (9x,'
Then there exists a € R" such that f(a) = 0 and

a=a (modp™).

Proof. One can reduce from several variables to the one variable version of Hensel’s
lemma (Lemma 12.2.17): see Exercise 12.11. m]

Remark 12.2.19. With essentially the same proof, Hensel’s lemma holds more gener-
ally for R a complete DVR (without the condition on the residue field) and becomes
axiomatically the property of Henselian rings.
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12.3 Classification via quadratic forms

We now seek to classify quaternion algebras over local fields.

12.3.1. First, suppose F is archimedean. When F = C, the only quaternion algebra
over C up to isomorphism is B ~ M,(C). When F = R, by the theorem of Frobenius
(Corollary 3.5.8), there is a unique quaternion division algebra over R.

The classification of quaternion algebras over nonarchimedean local fields is quite
analogous to the classification over R, as follows.

Main Theorem 12.3.2. Let F # C be a local field. Then there is a unique division
quaternion algebra B over F up to F-algebra isomorphism.

We approach the proof of Main Theorem 12.3.2 from two vantage points. In this
section, we give a proof using quadratic forms; in the next section, we give another
proof by extending the valuation (valid in all characteristics).

To prove this theorem, having dispatched the cases F = R, Cin 12.3.1 above, from
the previous section we may suppose F is a nonarchimedean local field with discrete
valuation v, valuation ring R, maximal ideal p = 7R with uniformizer n, and residue
field R/p = k.

12.3.3. Since R is a DVR, all R-lattices M are free (and we only consider those of
finite rank): i.e., M ~ R" for some n € Z>(. Given such an R-lattice M, we can reduce
modulo p to get M /pM ~ M ®g k ~ k"; conversely, any lift to M of any k-basis of
M /pM is an R-basis for M, by Nakayama’s lemma.

We recall Main Theorem 5.2.5, Corollary 5.2.6, and Main Theorem 5.4.4: iso-
morphism classes of quaternion algebras over a field F are in natural bijection with
nondegenerate ternary quadratic forms up to similarity, and the matrix algebra corre-
sponds to any isotropic form. So to prove Main Theorem 12.3.2, it is equivalent to
prove the following statement.

Theorem 12.3.4. Let F # C be a local field. Then there is a unique anisotropic
ternary quadratic form over F up to similarity.

Rescaling shows equivalently that there is a unique anisotropic ternary quadratic
form over a local field F # C of discriminant 1 up to isometry. So our task becomes
a hands-on investigation of ternary quadratic forms over F. The theory of quadratic
forms over F is linked to that over its residue field k, so we first need to examine
isotropy of quadratic forms over a finite field.

Lemma 12.3.5. A quadratic form Q:V — k over a finite field k with dim; V > 3 is
isotropic.

Proof. The proof is a delightful elementary exercise (Exercise 12.6). O

Recall definitions and notation for quadratic forms over R provided in section 9.7,
we embark on a proof in the case where chark # 2, beginning with the following
lemma.
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Lemma 12.3.6. Suppose chark # 2. Let Q: M — R be a nonsingular quadratic
form over R. Then the reduction Qr: M ®r k — k of Q modulo p is nonsingular
(equivalently, nondegenerate) over k; moreover, Q is isotropic over R if and only if
0O mod p is isotropic.

Proof. For the first statement, by definition we have disc Q € R*, so disc Q. € k* by
reduction.

For the second, we first prove (=), let x € M \ {0} have Q(x) = 0. Since Q is
homogeneous, we may suppose that x ¢ pM (divide by powers of 7 as necessary),
so its image in M ®, k is nonzero and thereby shows that Qy is isotropic. For (&),
let a € M be such that Qx(a) = 0 € k and a has nonzero reduction. Choose a
basis M ~ R"™ and write Q(x1,...,x;) = Q(x1e; + -+ + xpe,) € R[x1,...,x,] in
the standard basis as a homogeneous polynomial of degree 2, let T be the associated
symmetric bilinear form and [T] = (T'(e;, e;));,; the Gram matrix. We are almost
ready to apply Hensel’s lemma (Lemma 12.2.18), but need to ensure convergence. We
observe that

90
Bxi

(X1,..0xp) = Z T(xi,xj)x; (12.3.7)
j=1

so the vector of partial derivatives ((Q/dx;)(a)); = [T]a is just the matrix product
of the Gram matrix with the vector a = (a;);. Working modulo p, we have disc Q =
27" det[T] € k*, using that 2 € k*, so the kernel of [T] mod p is zero. Since
a has nonzero reduction, we conclude that [T]a also has nonzero reduction, which
means that min; v((dQ/dx;)(a)) = 0. Therefore the hypotheses of Hensel’s lemma
are satisfied with m = 1, and we conclude there exists a nonzero a € M such that
Q(a) = 0 and so Q is isotropic. O

From Lemma 12.3.6, we obtain the following.

Proposition 12.3.8. Suppose chark # 2. Let Q: M — R be a nonsingular quadratic
form over R with M free of rank at least 3. Then Q is isotropic.

Proof. Combine Lemmas 12.3.5 and 12.3.6. O
Considering valuations, we also deduce the following from Lemma 12.3.6.

Lemma 12.3.9. Suppose chark # 2. Then F*|F** ~ (Z/2Z)* and is represented
by the classes of 1, e, , emr where e € R* is an element which reduces modulo p to a
nonsquare in k.

We now turn to the proof of our theorem in the case char k # 2.

Proof of Theorem 12.3.4 (char k # 2). Let Q =~ {(a,—b,—c) be an anisotropic ternary
quadratic form over F. Then Q is nondegenerate. After rescaling and a change of basis
(Exercise 12.8), we may suppose that a = 1 and 0 = v(b) < v(c). If v(b) =v(c) =0
then the quadratic form modulo p is nonsingular, so by Lemma 12.3.5 it is isotropic
and by Lemma 12.3.6 we conclude Q is isotropic, a contradiction.

We are left with the case v(b) = 0 and v(c¢) = 1. By Lemma 12.3.9, we may
suppose b = 1 or b = e where e is a nonsquare in k. If b = 1, then the form is
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obviously isotropic, so b = e. Similarly, ¢ = 7 or ¢ = enr. In fact, the latter case is
similar to the former: dividing by e, we have

(1,—e,—em) ~ (e’l,—l, -y ~ (-1,e,—m)

and since (—1, e) =~ (1, —e) (Exercise 12.7), we conclude Q ~ (1, —e, —7).

To finish, we show that the form (1, —e, —7) is anisotropic. Suppose that x> —ey?* =
nz? with x,y,z € F? not all zero. By homogeneity, rescaling by a power of r if
necessary, we may suppose x,y,z € R and at least one of x,y,z € R*. Reducing

modulo p we have x> = ey?> (mod p); since e is a nonsquare in k, we must have
v(x),v(y) > 1. But this implies that v(z) = 0 and so v(7z?) = 1 = v(x? —ey?) > 2,2
contradiction. O

Predictably, the proof when char k& # 2 involving quadratic forms does not general-
ize in a simple way. However, armed with the above outline and acknowledging these
complications, we now pursue the case char k = 2. A key ingredient will understanding
certain binary quadratic forms, as follows.

Lemma 12.3.10. There is a unique anisotropic binary quadratic form over k, up to
isometry. Moreover, there is a unique (anisotropic) binary quadratic form over R
whose reduction modulo p is anisotropic, up to isometry (over R).

When char k # 2, this unique class of binary forms over R is (1, e) in the notation
above. We will want a similar bit of notation in the case char k = 2.

12.3.11. Recall the issues (6.1.4) with inseparability in characteristic 2. Let p(k) =
{z+ 2% : z € k} be the Artin-Schreier group of k. The polynomial x> + x + a € k[x]
is reducible if and only if a € p(k), and since k is finite, k/p(k) =~ Z/27Z (Exercise
12.9).

Let ¢ € R be such that its reduction to k represents the nontrivial class in k /@ (k).

Proof of Lemma 12.3.10. We begin with the first part of the statement. Let Q be an
anisotropic binary quadratic form over k, with T the associated bilinear form. The
quadratic form Q @ (—1) is isotropic by Lemma 12.3.5, and Q is anisotropic, so Q
represents 1, say Q(x) = 1. Extending to a basis, we may rescale the second basis
element y so that T'(x,y) =0, 1.

* Suppose T(x,y) =0,s0 Q = (1, —b) for b € k*. Since Q is isotropic, b ¢ k2,
so char k # 2, the class b € k*/ K2 is unique, and indeed Q is anisotropic.

* Suppose T(x,y) = 1. If char k # 2, we may complete the square and reduce to
the previous case, so we suppose char k = 2 and Q(x, y) = x> + xy + c¢y* with
¢ € k. Working now with the Artin—Schreier group, since Q is anisotropic we
must have ¢ + p(k) =t + (k) € k, giving uniqueness.

For the second statement, if Q is a binary quadratic form over R whose reduction
modulo p is anisotropic, then we can find a change of basis over k to put Qy in the
unique isometry class found above; lifting this basis, we may suppose that Qy is equal
to this fixed form. The statement then follows by using Hensel’s lemma to lift the
identity between any two such lifts, and it is a nice application of Hensel’s lemma in
two (several) variables: see exercise (Exercise 12.12). O
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We now return to the proof of our theorem.

Proof of Theorem 12.3.4 (chark = 2). We first claim that the form [1, 1,7] @8 (x) is
anisotropic; this follows from a straightforward modification of the argument as in the
proof when char k # 2 above.

We now show this form is the unique one up to similarity. Suppose that Q is a
ternary anisotropic form over R. Let x € V be nonzero; since Q is anisotropic, we
may scale x so that a := Q(x) € R. Since dimV > 3, there exists nonzero y’ € V
such that T'(x, y’) = 0; rescale y’ so that Q(y’) € R. Lety :=x+y’. Then T(x,y) =
T(x,x+y')=aand b := Q(y) € R, so Q on this basis is ax? + axy + b*> =~ [a, a, b].
We compute that disc [a,a,b] = a(a — 4b) = a® (mod p), so disc [a,a,b] € R*
and [a,a, b] is nonsingular; completing to a basis with a nonzero element in the
orthogonal complement and rescaling, we may suppose without loss of generality that
O = la,a,b] B {c) with a,b,c € R and both v(a) = 0,1 and v(c) = 0,1, with
disc Q = a(a — 4b)c. This leaves four cases.

* If v(a) = v(c) = 0, then reducing modulo p we have disc Oy = a®c # 050 Qx
is nondegenerate. By Lemma 12.3.5, Qy is isotropic. Hensel’s lemma (Lemma
12.2.18) applies to Q, showing that Q is isotropic and giving a contradiction—we
omit the details.

* Suppose v(a) = 0 and v(c) = 1. Rescaling by a unit we may suppose ¢ = 7.
The reduction [a, a, b]x modulo p is nondegenerate, so if it is isotropic then
Q is isotropic, a contradiction. Therefore by Lemma 12.3.10, we may suppose
a = 1 and b = t; this is the desired form.

* Next, consider the case v(a) = 1 and v(c) = 0; we may suppose ¢ = 1. If
v(b) > 2, then 7' [a,a,b] ~ [1,1,b/n] so the argument in the previous case
applies to show that Q is isotropic. If v(b) = 1, then we scale z by 7 and divide
Q by « to reduce to the previous case. Finally, if v(b) = 0, we scale y by 7
and 77 [a, a, bn®] ~ [1,1, b(n?/a)] is again isotropic, a contradiction as in the
case v(b) > 2.

e Inthecase v(a) = v(c) = 1,if v(b) > 0 then dividing through by 7 we reduce to
the first case, so we may suppose v(b) = 0. Then we multiply by a and replace
x « ax,and y < y/b and z < z/x to work with [1,a/b,a/b] @ {ac/7>),
which after interchanging x, y reduces to the previous case v(a) = 1, v(c) = 0.

Having exhausted the cases and the reader, the result now follows. O

Corollary 12.3.12. Let F be a nonarchimedean local field with valuation ring R and
uniformizer m € R. Let B be a quaternion algebra over F.
If char k # 2, then B is a division algebra if and only if

B~ (?ﬂ), where e € R* is nontrivial in kx/k><2
and if char F = char k = 2, then B is a division algebra if and only if

B~ [7”), where t € R is nontrivial in k[p(k).
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In Theorem 13.3.11, we rephrase this corollary in terms of the unramified quadratic
extension of F.

Remark 12.3.13. In mixed characteristic where char F = O and chark = 2, in the
extension K = F[x]/(x?+x+1) for ¢ nontrivial in k /¢ (k) we can complete the square
to obtain K = F(r/e) with e € F* \ F*2,

Definition 12.3.14. Let B be a quaternion algebra over . The Hasse invariant of B
is defined to be —1 if B is a division algebra and +1 if B ~ M, (F).

12.4 Hilbert symbol

Let F be a local field with char F # 2. We record the splitting behavior of quaternion
algebras as follows.

Definition 12.4.1. We define the Hilbert symbol

(, )p: F*xF*— {£1}

by the condition that (a, b)r = 1 if and only if the quaternion algebra (%) ~ M, (F)
is split.
The Hilbert symbol is well-defined as a map
FX|F** x FX|F** - {+1}

(Exercise 2.4). By Main Theorem 5.4.4(v), we have (a,b)r = 1 if and only if the
Hilbert equation ax? + by? = 1 has a solution with x, y € F: this is called Hilbert’s
criterion for the splitting of a quaternion algebra.

b . .
Remark 12.4.2. The similarity between the symbols (a?) and (a, b)F is intentional;

but they are not the same, as the former represents an algebra and the latter takes the
value £1.
In some contexts, the Hilbert symbol (a, b) ¢ is defined to be the isomorphism class

b . .
of the quaternion algebra (GT) in the Brauer group Br(F'), rather than +1 according

to whether or not the algebra is split. Conflating these two symbols is not uncommon
and in certain contexts it can be quite convenient, but we warn that it can lead to
confusion and caution against referring to a quaternion algebra or its isomorphism
class as a Hilbert symbol.

Lemma 12.4.3. Let a,b € F*. Then the following statements hold:

(@) (ac®, bd*)r = (a,b)F forall c,d € F*.
() (b,a)r = (a,b)r.

(© (Cl,b)p = (a’ _ab)F = (b’ —Clb)p.

@ (1,a)F =(a,—a)r = 1.

(e) Ifa# 1, then (a,1 —a)r = 1.
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(f) If o € Aut(F), then (a,b)r = (o (a),o(b))F.

Proof. Statements (a)—(c) follow from Exercise 2.4. For (d), the Hilbert equation
x% +ay? = 1 has the obvious solution (x, y) = (1,0). And {a, —a) is isotropic (taking
(x,y) = (1,1)) so is a hyperbolic plane and represents 1 as in the proof of Main
Theorem 5.4.4, or we argue

(a,—a)F = (a,a®)r = (a,1)r = (1,a)p = 1

by Exercise 2.4. For part (e), by Hilbert’s criterion (a, 1 — a)r = 1 since the quadratic
equation ax?+(1—a)y? = 1 has the solution (x, y) = (1, 1). Finally, part (f): the Hilbert
equation ax” +by?> = 1 has a solution with x, y € F if and only if o (a)x*> + o (b)y*> = 1
has such a solution. O

Remark 12.4.4. Staring at the properties in Lemma 12.4.3 and seeking to axiomatize
them, the study of symbols like the Hilbert symbol leads naturally to the definition of
K> (F). In its various formulations, algebraic K-theory (K for the German “Klasse”,
following Grothendieck) seeks to understand certain kinds of functors from rings to
abelian groups in a universal sense, encoded in groups K,,(R) for n € Z>p and R a
commutative ring: see e.g. Karoubi [Kar2010]. For a field F, we have Ky(F) = Z and
K1 (F) = F*. By a theorem of Matsumoto [Mat69] (see also Milnor [Milno71]), the
group K3 (F) is the universal domain for symbols over F:

Ky(F) = (F*®z F)/{a®(l—a):a+0,1).

(The tensor product over Z views F* as an abelian group and therefore a Z-module.)
The map a ® b — (a, b)r extends to a map K»(F) — {*1}, a Steinberg symbol, a
homomorphism from K3 (F) to a multiplicative abelian group. The higher K-groups
are related to deeper arithmetic of commutative rings. For an introduction, see Weibel
[Weib2013] and Curtis—Reiner [CR87, Chapter 5].

We now turn to be quite explicit about the values of the Hilbert symbol. We begin
with the case where F is archimedean. If F = C, then the Hilbert symbol is identically
1. If F = R, then

1, ifa>0orb > 0;
b)p = 1245
(@ bz {—1, ifa<0andb <O0. (12.4.5)

Lemma 12.4.6. The Hilbert symbol defines a nondegenerate symmetric bimultiplica-
tive pairing
(,)p: FX/F? x FX|F*? - {1}.

By bimultiplicativity, we mean that
(a,bc)p = (a,b)p(a,c)r and (ab,c)p = (a,c)p(b,c)F (12.4.7)

for all a, b, ¢ € F* (equivalent, by symmetry).
Keeping in the vibe of this section, we give a proof under the hypothesis that
char k # 2; for a general proof, see Corollary 13.4.6.
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Proof (char k # 2). This lemma can be read off of the direct computation below
(12.4.9), recording what was computed along the way in the proof of Theorem
12.3.4. =

12.4.8. Since the Hilbert symbol is well-defined up to squares, the symbol (a, b)g is
determined by the values with a, b € {1, e, n, enr} where e is a nonsquare in k*. Let
s = (=1)#k=D/2 5o that 5 = 1, —1 according as —1 is a square in k. Then:

(a,b)p ‘ 1 e T en
1 1 1 1 1
e 1 1 -1 -1 (12.4.9)
bg 1 -1 s -s
en 1 -1 -s s

The computation of this table is requested in Exercise 12.15. For example, if a = e, we
showed in the proof of Theorem 12.3.4 that (e, 1) = (e, ) = 1, because ex?+y? —z>
and ex? + ey® — 72 are isotropic.

In general, writing a = agr® (@ and b = bor* ) we have

v(a)v(b)(g-1)/2[ 40 ) (po )"
(@.b)r = (=1) S Gl B s (12.4.10)

where g = #k and

(%) =0,+1=c“ Y2 (mod p) (12.4.11)

is the Legendre symbol: see Exercise 12.16. (Multiplicativity can also be read off of
the formula 12.4.10.)

12.4.12. The following easy criteria follow from 12.4.9 (or (12.4.10)):

(a) If v(ab) =0, then (a,b)r = 1.
(b) If v(a) =0and v(b) = v(r), then

a 1 ifaek*
,b =|—| =
(a.6)rF (p) {—1 ifa e kX k2.

12.4.13. To compute the Hilbert symbol for a local field F with char F = 0 and
char k = 2 is significantly more involved. But we can at least compute the Hilbert
symbol by hand for F' = Q.

To begin, the group Q3 /Q;<2 is generated by —1,-3,2, so representatives are
{*1, £3, +2, +6}. We recall Hilbert’s criterion: (a, b)r = 1 if and only if ax’>+by? = 1
has a solution with x,y € F.

If a, b € Z are odd, then

ax’ + by* = z? has a nontrivial solution in Q,
& a=1(mod4)orb =1 (mod4);
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by homogeneity and Hensel’s lemma, it is enough to check for a solution modulo 4.
This deals with all of the symbols with a, b odd: summarizing, we have in this case

(a,b), = (1)@= E-D/4, (12.4.14)

By the determination above, we see that (=3, b) = —1 for b = +2, +6 and (2,2), =
(=1,2)2 =1 the latter by Hilbert’s criterion, as —1 + 2 = 1; knowing multiplicativity
(Lemma 12.4.6), we have uniquely determined all Hilbert symbols, in particular, for
a € Z odd we have

(a,2), = (=1)@=D/8, (12.4.15)

It is still useful to compute several of these symbols individually, in the same manner
as (12.4.13) (working modulo 8): see Exercise 12.17. We summarize the results here:

(@bp|1 -3 -1 3 2 -6 -2 6
T (1 1 1 1 1 1 1 1
3 (11 1 1 -1 -1 -1 -1
T O T TR T S S
301 1 -1 -1 -1 -1 1 1 (12.4.16)
2 |1 -1 1 -1 1 -1 1 -1
6 |1 -1 1 -1 -1 1 -1 1
2 |1 -1 -1 1 1 -1 -1 1
6 (1 -1 -1 1 -1 1 1 -1

Remark 12.4.17. Analogously, one can define a symbol [a, b)g for the splitting of
quaternion algebras for F' a local field with char F' = 2. This symbol is no longer called
the Hilbert symbol, but many properties remain: in particular, there is still an analogue

b b . . . .
of the Hilbert equation, and [aT is split if and only if bx* + bxy + aby*> = 1 has a

solution with x,y € F.

Exercises

1. Let p be an odd prime. Show
(a) Show the equality

(1-4x)'?=1- i Cpx" € Z[[x]]

n=1
of formal series in x with coefficients in Z, where

1 2
)

n::2n—1 n

are the Catalan numbers. [Hint: use binomial expansion.]
(b) Let p be an odd prime. Show that the squaring map is bijective on 1+ pZ,,.
[Hint: show that the series expansion in (a) converges in Z,.]
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Recall that a topological space is T, if for every pair of distinct points, each
point has an open neighborhood not containing the other.

(a) Show that a topological space X is T if and only if {x} is closed for all
x e X.

(b) Let G be a topological group. Show that G is Hausdorff if and only if G
is T] .

. In this exercise we prove some basic facts about topological groups. Let G be a

topological group.
(a) Let H < G be a subgroup. Show that H is open if and only if there exists
h € H and an open neighborhood of / contained in H.
(b) Show that if H < G is an open subgroup, then H is closed.
(c) Show that a closed subgroup H < G of finite index is open.
(d) Suppose that G is compact. Show that an open subgroup H < G is of finite
index, and that every open subgroup contains an open normal subgroup.

Let G be a topological group. Let U > 1 be an open neighborhood of 1.
(a) Show that there exists an open neighborhood V € U of 1 € V such that
V2=V.V CU. [Hint: Multiplication is continuous. |
(b) Similarly, show that there exists an open neighborhood V.C U of 1 € V
such that V-1V C U.

. Let G be a topological group and let H < G be a closed subgroup. Equip G/H

with the quotient topology. Show that G /H is Hausdorff. [Hint: Use Exercise
12.4(b).]

Let k be afinite field andlet O : V — k be a ternary quadratic form. Show that QO
is isotropic. [Hint: Reduce to the case of finding a solution to y* = f(x) where
f is a polynomial of degree 2. If #k is odd, count squares and the number of
distinct values taken by f(x) in k. Second approach: reduce to the case where
#k is odd, and show that x* + y* represents a nonsquare, since the squares
cannot be closed under addition!] [This repeats Exercise 5.5!]

Let k be a finite field with char k # 2 and let e € k™. Show directly that there is
an isometry (—1,e) ~ (1, —e).

Let R be a DVR with field of fractions F, let a,b,c € F be nonzero and
let O = (a,—b,—c). Show that Q is similar over F to (1,-b’,—c’) with
0=v(b") < v(c’). [Hint: first get v(a),v(b),v(c) € {0,1}.]

Let k be a finite field with even cardinality. Show that #k /¢ (k) = 2, where @ (k)
is the Artin-Schreier group.

By Theorem 12.2.15, a complete archimedean local field is isomorphic to R or
C. Extend this classification to division algebras as follows.

The notion of absolute value (Definition 12.2.2) extends to a division algebra
without modification, as does the notion of archimedean and nonarchimedean.

(a) Show that H has an absolute value |a| = y/nrd(«) for @ € H.
(b) Let D be a division algebra equipped with an absolute value | |. Show
that if | | is archimedean, then char D = 0 and if the restriction of | | to its
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center Z(D) is archimedean.

(c) Show that every division algebra complete with respect to an archimedean
absolute value is isomorphic to R, C, or H and with the absolute value
equivalent to the absolute value |@| = Vnrd @ in each case. [Hint: recall
Theorem 3.5.1.]

Prove Lemma 12.2.18 using Lemma 12.2.17. [Hint: let j be the index that
achieves the minimal valuation among partial derivatives, and consider the
restriction f(ai,...,a;-1,X,aj41,...,a,) € R[x] to one variable. ]

In this exercise, we consider an extension of Hensel’s lemma to several polyno-
mials (in several variables).
Let F be a nonarchimedean local field with valuation v and valuation ring R.

(a) Let f1,...,fu € R[x1,...,x,] be polynomials with n > 1. Leta € R"
have m := min; v(f;(a)). Let
dfi

Dy := (Ej(a)) € M,(R).

L]

Suppose m > 2v(detDy (a)). Show that there exists @ € R" such that
fi(a) =0foralli =1,...,nand @ = a (mod p™). [Hint: by Taylor
expansion, write f(a + n'x) = f(a) + Dy(a)p'x + p*r(x) in vector
notation witht > m, and iteratively solve the system in a manner analogous
to Newton’s method. See Conrad [Con] for a complete development. |

(b) Show that (a) also holds more generally if the number of polynomials r has
r < n and there exists an r X r matrix minor of D (a) whose determinant
has valuation < m/2. [Hint: see Exercise 12.11.]

(c) Finish the proof of Lemma 12.3.10 as follows. Let Q,Q’ be two binary
quadratic forms over R such that their reductions Qy, Q; are anisotropic.
Show that Q =~ Q’. [Hint: reduce to the case where Qr = Q). If
O = (1,—e), rescale the basis using a plain vanilla flavor of Hensel’s
lemma. If Qx =~ [1,1,t], reduce to showing that Q ~ [1,1,t]. Consider
a general change of variables in GL,(R) from [1, 1,t] that reduces to the
identity modulo p and apply the deluxe version of Hensel’s lemma in part
(b) to the resulting system of three equations in four unknowns: there is a
minor with determinant 1 — 4t € R*.]

Let F' # C be a local field and let Q be a nondegenerate ternary quadratic form
over F. Let K 2 F be a quadratic field extension. Show that Q is isotropic over
K.

Give another proof of Lemma 12.4.6 that the local Hilbert symbol is bimulti-
plicative using Example 8.2.2 and the Brauer group (section 8.3).

Show that the table of Hilbert symbols (12.4.9) is correct.

One can package 12.4.8 together with multiplying by squares to prove the fol-
lowing more general criterion. Let F be a nonarchimedean local field with
uniformizer 7, valuation v with v(xr) = 1, and residue field k. Let g = #k and
suppose ¢ is odd.
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Show that for a, b € F*, if we write a = aoﬂ"(“) and b = boﬂ'v(b), then

_ ap V(b) b() V(a)
(a,b)p = (~1)V@vB)(g-D/2[Z0 bo '
9 7T 7T

Show that the table of Hilbert symbols (12.4.16) is correct by considering the
equation ax” + by> = 1 (mod 8).

Prove a descent for the Hilbert symbol, as follows. Let K be a finite extension
of the local field F with char F # 2 and let a,b € F*. Show that (a,b)x =
(a,Nmg r(b))r = (Nmg |r(a), b)F.

Show that the Hilbert symbol is Galois equivariant, in the following sense: for all

field automorphisms o € Aut(F) and all a, b € F*, we have (o (a),o(b))r =
(a,b)F.






Chapter 13

Quaternion algebras over local fields

In this chapter, we approach the classification of quaternion algebras over local fields
in a second way, using valuations.

13.1 Extending the valuation

Recall (section 12.1) the valuation v = v, on Q,, measuring divisibility by p. We
have
Z, ={x €Qp : v(x) > 0}, and
PZy, ={x € Qp : v(x) > 0};

Indeed, these can profitably be taken as their definition.
For any finite extension K 2 Q,, of fields, there is a unique valuation w on K such
that w|g, = v (so w extends v), defined by

(13.1.1)

v(Nmg g, (x))

13.1.2
K:Q,] (13.12)

w(x) =

The integral closure of Z,, in K is the valuation ring {x € K : w(x) > 0} 2 Z,, and
its unique maximal ideal is {x € K : w(x) > 0}, asin (13.1.1).

For example, there is a unique unramified quadratic extension K of Q,: we have
K = Qp(+/e), where e = =3 for p = 2 and otherwise e € Z is a quadratic nonresidue
modulo p for p odd. It is common to write K = Q,,> for this field and Z . for its
valuation ring, since the residue field of K is F 2.

In a completely parallel fashion, let B be a division quaternion algebra over Q.
Then there is again a unique valuation w extending v, defined by

w: B — RU {oo}

v(nrd(a)) (13.1.3)
_—_—".
2
The valuation ring
O:={aeB:w(a) =0} (13.1.4)

195
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is the unique (!) maximal R-order in B, consisting of all elements of B that are integral
over Z,,. The set
P:={a € B:w(a)>0} (13.1.5)

is the unique maximal two-sided (bilateral) ideal of O.
Using the unique extension of the valuation, we obtain the following main result
of this chapter (a special case of Theorem 13.3.11).

Theorem 13.1.6. Let g := p>. Then the following statements hold.

(a) There is a unique division quaternion algebra B over Qp, up to isomorphism
o)

Q )

(b) The valuation ring of Bis O ~Z, ® Z,j.

(¢) The maximal ideal P = Oj has P*> = pO and O/P ~ Zq/pZg = Fy.

given by B ~

The method of proof used in this classification can also be used to classify central
division algebras over local fields in much the same manner.

13.2 Valuations

To begin, we briefly review extensions of valuations; for further reading, see the
references given in section 12.2.

Let R be a complete DVR with valuation v: R — Zso U {0}, field of fractions
F, maximal ideal p generated by a uniformizer 7 (with v(xr) = 1), and residue field
k := R/p. Then R is an integrally closed PID (every ideal is a power of the maximal
ideal p),and R = {x € F : v(x) > 0}. Let | |,, be an absolute value attached to v, as in
(12.2.11).

Let K 2 F be a finite separable extension of degree n := [K : F]. Then in fact K
is also a nonarchimedean local field; more precisely, we have the following lemma.

Lemma 13.2.1. There exists a unique valuation w on K such that w|g = v, defined by

_ v(Nmg|r(x))

w(x) = K Fl (13.2.2)

The integral closure of R in K is the valuation ring
S:={x e K:w(x) >0}
When w|g = v, we say that w extends v.

Proof. See e.g. Neukrich [Neu99, Chapter II, Theorem (4.8)], Cassels [Cas86, Chapter
7, Theorem 1.1], or Serre [Ser79, Chapter II, §2, Proposition 3]. O

By the same token using (13.2.2), there exists a unique absolute value | |,, on K
which restricts to | |, on F; we pass freely between these two formulations.
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13.2.3. We say K 2 F is unramified if a uniformizer  for F is also a uniformizer for
K. We say K 2 F is totally ramified if a uniformizer 7x has the property that 7 is
a uniformizer for F.

In general, there is a (unique) maximal unramified subextension K, € K, and the
extension K 2 Ky, is totally ramified.

We say that ¢ = [K : Ky,] is the ramification degree and f = [Ky, : F] the inertial
degree, and the fundamental equality

n=[K:F]l=ef (13.2.4)
holds.

13.2.5. Suppose that F is a local field (equivalently, the residue field £ is a finite field).
Then for all f € Z>1, there is a unique unramified extension of F of degree f and such
a field corresponds to the unique extension of the residue field k of degree f. In an
unramified extension K 2 F of degree [K : F] = f, we have Nmg | (K*) = R*nfZ,
so b € Nmg r (K*) if and only if f | v(b).

If char k # 2, then by Hensel’s lemma, the unramified extension of degree 2 is
given by adjoining a square root of an element of R which reduces to the unique
nontrivial class in k*/k>?; if char k = 2, then the unramified extension of degree 2
is given by adjoining a root of the polynomial x> + x + ¢ where ¢ € R reduces to an
element which is nontrivial in the Artin-Schreier group k /@ (k) (recalling 12.3.11).

Before proceeding further, we describe local fields by their defining polynomials—
we will need this later in the study of norms and strong approximation.

Lemma 13.2.6 (Krasner’s lemma). Let K 2 F be a finite, Galois extension with
absolute value ||,,. Let a,B € K, and suppose that for all o € Gal(K | F) with
o(a) # a, we have

la - Blw < |a—o(a)l|y. (13.2.7)

Then F(a) C F(B).

Intuitively, we can think of Krasner’s lemma as telling us when g is closer to @
than any of its conjugates, then F () contains «. It is for this reason that we state the
lemma in terms of absolute values (instead of valuations).

Proof. Let o € Gal(K | F(f)) have o (@) # a. Then by the ultrametric inequality,

lo(@) —alw =lo(a) - B+ - alw < max(|o(a) - Blw. |8 - alw)

(13.2.8)
= max(|o(a = B)|w, |8 - alw) = |a - Blw,
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the final equality a consequence of (13.2.2) and the fact that Galois conjugates have the
same norm. This contradicts the existence of o, so o (@) = a forall o € Gal(K | F(B)).
By Galois theory, we conclude that F(a) C F(8). O

Corollary 13.2.9. Let f(x) = x"* + ap_1x"" ' +-- -+ ag € F[x] be a separable, monic
polynomial. Then there exists 8 > 0 such that whenever g(x) = X" +b,_1x" '+ - +bg €
F[x] has |a; — bi|, < 6, then

Flx]/(f(x)) = F[x]/(g(x)).
In particular, if f(x) is irreducible then g(x) is irreducible.

Proof. Since f(x) is separable, its discriminant disc( f) is nonzero. The discriminant
is a polynomial function in the coefficients, so by continuity (multivariate Taylor
expansion), there exists §; > O such thatif g(x) = x"+---+by € F[x] has |a; —b;|, <
6y for all i, then |disc(g) — disc(f)|, < [|disc(f)],; by the ultrametric inequality,
we conclude that for such g(x) we have |disc(g)|, = |disc(f)|, so in particular
disc(g) # 0.

Let g(x) be as in the previous paragraph; then g(x) is separable. We first consider
the case where f(x) is irreducible. Let K 2 F be a splitting field for the polynomials
fx) =TI (x—a;) € K[x] and g(x) = [T, (x = B:). Let | |,, on K extend | |,,. Let

€ :=min|a; — . (13.2.10)
i#]
Finally, let
p(2) = p(bos....bu1) = [ sler) = [ [ (ai = By). (13.2.11)
i=1 i,j=1
The map g — p(g) is again a polynomial in the coefficients by, ..., b,—; (indeed,

it is a polynomial resultant). Therefore there exists 6 > 0, with § < d1, such that if
la; — bi|, < 6, then |p(g)|w < €. Therefore in (13.2.11), there exists i, j such that
|a; — Bjlw < €. Together with (13.2.10), we have

la; = Bjlw < € < |a; — aklw

for all k # i. By Krasner’s lemma (Lemma 13.2.6), we conclude that F'(a;) € F(;).
Since f(a;) = g(B;) = 0 and f is irreducible, we have

[Fla;) : Fl=n<[F(B;): F] <n
so in fact [F(B;) : F] =nand F(a;) = F(B;). Finally,
Flx]/(f(x)) = F(a;) = F(B;) = F[x]/(g(x))

as desired.

The case when f(x) = fi(x) - - f; (x) is reducible follows by repeating the above
argument on each factor, and finishing using the continuity of multiplication among
the coefficients: the details are requested in Exercise 13.17. O
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13.3 Classification via extensions of valuations

We now seek to generalize this setup to the noncommutative case; we retain the
notation from the previous section. Let D be a central (simple) division algebra over
F with dimg D = [D : F] = n>. We extend the valuation v to a map

w:D — RU {co}
v(Nmpr(@))  v(nrd(a)) (13.3.1)
[D:F] no

where the equality follows from the fact that Nmp r (o) = nrd(«)” (see section 7.8).

Lemma 13.3.2. The map w is the unique valuation on D extending v, i.e., the following
hold:

(1) w(a) = ifand only if @ = 0.

(i) w(ap) =w(a) +w(B) =w(Ba) forall a, B € D.
(iii)) w(a +B) = min(w(a), w(p)) forall a, B € D.
(iv) w(D*) is discrete in R.

Proof. Since D is a division ring, statement (i) is immediate. Statement (ii) follows
from the multiplicativity of nrd and v. To prove (iii), we may suppose 8 # 0 and so
B € D*. We have

w(@+p) =w((@p +1)B) =w(ap™ +1) +w(B).

But the restriction of w to F(afB™!) is a discrete valuation, thus w(eg8™' + 1) >
min(w(aB"), w(1)) and by (ii) w(a + 8) > min(w(e), w(B)), as desired. Finally,
(iv) holds since w(D*) C v(F*)/n and the latter is discrete. The valuation is unique
because it is unique whenever it is restricted to a subfield. O

13.3.3. From Lemma 13.3.2, we say that w is a discrete valuation on D since it
satisfies the same axioms as for a field. It follows from Lemma 13.3.2 that the set

O:={aeD:w(a) >0}
is aring, called the valuation ring of D.

Proposition 13.3.4. The ring O is the unique maximal R-order in D, consisting of all
elements of D that are integral over R.

Proof. First, we prove that
O ={a € D : «ais integral over R}. (13.3.5)

We first show the inclusion (2) of (13.3.5), and suppose @ € D is integral over
R. Since R is integrally closed, by Lemma 10.3.5 the coefficients of the minimal
polynomial f(x) € F[x] of @ belong to R. Since D is a division ring, f(x) is
irreducible and hence the reduced characteristic polynomial g(x) is a power of f(x)
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and thus has coefficients in R. Up to sign, the constant coefficient of g(x) is nrd(«a),
so w(a) = v(nrd(a@)) > 0, hence @ € O.

Next we prove (C) in (13.3.5). Suppose a € O, so that w(a) > 0, and let
K = F(a). Let f(x) € F[x] be the minimal polynomial of . We want to conclude
that f(x) € R[x] knowing that w(a) > 0. But the restriction of w to K is the unique
extension of v to K, and this is a statement about the extension K 2 F of fields and
therefore follows from the commutative case, Lemma 13.2.1.

We can now prove that O is an R-order. Scaling an element of D* by an appropriate
power of & gives it positive valuation, so OF = D. To conclude, we must show that O
is finitely generated as an R-module. Recall that D is a central division algebra over F,
hence a separable F-algebra, so we may apply Lemma 10.3.7: every a € O is integral
over R and O is aring, and the lemma implies that O is an R-order.

Finally, it follows immediately that O is a maximal R-order: by Corollary 10.3.3,
every element of an R-order is integral over R, and O contains all such elements. O

Remark 13.3.6. For a quaternion division algebra D, we can argue more directly in
the proof of Proposition 13.3.4 using the reduced norm: see Exercise 13.4.

13.3.7. It follows from Proposition 13.3.4 that O is a finitely generated R-submodule
of D. But R is a PID so in fact O is free of rank [D : F] as an R-module. We have

O*={aeD:wa)=0} (13.3.8)

since w(a™') = —w(a), and in particular @ € OX if and only if nrd(a) € R*.
Consequently,

P:={aeD:w(a)>0}=0\0% (13.3.9)

is the unique maximal two-sided (bilateral) ideal of O, as well as the unique left or
right ideal of O. Therefore O is a noncommutative local ring, a noncommutative
ring with a unique maximal left (equivalently, right) ideal.

13.3.10. Let B € P have minimal (positive) valuation w(f) > 0. Then for all
0+# a e Pwehave w(af™") =w(a) —w(B) > 0soaB™! € Oand @ € OB. Arguing
on the other side, we have also @ € BO. Thus P = OB = SO = OB0.

Arguing in the same way, we see that every one-sided ideal of O is in fact two-sided,
and every two-sided ideal of O is principally generated by any element with minimal
valuation hence of the form P” for some r € Z.

We are now prepared to give the second proof of the main result in this chapter
(Main Theorem 12.3.2). We now add the hypothesis that F is a local field, so that & is
a finite field. We recall the notation 6.1.5.

Theorem 13.3.11. Let F be a nonarchimedean local field. Then the following state-
ments hold.

(a) There is a unique division quaternion algebra B over F, up to F-algebra iso-

morphism given by
Ks
B N (_ﬂ.)’

F

where K is the unique quadratic unramified (separable) extension of F.



13.3. CLASSIFICATION VIA EXTENSIONS OF VALUATIONS 201

(b) Let B be as in (a). Then the valuation ring of B is O ~ S & Sj, where S is the
integral closure of R in K. Moreover, the ideal P = Oj is the unique maximal
ideal; we have P*> = 7O, and O/P 2 R/p is a quadratic extension of finite
fields.

Proof. We begin with existence in part (a), and existence: we prove that B = (K, | F)
is a division algebra. We recall that B is a division ring if and only if 7 ¢ Nmg r (K*)
by Main Theorem 5.4.4 and Theorem 6.4.11. Since K 2 F is unramified, we have
Nmg | (K*) = R*7*2 by 13.2.5. Putting these together gives the result.

Continuing with (a), we now show uniqueness. Let B be a division quaternion
algebra over F. We refer to 13.3.10, and let P = OB. Then w(pB) € %Z>o, o)

w(B) < w(r) = v(n) =1 < 2w(B) = w(B>); (13.3.12)

we conclude that 3O = P 2 70 2 P?> = 20. The map a +— af yields an
isomorphism O/P = P/P? of k-vector spaces, so

4 = dimy (O/70) < dimy(O/P?) = dimg (O/P) + dimg (P/P?) = 2dimy (O/P)
(13.3.13)
and thus dimy (O/P) > 2, with equality if and only if 7O = P2,

As in (13.3.9), we have O \ P = O%, so the ring O/P is a division algebra over
k and hence a finite division ring. By Wedderburn’s little theorem (Exercise 7.29),
we conclude that O/P is a finite field! So there exists i € O such that its reduction
generates O/P as a finite extension of k. But i satisfies its reduced characteristic
polynomial, a monic polynomial of degree 2 with coefficients in R, so its reduction
satisfies a polynomial of degree 2 with coefficients in k. Since i is a generator, we
conclude [O/P : k] < 2. Together with the conclusion of the previous paragraph,
we conclude that [O/P : k] = dimg (O/P) = 2, in other words O/P is a (separable)
quadratic field extension of k. It then follows from 13.2.5 that K := F(i) is the unique,
unramified (separable) quadratic extension of F'. Therefore equality holds in (13.3.13)
and P? = 70. Since >0 = P? = 1O, we have w(f) = 1/2.

By Exercise 6.2 or 7.26, there exists b € F* suchthat B ~ (K, b | F). Recalling the
first paragraph above, since B is a division algebra, we have b ¢ Nmg | (K*) = R*n?%,
Applying Exercise 6.4, we may multiply » by a norm from K*, so we may suppose
b = m, and therefore B ~ (K, | F). This concludes the proof of (a).

We turn now to (b), with B = (K, 7 | F) = K+Kj with j> = 7. Leta =u+vj € B
with u,v € K. Then nrd(e) = Nmg |r () — 7 Nmg | (v) =x —ny with x,y € F and
v(x) even and v(mry) odd (as norms from K). By the ultrametric inequality, we have
w(a) = v(nrd(@)) > 0if and only if v(x),v(y) > 0if and only if u,v € S (as S is the
valuation ring of K). Therefore O = S + Sj. Since j> = &, we have w(j) = 1/2, so
jO = P. The remaining statements were proven in the course of proving (a). m}

Corollary 13.3.14. Let F # C be a local field. Let K be the unramified quadratic
extension of F, with (o) = Gal(K | F). Then the F-subalgebra

B= {(a?v) (T"(;)) cuve K} c My (K)

is the unique division quaternion algebra over F (up to isomorphism).



202 CHAPTER 13. QUATERNION ALGEBRAS OVER LOCAL FIELDS

Proof. Using Theorem 13.3.11(a), we split B over K as in 2.3.4. (We may also put 7
below the diagonal as in 2.3.12.) O

13.4 Consequences
We now observe a few consequences of Theorem 13.3.11.

Corollary 13.4.1. Let F be a nonarchimedean local field with valuation v, let K be
a separable, unramified quadratic F-algebra, and let B = (K,b | F) with b € F*. If
v(b) =0, then B =~ M(F).

Proof. Either K ~ F X F or K 2 F is the unique unramified quadratic field extension.
In the first case, K has a zerodivisor so B ~ M, (F'). In the second case, we conclude as
in the first paragraph of the proof of Theorem 13.3.11, since b € R* < Nmg r (K*).

O

13.4.2. Let B be a division quaternion algebra over F. In analogy with the case of
field extensions (13.2.4), we define the ramification index of B over F as e(B|F) = 2
since P> = 7O, and the inertial degree of B over F as f(B|F) = 2 since B contains
the unramified quadratic extension K of F, and note the equality

e(B|F)f(B|F) =4=[B:F],

as in the commutative case. (Viewed in this way, B is obtained from first an unramified
extension and then a “noncommutative” ramified extension.)

Remark 13.4.3. Theorem 13.3.11, the fundamental result describing division quater-
nion algebras over a local field, is a special case of a more general result as follows.
Let R be a complete DVR with maximal ideal p = 7R and F := Frac(R).

Let D be a (finite-dimensional) division algebra over F, and let O C D be the
valuation ring and P C O the maximal ideal. Then P¢ = pO for some e > 1, called the
ramification index; the quotient O/ P is a division algebra over the field k = R/p, and
we let the inertial degree be f = dimy (O/P). Then ef = dimp D = n*; moreover,
if k is finite (F is a local field), then e = f = n. For a proof, see Exercise 13.11; or
consult Reiner [Rei2003, Theorems 12.8, 13.3, 14.3]. However, the uniqueness of D
up to F-algebra isomorphism no longer holds. If F is a local field, then the possibilities
for D are classified up to isomorphism by a local invariant inv D € (%Z) |/Z ~ Z[nZ.
These patch together to give a global result: see Remark 14.6.10.

This classification can be further extended to an arbitrary central simple algebra
B =~ M,,(D) over F: see Reiner [Rei2003, §17-18].

Splitting of local division quaternion algebras over extension fields is given by the
following simple criterion.

Proposition 13.4.4. Let B be a division quaternion algebra over a local field F, and
let L be a separable field extension of F of finite degree. Then L is a splitting field for
B ifand only if [L : F] is even.
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Proof. If F is archimedean, then either F' = C and there is no such L, or F = R and
B =H and L = C, and the result holds. So suppose F is nonarchimedean. We have
B ~ (K,n | F) where K is the unramified quadratic extension of F. Let ¢, f be the
ramification index and inertial degree of L, respectively. Then [L : F] =n = ef, and
n is even if and only if e is even or f is even. But f is even if and only if L contains
an unramified quadratic subextension, necessarily isomorphic to K; but then K splits
B so L splits B.

Having established the claim when f is even, suppose that f is odd. Then L is
linearly disjoint from K and K ® L = KL is the unramified quadratic extension of
L. Therefore B®r L ~ (KL,7 | L). Let Ry, be the valuation ring of L and let 7,
be a uniformizer for L. Then Nmg ;. (KL*) = RinQLZ. We have 7 = un{ for some
u € RY. Putting these together, we see that B ® L is split if and only if 7 is a norm
from KL if and only if e is even. O

As a consequence, B contains every separable quadratic extension of F.

Corollary 13.4.5. If B is a division quaternion algebra over a local field F and K 2 F
is a separable quadratic field extension, then K — B.

Proof. Combine Proposition 13.4.4 with Lemmas 5.4.7 and 6.4.12. [

We repeat now Lemma 12.4.6, giving a proof that works without restriction on
characteristic.

Corollary 13.4.6. If char F # 2, then the Hilbert symbol defines a symmetric, nonde-
generate bilinear form on F*|F*2.

Proof. Let K := F[x]/(x> — a). The Hilbert symbol gives a well-defined map of sets

FX|F** — {+1}
b+ (a,b)p

and we may conclude as in Lemma 12.4.6 if we show that this is a nontrivial group
homomorphism.

First we show it is nontrivial. By Corollary 13.4.5, the field K embeds in the
division quaternion algebra B, so by Exercise 2.5, there exists b such that B =~ (a, b |
F), whence (a,b)r = —1.

Next, we show it is a homomorphism. We appeal to Main Theorem 5.4.4. We have
(a,b)r = lif and only if b € Nmg r (K*). So we reduce to showing that if (a, b)r =
(a,b’)p = —1for b,b’ € F*, then (a, bb’)r = 1. But by Corollary 7.7.6, since there
is a unique division quaternion algebra, we conclude that b/b’ € Nmg | (K*); thus
bb’ = (b")2(b/b’) € Nmg | (K*) and (a,bb’ | F) =~ My(F) so (a,bb’)r =1, as
claimed. O

Remark 13.4.7. The proof of Corollary 13.4.6 (pairing with any F*/F*?) shows that

F*/Nmg | (K*) = Z/2Z. (13.4.8)
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Conversely, if we know (13.4.8) then the properties of the Hilbert symbol are immedi-
ate. Although it was not hard to prove (13.4.8) when char k # 2, to establish its truth
when chark = 2, one is led to study higher ramification groups (e.g. Serre [Ser79,
Chapter XV]) eventually leading to local class field theory.

The norm groups played an important role in the proof above, so we conclude by
recording the image of the reduced norm nrd(BY) C F'.

Lemma 13.4.9. We have

RX, ifB~H;
nrd(BX) =4 >0 U .
F*,  otherwise.

Moreover, if F is nonarchimedean and O C B is a maximal R-order, then
nrd(O*) = R*.

Proof. If B =~ M, (F) is split, then nrd(B*) = det(GL,(F)) = F*. So suppose B is a
division algebra. If B =~ H then nrd(B*) = R ,, so we suppose F is nonarchimedean.
Then B =~ (K, | F) where as above K is the unramified quadratic extension of F and
7 is a uniformizer. But F* = R* x (rr), and nrd(K*) = Nmg |r (K*) = R*7*% and
nrd(j) = z. The result then follows by multiplicativity of the norm.

The second statement follows similarly: if B ~ My(F) then O ~ M,(R) and
nrd(O*) = det(GL,(R)) = R*; otherwise O =~ (S,7 | R) where S is the ring of
integers of K, and nrd(S*) = Nmg |7 (S*) 2 R* and again nrd(j) = 7. O

13.5 Some topology

In this section, we dive into the basic topological adjectives relevant to the objects we
have seen and that will continue to play an important role. Throughout, let F be a
local field.

13.5.1. F is a locally compact topological field (by definition) but F is not itself
compact. The subgroup F* = F \ {0} is given the topology induced from the
embedding

F*—S FxF
X - (x,x_l);

it turns out here that this coincides with the subspace topology F* C F (see Exercise
13.15(a)). Visibly, F* is open in F so F* is locally compact.

If F is nonarchimedean, with valuation ring R and valuation v, then F* is totally
disconnected and further

R*={xeR:v(x)=0}CR
is closed so is a topological abelian group that is compact (and totally disconnected).

Now let B be a finite-dimensional F-algebra.
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13.5.2. Asan F-vector space, B has a unique topology compatible with the topology on
F as all norms on a topological vector F-space extending the norm on F are equivalent
(the sup norm is equivalent to the sum of squares norm, etc.): see Exercise 13.13. In
particular, two elements are close in the topology on B if and only if their coefficients
are close with respect to a (fixed) basis: for example, two matrices in M,, (F') are close
if and only if all of their coordinate entries are close. (Of course, the precise notion
of “close” depends on the choice of norm.) Consequently, B is a complete, locally
compact topological ring, taking a compact neighborhood in each coordinate.

13.5.3. The group B* is a topological group, with the topology given by the embedding
BX 3 a — (a,a”') € B x B. This topology coincides with the subspace topology
(see Exercise 13.15(b)). From this, we can see that B* is locally compact: the norm
Nmpg|r: B* — F* is a continuous map, so B* = le;llF(FX) is open in B, and an
open subset of a Hausdorff, locally compact space is locally compact in the subspace

topology (Exercise 13.15(c)).

Example 13.54. If B = M,,(F), then B* = GL,(F) is locally compact: a closed,
bounded neighborhood that avoids the locus of matrices with determinant O is a
compact neighborhood. When F is archimedean, this is quite visual: a matrix of
nonzero determinant is at some finite distance away from the determinant zero locus!
Note however that GL,, (F) is not itself compact: already F* = GL; (F') is not compact.

Now suppose F' is nonarchimedean with valuation v and valuation ring R.

13.5.5. We claim that R is the maximal compact subring of F. Indeed, x € F lies
in a compact subring if and only if v(x) > 0 if and only if x is integral over R. The
only new implication here is the statement that if v(x) < O then x does not lie in a
compact subring, and that is because the sequence x, = x" does not have a convergent
subsequence as |x,| — oo.

Next, let O be an R-order in B.

13.5.6. Choosing an R-basis, we have an isomorphism O =~ R", and this isomorphism
is also a homeomorphism. Therefore, O is compact as the Cartesian power of a
compact set. The group O* is therefore also compact because it is closed: for y € O,
we have y € O* if and only if Nmp r(y) € R*, the norm map is continuous, and
R*={x € R:v(x) =0} C R isclosed.

Example 13.5.7. ForR =Z, C F =Q,, and B = M,,(Q),), the order O = M,,(Z},) is
compact (neighborhoods of a matrix can be taken as neighbhoods in each coordinate)
and the subgroup O* = GL,,(Z,) is compact: there is no way to “run off to infinity”,
either in a single coordinate or via the determinant.

13.5.8. Suppose B = D is adivision algebra. Then the valuation ring O is the maximal
compact subring of B, for the same reason as in the commutative case (see 13.5.5,
details requested in Exercise 13.18(a)). There is a filtration

O>P>P> ...
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giving rise to a filtration
O*>1+P>1+P*>.... (13.5.9)

As in the second proof of Main Theorem 12.3.2, the quotient O/ P is a finite extension
of the finite residue field k, so (O/P)* is a finite cyclic group. The maximal two-sided
ideal P is principal, generated by an element j of minimal valuation, and multiplication
by j" gives an isomorphism O/P = P"/P™*! of k-vector spaces (or abelian groups)
foralln > 1.

Furthermore, for each n > 1, there is an isomorphism of groups

O/P = P"/P™! = (1+ P")/(1 + P™)

a—1+a.

(13.5.10)

Therefore, O* = 1&1 (O/P™)* is a projective limit of solvable groups, also called a
n
prosolvable group.

Example 13.5.11. If B is a division quaternion algebra over Q,, with valuation
ring O and maximal ideal P, then the filtration (13.5.9) has quotients isomorphic to
O/P ~ sz.

13.5.12. We will also want to consider norm 1 groups; for this, we suppose that B is
a semisimple algebra. Let

B! := {a € B:nrd(a) = 1};

some authors also write SL; (B) := B'. Then B! is a closed subgroup of B*, since the
reduced norm is continuous.

If B is a division ring and F is archimedean, then B ~ H and B' ~ H' ~ SU(2) is
compact (it is identified with the 3-sphere in R*). In a similar way, if B is a divison ring
and F is nonarchimedean, then B! is compact: for B has a valuation v and valuation
ring O, and if @ € B has nrd(a) = 1 then v(a@) = 0 and @ € O, and consequently
B! € O%is closed in a compact set so compact.

If B is not a division ring, then either B is the product of two algebras or B is a
matrix ring over a division ring, and in either case B! is not compact.

Remark 13.5.13. The locally compact division algebras over a nonarchimedean field
are necessarily totally disconnected. On the other hand, it is a theorem of Pontryagin
[War89, Theorem 27.2] that if A is a connected locally compact division ring, then A
is isomorphic as a topological ring to either R, C, or H.

Exercises

1 LetB'—(_l’_l)
. : o)

(a) Show that B is a division ring that is complete with respect to the discrete
valuation w defined by w(t + xi + yj + zij) = v(t> + x> + y* + 7°) for
1,x,y,2 € Q.
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(b) Prove that

Vit itii
i+j+ij c
2

O=Z0Z)i®Zyj ®Z B

is the valuation ring of B.

. Let B be a division quaternion algebra over a nonarchimedean local field F.

Give another proof that the unramified quadratic extension K of F embeds in B
as follows.

Suppose it does not: then for all @ € O, the extension F(a) 2 F is ramified,
so there exists @ € R such that @ —a € P N K(a); let P = jO and write
@ = ag = a+ jay, and iterate to conclude that @ = 3, ; a,j" with a, € R. But
F(j) is complete so O C F(j), a contradiction.

. Let F be a local field with F # C, let K the unramified (separable) quadratic

extension of F (take K = Cif F ~ R), and let (o) = Gal(K | F), so that ¢ is the
standard involution on K. Let B be a division quaternion algebra B over F.
Show that

~ {(no-a(b) o-(ba)) ta,be K} C My (K).

[Hint: Compute the regular representation 2.3.8.] Identify the maximal order
O its maximal ideal J under this identification.

. Let B be a division quaternion algebra over F. Show that o € B is integral over

R if and only if nrd(«), nrd(a + 1) € R if and only if w(a), w(a +1) > 0, where
w is the valuation on B.

. Extend Theorem 13.3.11 as follows. Let R be a complete DVR with field of

fractions F, and let B be a quaternion division algebra over . Show that
B =~ %b) where K 2 F is an unramified separable quadratic extension of F'
and b ¢ Nmg r (K*).

Let F be a nonarchimedean local field with residue field k& having char k # 2,
and let K 2 F be a separable quadratic field extension.

(a) Let b € F*. Show that if K is unramified then » € Nmg r(K*) if and
only if v(b) is even; and if K = F(+/a) is ramified, then b € Nmg |r (K*)
if and only if b = ¢? or b = —ac? for some ¢ € F*?.

(b) Show that [F* : Nmg r(K*)] = 2 and deduce Corollary 13.4.6 in this
case.

. Let R := Q[[¢]] be the ring of formal power series over Q; then R is a complete

DVR with fraction field F = Q((¢)), the Laurent series over Q. Let By := (a, b |
Q) be a division quaternion algebra over Q, and let B := By ®q F = (a,b | F).
Show that B is a division quaternion algebra over F, with valuation ring O :=
R+Ri+Rj+Rij.

. Let B be a division quaternion algebra over a nonarchimedean local field F, and

let O be the valuation ring.
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(a) Show that every one-sided (left or right) ideal of O is a power of the
maximal ideal P and hence is two-sided.
(b) Let
[O,0] :={aB - Ba:a,BcO)

be the commutator ideal [O, O] of O, the two-sided ideal generated by
commutators of elements of O. Show that P = [O, O].

9. Let F be a nonarchimedean local field, let B = M, (F) and O = M,(R). Show
that there are g + 1 right O-ideals of norm p corresponding to the elements of
P! (k) or equivalently the lines in k2.

10. Give another proof of Lemma 13.4.9 using quadratic forms.

11. Let F be a nonarchimedean local field with valuation ring R, maximal ideal p,
and residue field k. Let D be a division algebra over F with dimg D = n2,
with valuation ring O and maximal two-sided ideal P. Show that O/P is finite

extension of k of degree n, and P" = pO (cf. Remark 13.4.3).
12. Show that (13.5.10) is an isomorphism of (abelian) groups.
13. Let F be a field with absolute value | | and V a finite-dimensional F-vector space.

(a) Letxy,...,x, be abasis for V, and define
[laixy + -+ +apx,|| == max(|ai|,...,|ax|)

for a; € F. Show that V is a metric space with distance d(x, y) = ||x — y||.
(b) Show that the topology on V is independent of the choice of basis in (a).
(c) Finally, show that if F is complete with respect to ||, then V is also
complete.

14. Let F be a topological field. Show that the coarsest topology (fewest open sets)
in which multiplication on M,,(F) is continuous is the coordinate topology.

15. Let F be a local field.

(a) The group F* has the structure of topological group under the embedding
x = (x,x7') € F x F (under the subspace topology in F x F). Show that
this topology coincides with the subspace topology F* C F.

(b) More generally, let B be a finite-dimensional F-algebra. Show that the
the topology on B* induced by @ — (@, a™') € B x B coincides with the
subspace topology B* C B.

(c) Show that an open subset of a Hausdorff, locally compact space is locally
compact in the subspace topology.

16. Let F be a finite extension of Q,. Show that (-1, —1)p = (—1)1F @],
17. Finish the proof of Lemma 13.2.9.

18. Let D be a division algebra over a nonarchimedean local field F. We recall (see
13.5.2) that D is a complete, locally compact topological ring.

(a) Verify (as in 13.5.5) that O is the maximal compact subring of B.
(b) Show that B*/F* is a compact topological group.



Chapter 14

Quaternion algebras over global fields

In this chapter, we discuss quaternion algebras over global fields and characterize them
up to isomorphism.

14.1 » Ramification

To motivate the classification of quaternion algebras over Q, we consider by analogy a
classification of quadratic fields. We restrict to the following class of quadratic fields
for the best analogy.

Definition 14.1.1. A quadratic field F = Q(Vd) of discriminant d € Z is mildly
ramified if 8 1 d.

A quadratic field F is mildly ramified if and only if F = Q(+/m) where m # 1 is
odd and squarefree; then d = m or d = 4m according as m = 1,3 (mod 4).

Let F = Q(Vd) be a mildly ramified quadratic field of discriminant d € Z and
let R be its ring of integers. A prime p ramifies in F, i.e. pR = p* for a prime ideal
p C R,ifand only if p | d.

But a discriminant d can be either positive or negative; to put this bit of data on
the same footing, we define the set of places of Q to be the primes together with the
symbol co, and we make the convention that co ramifies in F if d < 0 and is unramified
if d > 0. Let F = Q(Vd) be a mildly ramified quadratic field, and let Ram(F) be the
set of places that ramify in . The set Ram(F) determines F up to isomorphism, since
the discriminant of F is the product of the odd primes in Ram(F), multiplied by 4 if
2 € Ram(F) and by —1 if co € Ram(F). (For bookkeeping reasons, in this context it
would probably therefore be better to consider 4 and —1 as primes, but we will resist
the inducement here.) However, not every finite set of places X occurs: the product d
corresponding to X is a discriminant if and only if d = 0,1 (mod 4). We call this a
parity condition on the set of ramifying places of a mildly ramified quadratic field:

2e€X¥ « there are an odd number of places in X congruent to —1 (mod 4)

with the convention that oo is congruent to —1 (mod 4).

209
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Note that if X is a finite subset of places of Q and 2 ¢ X, then precisely one of
either X or X U {oo} satisfies the parity condition; accordingly, if we define m(Z) to be
the product of all odd primes in £ multiplied by —1 if co € Z, then we can recover X
from m(X).

We have proven the following result.

Lemma 14.1.2. The maps F — Ram(F) and X — m(X) furnishes a bijection

Mildly ramified quadratic fields Finite subsets of places of Q
Q(Vd) up to isomorphism satisfying the parity condition
o {Squarefree odd integers}
m#1 ’

This classification procedure using sets of ramifying primes and discriminants
works as well for quaternion algebras over Q. Let B be a quaternion algebra over
Q. When is a prime p ramified in B? In Chapter 12, we saw that the completion
B, = B®q Q) is either a division ring or the matrix ring M»(Q,,). Further, when B,
is a division ring, the valuation ring O, C B, is the unique maximal order, and the
unique maximal ideal P, C O, satisfies pO,, = Pf,. By analogy with the quadratic
case, we say that a place v is ramified in B if the completion B,, is a division ring, and
otherwise v is unramified (or split).

b . .
Let B = (a_) Without loss of generality, we may suppose a, b € Z. There are

only finitely many places where B is ramified: by the calculation of the Hilbert symbol
(12.4.12), if p is prime and p { 2ab, then (a, b)g, = 1 and p is split in B. Therefore
#Ram B < 0.

We say that B is definite if co € Ram B and B is indefinite otherwise. By definition,
B is definite if and only if B, := B®R = (%) ~ Hif and only if @, b < 0 (Exercise
2.4).

Let Ram B be the set of ramified places of B. Not every finite subset Z of places
can occur as Ram B for a quaternion algebra B. It turns out that the parity condition
here is that we must have #X even. So again, if X is a finite set of primes, then precisely
one of either ¥ or X U {oo} can occur as Ram B. We define the discriminant of B
to be the product disc B of primes that ramify in B, so disc B is a squarefree positive
integer. This notion of discriminant is admittedly strange; we relate it to perhaps more
familiar notions in Chapter 15.

The main result of this chapter, specialized to the case F' = Q, is the following.

Main Theorem 14.1.3. The maps B — Ram B and £ — [],cs p furnish bijections

Quaternion algebras over Q o Finite subsets of places of Q
up to isomorphism of even cardinality

o {D € Z.g squarefree } .

The composition of these maps is B — [],cram p P = disc B.
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As previewed at the end of section 12.1, Main Theorem 14.1.3 is a local-global
principle and provides a convenient way to test when quaternion algebras over Q are
isomorphic: instead of working hard over Q, we can just test for isomorphism over the
local fields Qp, and R.

We will spend the next two sections giving a self-contained proof of Main Theo-
rem 14.1.3 following Serre [Ser73, Chapters III-IV], assuming two statements from
basic number theory (quadratic reciprocity and the existence of primes in arithmetic
progression), finishing the proof in section 14.3. Although the proofs presented do
not seem to generalize beyond F' = Q, the argument is simple enough and its structure
is good motivation for the more involved treatment in the Chapter ahead. (It is also
comforting to see a complete proof in the simplest case.)

14.2 > Hilbert reciprocity over the rationals

To begin, we look into the parity condition: it has a simple reformulation in terms of
the Hilbert symbol (section 12.4). For a place v of Q, let Q, denote the completion
of Q at the absolute value associated to v: if v = p is prime, then Q, = Q, is the
field of p-adic numbers; if v = oo, then Q, = R. For a,b € Q*, we abbreviate

(a,b)q, = (a,b),.

Proposition 14.2.1 (Hilbert reciprocity). For all a,b € Q*, we have

l_[(a,b)v =1, (14.2.2)

where the product taken over all places v of Q.

When p is odd and divides neither numerator nor denominator of a or b, we have
(a,b), = 1, so the product (14.2.2) is well-defined. The following corollary is an
equivalent statement.

Corollary 14.2.3. Let B be a quaternion algebra over Q. Then the set Ram B is finite
of even cardinality.

The law of Hilbert reciprocity, as it turns out, is a core premise in number theory:
it is equivalent to the law of quadratic reciprocity

(2)(2) - (-1 (14.2.4)
a/\p

for odd primes p, g together with the supplement
-1 - 2 2-
(_) - (_l)pTl and (_) = (—1)1)T] (14.2.5)
p p

for odd primes p.
We now give a proof of Hilbert reciprocity (Proposition 14.2.1), assuming the law
of quadratic reciprocity and its supplement.
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Proof of Proposition 14.2.1. Since each local Hilbert symbol is bilinear, it suffices to
prove the statement when a, b € Z are equal to either —1 or a prime number. The
Hilbert symbol is also symmetric, so we may interchange a, b.

-1.-
fa=b=-1,then B = |%2) = (2L

) is the rational Hamiltonians, and

(-1,-1e = (-1,-1)3 = =1 and (-1,-1),, = 1 if v # 2, 00, by the computation of
the even Hilbert symbol (12.4.13). Similarly, the cases with a = —1, 2 follow from the
supplement (14.2.5), and are requested in Exercise 14.1.
-1
So we may suppose a = p and b = g are primes. If p = g then (%) ~ (T;p)

and we reduce to the previous case, so we may suppose p # ¢q. Since p,q > 0, we
have (p, q)e = 1. We have (p, q)¢ = 1 for all primes ¢ { 2pg, and

(p’q)I’ = (‘I’P)p = (%) and (p,q)q = (2)

by 12.4.12. Finally,
(p,q)2 = —1if and only if p, g = 3 (mod 4)

ie., (p,q)2 = (=1)(P~D@=D/4 a0ain by the computation of the even Hilbert symbol
(12.4.13). Thus the product becomes

[T, = b 2)(4) -
v q p

by quadratic reciprocity. O

Hilbert reciprocity has several aesthetic advantages over the law of quadratic reci-
procity. For one, it is simpler to write down! Also, Hilbert believed that his reciprocity
law is a kind of analogue of Cauchy’s integral theorem, expressing an integral as a
sum of residues (Remark 14.6.4). The fact that a normalized product over all places is
trivial also arises quite naturally: if we define for x € Q* and a prime p the normalized
absolute value

el p = p7 Y,

and |x|w the usual archimedean absolute value, then

[ [1xto =1

v

by unique factorization in Z; this is called the product formula for Q, for obvious
reasons.

From the tight relationship between quaternion algebras and ternary quadratic
forms, we obtain the following corollary.

Corollary 14.2.6. Let Q be a nondegenerate ternary quadratic form over Q. Then the
set of places v such that Q. is anisotropic is finite and of even cardinality.
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In particular, by Corollary 14.2.6, if Q, is isotropic for all but one place v of Q,
then Q, is in fact isotropic for all places v.

Proof. In the bijection implied by Main Theorem 5.2.5, the quadratic form Q cor-
responds to a quaternion algebra B = (a,b | Q), and by Main Theorem 5.4.4, Q is
isotropic if and only if B is split if and only if (a, b)g = 1. By functoriality, the same
is true over each completion Q, for v a place of Q, and therefore the set of places
v where Q,, is isotropic is precisely the set of ramified places in B. The result then
follows by Hilbert reciprocity. O

To conclude this section, we show that every allowable product of Hilbert symbols
is obtained.

Proposition 14.2.7. Let X be a finite set of places of Q of even cardinality. Then there
exists a quaternion algebra B over Q with Ram B = .

Remark 14.2.8. Albert [Alb34, Theorem 2, Theorem 3] already sought to simplify
the presentation of a quaternion algebra by a series of transformations, the content
of which is contained in Proposition 14.2.7; this was further investigated by Latimer
[Lat35].

Just as with Hilbert reciprocity, Proposition 14.2.7 touches on a deep statement in
number theory concerning primes, due to Dirichlet.

Theorem 14.2.9 (Infinitude of primes in arithmetic progression). Given a,n € Z
coprime, there are infinitely many primes p = a (mod n).

Proof. See e.g. Serre [Ser73, Chapter VI] or Apostol [Apo76, Chapter 7]. We will
prove this theorem in Exercise 26.11 as a consequence of the analytic class number
formula. O

Remark 14.2.10. Theorem 14.2.9 seems to require analysis. (For algebraic proofs in
special cases, see e.g., Neukirch [Neu99, Exercise 1.10.1] and Lenstra—Stevenhagen
[LS91].) Ram Murty [Mur88] showed that a “Euclidean proof” of the infinitude of
primes p = a (mod n) is possible if and only if a> = 1 (mod n), and Paul Pollack
[Pol2010] has shown that Schnizel’s Hypothesis H gives a heuristic for this. This
crucial role played by analytic methods motivates part III of this monograph.

We now prove Proposition 14.2.7 assuming Theorem 14.2.9.

Proof. Let D := [],ex p be the product of the primes in Z, and let u := —1 if co € £
and u := 1 otherwise. Let D® := uD. We consider quaternion algebras of the form

=)
Q

with ¢° = uq (and g prime) chosen to satisfy certain congruence conditions ensuring
that Ram B = X. To this end, we seek a prime g such that

&
(q—) = —1forallodd p | D (14.2.11)
p



214 CHAPTER 14. QUATERNION ALGEBRAS OVER GLOBAL FIELDS

and

(14.2.12)

4 = 1 (mod 8), if2+¢ D;
~ |5 (mod 8), if2]|D.

There exists a prime satisfying the conditions (14.2.11)—(14.2.12) by Theorem 14.2.9,
since the condition to be a quadratic nonresidue is a congruence condition on ¢g° and
hence on ¢ modulo p.
We now verify that B has Ram B = X. We have (¢°, D®) = u by choice of signs

and (¢°,D°), = 1forall p t 2dq. We compute that

q<>

(¢°,D%)p = (—) =—-1 foralloddp | D

p
by (14.2.11). For p = 2, we find that (¢°, D°), = =1 or (¢°, D®), = 1 according as
2 | D or not by the computation of the even Hilbert symbol (12.4.13). This shows that

¥ Cc RamB C XU {q}.

The final symbol (¢°, D°), is determined by Hilbert reciprocity (Proposition 14.2.1):
since #X is already even, we must have (¢°,D®), = 1. Therefore the quaternion

<& DO
algebra B := (qZT) has ¥ = Ram B. O

Example 14.2.13. Let B = (a, b | Q) be a quaternion algebra of prime discriminant
D = p over Q. Then:

(i) ForD=p=2,wetakea =b = —1;
(ii) For D = p =3 (mod 4), we take b = —p and a = —1;
(iii) For D = p = 1 (mod 4), we take b = —p and a = —g where ¢ = 3 (mod 4) is

prime and A =-1.
p

In case (iii), by quadratic reciprocity 1) =- (2) = 1 so indeed B is not ramified at
p

q. In the proof of Theorem 14.2.7 above, we would have required the more restrictive
condition ¢ = 3 (mod 8), but we can look again at the table of even Hilbert symbols
(12.4.16): since b = —p = —1, 3 (mod 8), we may take a = —g = 1, =3 (mod 8) freely,
s0 ¢ = 3 (mod 4).

Similarly, for discriminant D the product of two (distinct) primes:

(1) For D = 2p with p =3 (mod 4), we take a = —1 and b = p;
(ii) For D = 2p with p =5 (mod 8), we take a =2 and b = p;
(iii) For D = pg with p = ¢ =3 (mod 4), we take a = —1 and b = pgq;
(iv) For D = pg with p =1 (mod 4) or g = 1 (mod 4) and (z) #1,wetakea =p
p
and b = q.
For other explicit presentations of quaternion algebras over Q with specified dis-

criminant, see Alsina—Bayer [AB2004, §1.1.2]. See Example 15.5.7 for some explicit
maximal orders.
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14.3 » Hasse—Minkowski theorem over the rationals

To complete the proof of Main Theorem 14.1.3, we now show that the map B +— Ram B
is injective on isomorphism classes.

Proposition 14.3.1. Let B, B’ be quaternion algebras over Q. Then the following are
equivalent:

(i) B=~B’;

(ii) Ram B = Ram B’;
(iii) B, =~ B!, for all places v € P1(Q), and
(iv) B, = B, for all but one place v.

The statement of Proposition 14.3.1 is a local-global principle: the global isomor-
phism class is determined by the local isomorphism classes.

Corollary 14.3.2. Let B be a quaternion algebra over Q. Then B ~ M,(Q) if and
only if B, ~ M»(Q),) for all primes p.

Proof. Apply Proposition 14.3.1 (i) & (iv) with B’ = M,(Q) checking all but the
archimedean place. O

By the equivalence between quaternion algebras and quadratic forms (see Chapter
5, specifically section 5.2), the statement of Proposition 14.3.1 is equivalent to the
statement that a ternary quadratic form over Q is isotropic if and only if it is isotropic
over all (but one) completions. In fact, the more general statement is true—and again
we come in contact with a deep result in number theory.

Theorem 14.3.3 (Hasse—-Minkowski). Let Q be a quadratic form over Q. Then Q is
isotropic if and only if Q,, is isotropic for all places v of Q.

We will prove the Hasse—-Minkowski theorem by induction on the number of
variables. Of particular interest is the case of (nondegenerate) ternary quadratic forms,
for which we have the following theorem of Legendre.

Theorem 14.3.4 (Legendre). Let a, b, ¢ € Z be nonzero, squarefree integers that are
relatively prime in pairs. Then the quadratic form

ax’> +by* +cz2 =0

has a nontrivial solution x,y, z € Q if and only if a, b, ¢ do not all have the same sign
and

—ab, —bc, —ac are quadratic residues modulo |c|, |a|, |b|, respectively.

Proof. First, the conditions for solvability are necessary. The condition on signs is
necessary for a solution in R. If ax® + by2 +cz? = 0 with x, v,z € Q not all zero, then
scaling we may suppose x, v, z € Z satisfy gcd(x,y,z) = 1;if p | ¢ then p { y (else
p | x and p | z, contradiction), so (x/y)> = (=b/a) (mod |c|) and —ba is a quadratic
residue modulo |c|; the other conditions hold by symmetry.



216 CHAPTER 14. QUATERNION ALGEBRAS OVER GLOBAL FIELDS

So suppose the conditions hold. Multiplying through and rescaling by squares
(Exercise 14.8), we may suppose a, b are squarefree (but not necessarily coprime) and
¢ = —1, and we seek a nontrivial solution to ax* + by? = z2. If a € Q*?, then we are
done. Otherwise, we need to solve

ZZ _ ax2

- b =Nmg a0 (

z+x\/5)

y

forx,y,z € Qand y # 0, i.e., we need to show that b is a norm from F = Q(v/a). By
hypothesis, a, b are not both negative and

b is a square modulo |a| and a is a square modulo |b|. (14.3.5)

We may also suppose |a| < |b|.

We use complete induction on m = |a| + |b|. If m = 2, then we must consider the
equation +x? + y? = z? with the case both negative signs excluded, each of which has
solutions. Now suppose that m > 2 so |b| > 2. By hypothesis, there exist integers
t, b’ such that > = a + bb’; taking a small residue, we may suppose |¢| < |b|/2. Thus

bb' = 1* — a = Nmg g (t + Va)
so bb’ is a norm from F. Thus b is a norm if and only if 5’ is a norm. But

?-a

b’ =
vl =|—

b
<—+1<|b
_4+ < |b|

because |b| > 2.

Now write b’ = b”u* with b”,u € Z and b” squarefree. Then |b”| < |b’| < |b|
and b” is a norm if and only if " is a norm. With these manipulations, we propagate
the hypothesis that |a| is a square modulo |b”’| and |b”’| is a square modulo |a|.
Therefore, the induction hypothesis applies to the equation ax” + b”y? = z2, and the
proof is complete. O

Corollary 14.3.6. Let Q be a nondegenerate ternary quadratic form over Q. Then Q
is isotropic if and only if Q. is isotropic for all places v of Q (but one).

Proof. If Q is isotropic, then Q, is isotropic for all v. For the converse, suppose that
Q, is isotropic for all places v of Q. As in the proof of Legendre’s Theorem 14.3.4,
we may suppose Q(x,y,z) = ax® + by? — z2. The fact that Q is isotropic over R
implies that a, b are not both negative. Now let p | a be odd. The condition that O,
is isotropic is equivalent to (a, b), = (b/p) = 1; putting these together, we conclude
that b is a quadratic residue modulo |a|. The same holds for a, b interchanged, so
(14.3.5) holds and the result follows. O

We are now in a position to complete the proof of the Hasse-Minkowski theorem.

Proof of Theorem 14.3.3. We follow Serre [Ser73, Theorem 8, §IV.3.2]. We may
suppose that Q is nondegenerate in n > 1 variables. If n = 1, the statement is vacuous.
If n = 2, the after scaling we may suppose Q(x,y) = x> — ay® with a € Q*; since
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0, is isotropic for all primes p, we have a € Q;Z so in particular v, (a) is even for
all primes p; since Q is isotropic at co, we have a > 0; thus by unique factorization
a € Q*2, and the result follows. If n = 3, the statement is proven in Corollary 14.3.6.

Now suppose n > 4. Write Q = {(a,b) 8 —-Q’ where Q' = {(cy,...,cn—2) and
a,b,c; € Z. Letd =2ab(cy - - cp—p) # 0. For each prime p | d, since Q is isotropic,
there exists ,, € Q; represented by both (a, b) and Q' in Q,,. (This requires a small
argument, see Exercise 6.14.) Similarly, there exists t, € R* represented by these
forms in R.

By another application of the infinitude of primes in arithmetic progression (Exer-
cise 14.10), there exists ¢ € Q* such that:

G) te th;Z for all primes p | d,
(ii) t and ¢, have the same sign, and
(iii) p £ t for all primes p 1 d except possibly for one prime ¢ 1 d.

Now the quadratic form (a, b, —t) is isotropic for all p | d and at co by construction
and at all primes p 1 d except p = g since p { abt. Therefore, by case n = 3 (using
the “all but one” in Corollary 14.3.6), the form {a, b, —t) is isotropic.

On the other side, if n = 4, then the form (¢) BQ’ is isotropic by the same argument.
If n > 5, then we apply the induction hypothesis to Q’: the hypothesis holds, since Q’
is isotropic at oo and all p | d by construction, and for all p { d the completion Q) is
a nondegenerate form in > 3 variables over Z, so is isotropic by the results of section
12.3, using Hensel’s lemma to lift a solution modulo the odd prime p.

Putting these two pieces together, we find that Q is isotropic over Q. O

We conclude with the following consequence.

Corollary 14.3.7. Let Q, Q’ be quadratic forms over Q in the same number of vari-
ables. Then Q ~ Q' ifand only if O, ~ Q3, for all places v.

Proof. The implication (=) is immediate. We prove (<) by induction on the number
of variables, the case of n = 0 variables being clear. By splitting the radical (4.3.9),
we may suppose that Q, Q” are nondegenerate. Let a € Q be represented by Q. Since

v = @, the quadratic form (—a) @ Q' is isotropic at v for all v, so Q’ represents a
(Lemma 5.4.3). In both cases, we can write Q =~ (—a) 8 Q) and Q" = (—a) B Q] for
quadratic forms Q, Q] in one fewer number of variables. Finally, by Witt cancellation
(Theorem 4.2.22), from Q,, =~ Q;, we have (Q1), = (Q7), for all v, so by induction

Q1 = Qf,and thus Q ~ Q". |
We now officially complete our proofs.

Proof of Proposition 14.3.1. Theimplications (i) = (ii) and (iii) = (iv) are immediate.
For the implication (ii) = (iii): either v € Ram B, in which case B, =~ B}, is the unique
division algebra over Q, (Theorem 12.1.5), or v ¢ Ram B, in which case B, =
M, (Q,) = B!, by definition. For the implication (iv) = (i), recalling Theorem 5.1.1,
by Corollary 14.3.6 applied to the ternary quadratic form associated to B, we conclude
that this form is isotropic, which by Proposition 5.1.2 implies that B ~ M, (Q). [
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Proof of Main Theorem 14.1.3. The map B — Ram B has the desired codomain, by
Hilbert reciprocity (Proposition 14.2.1); it is surjective by Proposition 14.2.7; and it
is injective by Corollaries 14.3.6 and 14.3.7. The second bijection (with squarefree
integers) is immediate. O

To summarize these past few sections, the classification of quaternion algebras
over Q embodies some deep statements in number theory: quadratic reciprocity (and
its reformulation in Hilbert reciprocity), the Hasse—-Minkowski theorem (the local-
global principle for quadratic forms), and the proofs use the theorem of the infinitude
of primes in arithmetic progression! It is a small blessing that we can make these
essentially elementary arguments over Q. In the more general case, we must dig more
deeply.

For fun, we conclude this section with a consequence in number theory: Legen-
dre’s three-square theorem (cf. Lagrange’s four-square theorem, Theorem 11.4.3, and
Remark 11.4.4).

Theorem 14.3.8 (Legendre—Gauss). An integer n > 0 can be written as the sum of
three squares n = x> + y> + 7> if and only if n is not of the form n = 4%(8b + 7) with
a,b e’

Proof. Looking modulo 8, we see that the provided condition is necessary (Exercise
14.3(a)). Conversely, suppose n > 0 is not of the form n = 4(8b +7), or equivalently
that —n ¢ Q;z (Exercise 14.4). We may suppose a = 0, 1.

Let B = (—1,—-1 | Q) be the rational Hamiltonians. We have Ram B = {2, oo},
which is to say the associated ternary quadratic form x? + y? + z? is isotropic over Q o
for all odd primes p. Consider the quadratic form Q(x, y, z, w) = x> + y* + 22 — nw?.
Then Q is isotropic over R since n > 0, and isotropic over all Q, with p odd taking
w = 0. The form is also isotropic over Q, (Exercise 14.3), lifting a solution modulo
8 via Hensel’s lemma. By the Hasse-Minkowski theorem (Theorem 14.3.3), Q is
isotropic over Q, so there exist x, y, z, w € Q not all zero such that x4 y2 + 72 = nw?.
We must have w # 0 by positivity, and dividing through we get x, y, z € Q not all zero
such that x> + y? +z> =n. Leta =xi+yj+zij € B. Thena®>+n=0and a € B is
integral.

Let O’ C B be a maximal order containing «, and let O be the Hurwitz order. By
Proposition 11.3.7, O’ is conjugate to O; after conjugating, we may suppose a € O.
But trd(a@) = 0, so necessarily a € Z(i, j) and x, y, z € Zwithnrd(a) = x>+y?+z> =n
as desired. O

See also Exercise 14.5 for a variant of the proof of the three-square theorem staying
in the language of quaternions.

14.4 Global fields

In this chapter and in many that remain, we focus on a certain class of fields of
arithmetic interest: a global field is either a finite extension of Q (a number field)
or of F,,(¢) (a function field) for a prime p. Global fields are strongly governed by
their completions with respect to nontrivial absolute values, which are local fields.



14.4. GLOBAL FIELDS 219

Throughout this text, we will return to this theme that global behavior is governed by
local behavior.

For the rest of this chapter, let F' be a global field. We quickly introduce in this
section some basic notions from algebraic number theory: for further reference, see
e.g. Neukirch [Neu99, Chapters I-II], Cassels [Cas2010, Chapter II], or Janusz [Jan96,
Chapter II].

Remark 14.4.1. When F is a function field, we will often insist that F is equipped
with an inclusion Fp < F where Fy =~ F, () has pure transcendence degree 1 over
F,. (For the geometrically inclined, this corresponds to a morphism X — P! of the
associated curves.) Often this inclusion will not play a role, but it will be important
to treat certain aspects uniformly with the number field case where there is only one
inclusion Q < F.

14.4.2. The set of places of F is the set P1 F' of equivalence classes of embeddings
ty: F — F, where F, is a local field and ¢, (F) is dense in F,; two embeddings
ty: F— F,and !, : F — F, are said to be equivalent if there is an isomorphism of
topological fields ¢: F, — F] suchthati, = ¢ o (,.

14.4.3. Every valuation v: F — R U {co}, up to scaling, defines a place ¢,: F — F,,
where v is the completion of F with respect to the absolute value induced by v; we
call such a place nonarchimedean, and using this identification we will write v for
both the place of F and the corresponding valuation. For a nonarchimedean place v
corresponding to a local field F,, we denote by R, its valuation ring, p, its maximal
ideal, and k, its residue field. If F is a function field, then all places of F are
nonarchimedean. If F is a number field, a place F < R is called a real place and a
place F — C (equivalent to its complex conjugate) is called a complex place. A real
or complex place is archimedean.

14.4.4. Let K D F be a finite, separable extension of fields, and let v € P1 F. We say
that a place w of K is above v if w|p = v, and we write w | v. The set of places w
above v are obtained as follows: since K is separable, we have an isomorphism

K®p F, ~K; % xK, (14.4.5)

where each K; 2 F, is a finite extension of local fields. Indeed, writing K =
F[x]/(f(x)) with f(x) € F[x] the minimal polynomial of a primitive element, we
have

Kep Fy = Fy[x]/(f(x) = Fy [x]/(fi(x)) X X Fy [x]/ (fr (x))

where f(x) = fi(x)--- fr(x) € F,[x] is the factorization of f(x) into irreducibles in
F, [x], distinct because f is separable. Thus each K; is a local field by the classification
in Theorem 12.2.15, and the composition

K> K®pF, > K;

defines a place w; of K above v. Conversely, every place w above v is equivalent to w;
for some i [Jan96, Chapter II, Theorem 5.1; Cas78, §9; Neu99, Chapter II, Proposition
(8.3)].
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We say that a nonarchimedean place v ramifies in K if there exists a place w | v
such that K, 2 F, is ramified (see 13.2.3). Only finitely many places of F ramify in
K.

A global field F has a set of preferred embeddings ¢, : F — F,, corresponding to
each place v € Pl F—equivalently, a preferred choice of absolute values ||, for each
place v € Pl F—such that the product formula holds: for all x € F*,

]—[ x|™ = 1. (14.4.6)
vePIF

where m,, = 2 if v is complex and m, = 1 otherwise. Admittedly, the extra exponents
2 for the complex places are annoying (see Remark 12.2.3)! Often what is done is

to define normalized absolute values ||x||, := |x|)" for v € PIF, so then (14.4.6)
becomes
]_[ lxlly = 1. (14.4.7)
vePIF

Preferred absolute values are defined as follows.

14.4.8. The set of places P1(Q) of Q consists of the archimedean real place, induced
by the embedding Q < R and the usual absolute value |x|w, and the set of nonar-
chimedean places indexed by the primes p given by the embeddings Q — Q,,, with

the preferred absolute value

|x|p = P_VP(X)'

The statement of the product formula for x € Q is

o [ [ =1 (14.4.9)
p

rearranging, (14.4.9) is equivalent to [], p*»*) = |x|, and this follows from unique
factorization in Z.

14.4.10. The set of places of F,(¢) is indexed by monic irreducible polynomials
f(t) € Fp[t] with preferred absolute value

lx(n)]y = prtee et

and 1/, the place at infinity, with preferred absolute value

le(D)]1y = p*ee,

where if x = f/g is the ratio of relatively prime polynomials f,g € F,[t], then
deg x := max(deg f,degg).
Then the statement of the product formula for x(¢) € F,(¢) is

pdegx l_[p—(degf)ordf(x) =1 (14.4.11)
f

rearranging as over Q, but now also taking the logarithm in base p, (14.4.9) is equivalent
to 3, r (deg f) ordy (x) = deg x which follows from unique factorization in F, [7].
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14.4.12. More generally, let K 2 F be a finite, separable extension of global fields.
Let v be a place of F with a preferred absolute value and let w be a place of K above
v. Then the preferred absolute value for w is the unique one extending v, namely

Il = INmg, |, (x) |3/ T ]

for x € K. These absolute values fit together, with

[ Jlehe = INmg ()1, (14.4.13)

wlv

for all x € K, a consequence of (14.4.5) [Jan96, Chapter II, Theorem 5.2; Cas78, §11,
Theorem, p. 59; Neu99, Chapter II, Corollary (8.4)].

In particular, if F satisfies the product formula (14.4.6) with respect to preferred
absolute values, then so does K, since

[Ttet = ﬂ(ﬂ |x|$”’) = [TiNmg @R =1. (14.4.14)

w v wlv v

Remark 14.4.15. The definitions for the preferred absolute values are pretty dry—
sorry! But we will see later that they are natural from the perspective of Haar
measure: see section 29.3 and ultimately (29.6.3).

We will also make use of the following notation in many places in the text. Let F
be a global field.

Definition 14.4.16. A set S C P1 F is eligible if S is finite, nonempty, and contains all
archimedean places of F.

Definition 14.4.17. Let S be an eligible set of places. The ring of S-integers in F is
the set
Risy:={x € F:v(x) >0forallv ¢ S}. (14.4.18)

A global ring is a ring of S-integers in a global field for an associated eligible set S.

The expression (14.4.18) makes sense, since if v ¢ S then by hypothesis v is
nonarchimedean. When no confusion can result, we will abbreviate R = R(s) for a
global ring R.

Example 14.4.19. If F is a number field and S consists only of the archimedean places
in F then R s) is the ring of integers in F, the integral closure of Z in F, also denoted
R(s)y = Zf. If F is a function field, corresponding to a curve X, then R(g) is the ring
of all rational functions with no poles outside S. (So in all cases, it is helpful to think
of the ring Rs) as consisting of those elements of F with “no poles outside S”.)

14.5 Ramification and discriminant

Let R = R(s) be a global ring, with S C P1 F eligible. Let B be a quaternion algebra
over F.
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Definition 14.5.1. Let v € P F. We say that B is ramified at vif B, = B®F F), isa
division ring; otherwise we say that B is split (or unramified) at v.
Let Ram B denote the set of ramified places of B.

If v € PI F is a nonarchimedean place, corresponding to a prime p of R, we will
also say that B is ramified at p when B is ramified at v.

Remark 14.5.2. We use the term ramified for the following reason: if By, is a division
ring with valuation ring O, then pO, = P? for a two-sided maximal ideal P: see
Theorem 13.3.11. (Eichler [Eic55-56, §1, Theorem 4] called them characteristic
primes.)

Lemma 14.5.3. The set Ram B of ramified places of B is finite.

Proof. Write B = (K, b | F). Since F has only finitely many archimedean places, we
may suppose v is nonarchimedean. The extension K 2 F is ramified at only finitely
many places, so we may suppose that K 2 F is unramified at v. Finally, v(b) = 0 for
all but finitely many v, so we may suppose v(b) = 0. But then under these hypotheses,
B, = (K,,b | F,) is split, by Corollary 13.4.1. O

Motivated by the fact that the discriminant of a quadratic field extension is divisible
by ramifying primes, we make the following definition.

Definition 14.5.4. The R-discriminant of B is the R-ideal

discgr(B) = l_[ PCR
peRam B
p¢S

obtained as the product of all primes p of R = R(s) ramified in B.

Remark 14.5.5. When F is a number field and S consists of archimedean places only,
so that R = Zp is the ring of integers of F, we abbreviate discg(B) = disc B. The
discriminant discg (B) discards information about primes in S: only Ram B records
information about B that is independent of S.

Remark 14.5.6. One could make the same definitions when R is more generally a
Dedekind domain. However, unless the residue fields of R are finite, this is not as
useful a notion: see Exercise 14.14. (In some sense, this is because the Brauer group
of F = FracR is not as simply described as when F is a global field, viz. Remark
14.6.10.)

As usual, the archimedean places play a special role for number fields, so we make
the following definition.

Definition 14.5.7. Let F be a number field. We say that B is totally definite if all
archimedean places of F are ramified in B; otherwise, we say B is indefinite.

14.5.8. If v is a complex place, then v is necessarily split, since the only quaternion
algebra over C is M, (C); therefore, if B is a totally definite quaternion algebra over a
number field F, then F is totally real.
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14.6 Quaternion algebras over global fields

We now generalize Main Theorem 14.1.3 to the global field F, deducing results
characterizing isomorphism classes of quaternion algebras. The main result is as
follows.

Main Theorem 14.6.1. Let F be a global field. Then the map B — Ram B gives a
bijection

Quaternion algebras over F' Finite subsets of noncomplex places
up to isomorphism of F of even cardinality

In other words, if B is a quaternion algebra over a global field, then the set of places
of F where B is ramified is finite and of even cardinality, this set uniquely determines
B up to isomorphism, and every such set occurs.

Proof. We give a proof in section 26.8, which itself relies on an analytic result (The-
orem 26.8.19) proven in Chapter 29.

Alternatively, this statement can also be viewed a direct consequence of a (hard-
earned) fundamental exact sequence in class field theory: see Remark 14.6.10. |

Recall the definition of the Hilbert symbol (as in section 12.4), computed explicitly
for v an odd nonarchimedean place (12.4.9): for a place v of F, we abbreviate
(a,b)r, = (a,b),. We also recall Lemma 14.5.3 that (a, b), = 1 for all but finitely
many places v.

Corollary 14.6.2 (Hilbert reciprocity). Let F be a global field with char F # 2 and let
a,b € F*. Then
]_[ (a,b), = 1. (14.6.3)

vePIF

Proof. Immediate from Main Theorem 14.6.1: Hilbert reciprocity is equivalent to the
statement that # Ram B is even. O

Remark 14.6.4. Stating the reciprocity law in the form (14.6.3) is natural from the
point of view of the product formula (14.4.6). And Hilbert reciprocity can be rightly
seen as a law of quadratic reciprocity for number fields (as we saw in section 14.2 for
F = Q). (For more, see Exercise 14.16.)

Hilbert saw his reciprocity law (Corollary 14.6.2) as an analogue of Cauchy’s inte-
gral theorem [Hil32, p. 367-368]; for more on this analogy, see Vostokov [Vos2009].

Corollary 14.6.5 (Local-global principle for quaternion algebras). Let B, B’ be quater-
nion algebras over F. Then the following are equivalent:

(i) B=B’;

(ii) Ram B = Ram(B’);
(iii) B, =~ B!, for all places v € P F; and
(iv) B, = B;, for all but one place v € P1F.

In particular, B ~ My (F) if and only if Ram B = 0.
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Proof. For the equivalence (i) & (ii) < (iii), combine Main Theorem 14.6.1 and the
fact that for a noncomplex place v there is a unique division algebra over F,. The
equivalence (iii) & (iv) follows from the parity constraint, since if v is a place and
Ram B \ {v} = X, then v € Ram B or not according as #Z is odd or even. O

Remark 14.6.6. Corollary 14.6.5 is a special case of the Albert—Brauer—Hasse—Noether
theorem [AH32, BHN31]: a central simple algebra A over F such that A,, ~ M,,(F,)
forall v € PI F has A ~ M,,(F). See Remark 14.6.10 for further discussion.

The statement of Corollary 14.6.5 is the local-global principle for quaternion alge-
bras: the isomorphism class of a quaternion algebra over a global field is determined
by its isomorphism classes over the collection of local fields obtained as completions
of the global field. In a similar way, we have a local-global principle for quadratic
embeddings as follows.

Proposition 14.6.7 (Local-global principle for splitting/embeddings). Let K 2 F be
a finite separable extension of global fields. Then the following are equivalent:

(1) K splits B, i.e., B®r K ~M,(K); and
(ii) For all places w € P1K, the field K,, splits B.

Ifdimp K = 2, then these are further equivalent to:

(iii) There is an embedding K — B of F-algebras;
(iv) For all places v € P1 F, there is an embedding K,, — B,, of F-algebras, and
(v) Everyv € Ram B does not split in K, i.e., K,, is a field for all v € Ram B.

Proof. The equivalence (i) & (ii) is a consequence of Corollary 14.6.5: they are both
equivalent to Ram Bk = 0, since K splits B if and only if B®p K ~ M, (K) if and only
if Ram(B ®F K) = 0 if and only if for all places w of K we have BQ®p K,, ~ M(K,,).

The equivalence (i) < (iii) was given by Lemmas 5.4.7 and 6.4.12.

The implication (iii) = (iv) is clear. For the implication (iv) = (v), if v € Ram B,
then B, is a division algebra; so if K, is not a field, then we cannot have K, — B,,.
Finally, for (v) = (ii), let w € PIK with w | v € PIF. If v ¢ Ram B then already F,
splits B; otherwise, v € Ram B and K, = K,, is a field with [K,, : F,] = 2, so by
Proposition 13.4.4, K, splits B. O

14.6.8. The equivalences (iii) & (iv) & (v) in Proposition 14.6.7 hold also for the
separable F-algebra K = F X F': for there is an embedding F' X F < B if and only if
B =~ M;(F).

We also record the statement of the Hasse—Minkowski theorem over global fields,
generalizing Theorem 14.3.3.

Theorem 14.6.9 (Hasse—Minkowski). Let F be a global field and let Q be a quadratic
form over F. Then Q is isotropic over F if and only if Q. is isotropic over F,, for all
places v of F.
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Proof. The same comments as in the proof of Main Theorem 14.6.1 apply: we give
a proof in section 26.8. But see also O’Meara [O’Me73, §§65—66] for a standalone
class field theory proof for the case when F' is a number field. |

This local-global principle for isotropy of quadratic forms is also called the Hasse
principle. For a historical overview of the Hasse principle, and more generally Hasse’s
contributions in the arithmetic theory of algebras, see Fenster—Schwirmer [FS2007].

Remark 14.6.10. The fact that quaternion algebras are classified by their ramification
set (Main Theorem 14.6.1) over a global field F is a consequence of the following
theorem from class field theory: there is an exact sequence

0 — Br(F) —>@Br(FU—>Q/Z—>O deein

([Ay Dy = X, inv, [A, ]

where the first map is the natural diagonal inclusion [A] — ([A ®, F,]), and the
second map is the sum of the local invariant maps inv,, : Br(k,) — Q/Z from Remark
13.4.3. The class of a quaternion algebra B in a Brauer group over a field is 2-torsion
by 8.3.4, and the local invariant inv,, B, is equal to 0, 1/2 according as B, is split or
ramified, and in this way we recover the main classification theorem. (In this sense, the
discriminant of a quaternion algebra captures the Brauer class of a quaternion algebra
at the finite places, and the ramification set captures it fully.) The exact sequence
(14.6.11) is sometimes called the fundamental exact sequence of global class field
theory: see Milne [Milne-CFT, § VIII.4] or Neukirch—Schmidt—Wingberg [NSW2008,
Theorem 8.1.17].

14.7 Theorems on norms

In the previous sections, we have seen how both local-global principles allow a nice,
clean understanding of quaternion algebras—and at the same time, the norm groups
play an important role in this characterization. These themes will continue through
the book, so we develop them here in an important first case by describing the group
nrd(B*) < F*.

We retain our hypotheses that F is a global field and B a quaternion F-algebra.

14.7.1. First, we recall the calculation of the local norm groups (Lemma 13.4.9): for
v € PIF, we have

R;‘O, if v € Ram B is real (i.e., B, =~ H);

FY,  otherwise.

nrd(B}) = {
Under B — B,,, we have nrd(B*) < nrd(BY) for all places v € P1F, and this
‘places’ a condition on the reduced norm at precisely the real ramified places.

14.7.2. Let Q C Ram B be the set of ramified (necessarily real) archimedean places
in B. (If F is a function field, then Q = (.) Let

F:QO ={x e F*:v(x)>0forallv € Q} (14.7.3)



226 CHAPTER 14. QUATERNION ALGEBRAS OVER GLOBAL FIELDS

be the group of elements that are positive for the embeddings v € Q. For Q the set of
all real places, we write simply /%, and call such elements totally positive.

By 14.7.1, we have nrd(B*) < FZ_,. In fact, equality holds.

Main Theorem 14.7.4 (Hasse-Schilling). We have nrd(B*) = F*

>q0°

To prove this theorem, we will use two lemmas.

Lemma 14.7.5. Let v be a noncomplex place of F. Let n, € F}, and if v is real
suppose n, > 0. Then there exists t, € F, such that X2 —tyx +n, is separable and
irreducible over F,,. Moreover, if n,, € R, then we may take t,, € R,,.

Proof. We suppose that char F,, # 2 and leave the other case as an exercise (Exercise
14.23). If -n, ¢ vaz’ then we can take ¢, = 0; this treats the case where v is a real
place.

So suppose —n, € F)2. Let mr, be a uniformizer and let e, € R be a nonsquare
in k¥ where k, is the residue field. Returning to the Hilbert symbol (12.4), since

(_1,ev)v(_lvﬂv)v(_l’evﬂv)v = (_17 1)v =1

and each of e,, 7., e, 7, ¢ FX2, there exists d,, € F)X \ F) such that (-1,d,), = 1.
Then the Hilbert equation —x% +d, y% = 1 has a solution x,,, y,, € F,; since —4n,, €
FX2, rescaling (and substituting) gives instead —x2 + d,y2 = —4n,. Lett, := x,.
Then x* — t,x + n,, has discriminant 12 — 4n,, = d,y2 € FX \ F? and so is separable
and irreducible.

For the second statement we recall Lemma 13.2.1. In the field K,, := F, (@), where
a is a root of x2 — 7, x + n,, since n, = nrd(a@) € R we conclude « is in the valuation
ring S of K; but then « is integral, so #,, € R as well. (One can also prove this statement
directly.) O

Next, we want to show that we can approximate a polynomial over a completion
F,, by a polynomial over the global field F sufficiently well—the reader is invited to
ignore this on a first reading and accept this intuitively as a consequence of the fact
that F is dense in F,,.

Lemma 14.7.6. Let v € PIF, let f,(x) = x> — t,x + n, € F,[x] be a separable
polynomial, and let € > 0. Then there exists t,n € F such that |t — t,|,|n —n,| < €
and such that f(x) = x> — tx + n has

Fy[x]/(f(x) = Fy [x]/(fv (x)). (14.7.7)

In particular, f(x) is separable, and if f, (x) is irreducible then so is f(x).
Further, if already n, € F then we may take n = n,,, and similarly with t.

Proof. If F, is nonarchimedean, the lemma follows from Corollary 13.2.9 and the
fact that F is dense in F),. The case where F, is archimedean is straightforward: see
Exercise 14.24. ]

The same argument can be applied to several local fields at once, as follows.
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Corollary 14.7.8. Let X C P1 F be a finite set of noncomplex places. For eachv € Z,
let f,(x) = x> —tyx +ny, € F,[x] be a separable polynomial, and let € > 0. Then
there exists t,n € F such that for f(x) = x> — tx + n and for all v € ¥ we have
lt —tul,In—ny| < € and Fy[x]/(f(x)) = F,[x]/(fo(x)). In particular, f(x) is
separable, and if f, (x) is irreducible for some v then so is f(x).

Further, ifalln, =m € F forv € X, then we may take n = m, and similarly with t.

Proof. We repeat the argument of Lemma 14.7.6, using weak approximation (i.e., F'
is dense in [],, F,; look ahead to Lemma 28.7.1 and the adjacent discussion) for all
v € X to find t, n. O

We now conclude with a proof of the theorem on norms.

Proof of Main Theorem 14.7.4. Letn € F. >XQ()‘ We will construct a separable quadratic
extension K 2 F with K — B such that n € Nmg | (K*). To this end, by Proposition
14.6.7, it is enough to find K 2 F such that K, is a field for all v € Ram B.

By Lemma 14.7.5, for all v € Ram B, there exists ¢, € F,, such that the polynomial
x2—t,x+neF, [x] is separable and irreducible over F); here if v € Q is real we
use that v(n) > 0. By Corollary 14.7.8, there exists € F such that x> — tx + n
irreducible over each F),. Let K be the extension of F obtained by adjoining a root
of this polynomial. Then K|, is a field for each ramified v, and n € Nmg | (K*) as
desired. O

Exercises

» 1. Complete the proof of Hilbert reciprocity (Proposition 14.2.1) in the remaining
cases (a,b) = (-1,2),(2,2), (-1, p), (2, p). In particular, show that

12y (22
(K)‘(Q)‘MQ(Q)

and

(a.p)2 = (@ p)p = (%)

for a = —1,2 and all primes p (cf. 12.4.13).

2. Derive the law of quadratic reciprocity (14.2.4) and the supplement (14.2.5)
from the statement of Hilbert reciprocity (Proposition 14.2.1).

»3. Letn € Z.y.

(a) Suppose n is of the form n = 4(8b + 7) with a, b € Z. Show that there is
no solution to x> + y? + z2 = n with x, y, z € Z. [Hint: Look modulo 8.]

(b) Suppose n is not of the form n = 4%(8b+7) with a, b € Z. Show that there
is a solution to x> + y> + z%> = n with x,y,z € Z,. [Hint: lift a solution
modulo 8 using Hensel’s lemma. |

» 4. Let n € Z be nonzero. Show that n is a square in Q; if and only if n is of the
formn =4%(8b + 1) with a, b € Z.
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Letn > Ohave —n ¢ Q;Q. Let B =(—1,-1]| Q) andlet K = Q(+/—n). Show that
K splits B. [Hint: Use the local-global principle for embeddings (Proposition
14.6.7).] Conclude that there exists @ € B such that a@? = —n, and conclude as
in Theorem 14.3.8 that n is the sum of three squares.

Let F be a number field. Show that every totally positive element of F is a sum
of four squares of elements of F.

Show that the law of Hilbert reciprocity (Proposition 14.2.1) implies the law of
quadratic reciprocity; with the argument given in section 14.1, this completes
the equivalence of these two laws.

In the proof of Legendre’s theorem (Theorem 14.3.4), we reduced to the case
a,b > 0 and ¢ = —1. Show that this reduction is valid.

In this exercise, we generalize the proof of Proposition 14.2.7 to give a more
general construction of quaternion quaternion algebras. Let D be a squarefree
positive integer and let # = —1 if D has an odd number of prime divisors,
otherwise u := 1.

(a) For b € Z squarefree, show that K := Q(Vb) embeds in a quaternion
algebra of discriminant D if and only if:
e b < 0if B is definite;
e b#1 (mod 8)if2 | D; and
b
* for all odd primes p | D, we have (—) * 1.
p

(b) Suppose b satisfies the conditions in (a) but with the further requirement
b

that D | b, i.e., in the third condition we require (—) =0. Let g be an odd
p

prime such that ¢° := uqg has:

qO
. (_) =—1forall odd p | D;

¢
. (q_) =1forall odd p | (b/D); and
p
e ¢°=1,5 (mod 8) accordingas2 { D or2 | D.
Note there exist infinitely many such primes ¢ by the infinitude of primes

<>’ b
in arithmetic progression. Then show that B := (%) has discB = D

and Ram B = X.

Let S € P1(Q) be eligible. Foreach v € S, lett, € Q7 be given. Show that there
exists t € Q% such that 7 € #,Q;* forall v € Sand v, (¢) = 0 forall p ¢ S\ {co}
except (possibly) for one prime p = q.

Let F = Q(Vd) be a real quadratic field. Find a, b € Q* (depending on d) such
that (a, b | F) is a division ring unramified at all finite places.

Let F := Q(a) where a := 2cos(2n/7) = {7+ 1/¢7 with {7 = exp(2ni/7). Let
B :=(-1,-1| F). Compute Ram(B) and find a maximal order in B.
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13. Let F be a global field with char F' # 2 and let B be a quaternion algebra over
F. Let L 2 F be a finite extension. An extension K 2 F is linearly disjoint
with L over F if the multiplication map K ®r L = KL is an isomorphism of
F-algebras.

Show that there exists a splitting field K 2 F for B such that X is linearly disjoint
with L over F.

14. Show that the notion of discriminant of a quaternion algebra as the product of

ramified primes is not such a great notion when R is an arbitrary Dedekind
domain, as follows.
Let R = Q[¢]; then R is a Dedekind domain. Let F = Frac R = Q(¢). Let
By = (a, b | Q) be a division quaternion algebra over Q and let B = By ®q F =
(a,b | Q(z)). Show that there are infinitely primes at which B is “ramified”:
for every prime p = (¢t — ¢)R, show that the algebra By is a division quaternion
algebra over Fy, =~ Q((?)). [Hint: See Exercise 13.7.]

15. Using Hilbert reciprocity, one can convert the computation of an even Hilbert
symbol to the computation of several odd Hilbert symbols, as follows.
Let F be a number field, let p | (2), and let a,b € F*. Show that there exist
(computable) a’, b’ € F* such that the following hold:
(i) (a,b)p = (a’,b")p; and
(ii) ordq(a’) = ordq(b’) =0 forall q | (2) with q # p.
Conclude that

(ab)p =[] (@b

vePlF
v odd

16. Let F be a number field with ring of integers Zr. We say an ideal b C Zp is odd
if Nm(b) is odd, and b € Zp is odd if () is odd. For a € Zp and b C Zf odd,

let (%) be the generalized Jacobi symbol, extending the generalized Legendre

a

symbol by multiplicativity, and write 4] .=
bZr

, ) for a,b € Zg \ {0} with
b odd.

(a) Leta, b € Z satisty aZp + bZr = ZF, with b odd, and suppose a = apa;

with a; odd. Then
a\l b
(5)(;1) = 1_[ (a,b),.

v|2c0

(b) Suppose that F has a computable Euclidean function N and let a,b €
Zg \ {0} with b odd. Describe an algorithm using (a) to compute the

Legendre symbol (%) .

17. In this exercise, we give a constructive proof of the surjectivity of the map
B +— Ram B in Main Theorem 14.6.1 in the spirit of the proof of Proposition
14.2.7 (assuming two analytic results).
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Let F be a number field, and let £ € P1 F be a finite set of noncomplex places
of F of even cardinality. Let R = Zg be the ring of integers of F.

()

(b)

()

(d)

Let ® := [],ex p be the product of the primes corresponding to nonar-
chimedean places in S. Using weak approximation (see Lemma 28.7.1),
show there exists a € D such that:

* v(a) < O for all real places v € X and v(a) > 0 for all real places

v ¢ Z, if there are any; and

* aR=DbwithD+b=Rand2R+b=R.
In the special case where R has narrow class number 1 (that is, every ideal
a C R is principal a = (a) and generated by an element ¢ € R such that
v(a) > 0 for every real places v), show that we may take (a) = D and
b=R.
Show that there exists ¢ € R coprime to 8aR such that the following hold:

* For all primes p | D with p t 2R, we have (%) =-1;

* Forall primes p | D with p | 2R, the extension Fy,(V/?) is the quadratic
unramified extension of Fy, so % = —1 in the sense of the general-
ized Kronecker symbol;

* For all primes q | b we have (é) =1; and

* For all prime powers t¢ || 8R with t ¥ D, we have t = 1 (mod t°).

Show that ¢ is well-defined as an element of (R/8aR)*, ie., if ' = ¢
(mod 8a) then ¢’ also satisfies these conditions.
Using the infinitude of primes in arithmetic progression over number fields
(Theorem 26.8.26), show there exists g € R a prime element (i.e., gR is
a prime ideal) such that ¢ = ¢ (mod 8a) with ¢ as in (b) and further
satisfying v(¢g) < O for all real places v € X.

Show that B := (%) has Ram B = .

18. Let F be a global field. Show that two quaternion algebras B, B’ over F are

isomorphic if and only if they have the same quadratic subfields (for a quadratic
extension K O F, we have K < B if and only if K — B’).
[See work of Garibaldi—Saltman [GS2010] for a discussion of the fields F with
char F # 2 and the property that two division quaternion algebras over F' with
the same subfields are necessarily isomorphic. (Roughly speaking, they are the
fields for which nonzero 2-torsion elements of the Brauer group can be detected
using ramification.)]

19. In this exercise, we consider how ramification sets change under base extension.
Let F be a global field and let K 2 F be a finite separable extension.

(a)

Let B be a quaternion algebra over F with ramification set Ram B and
consider Bx = B ®¢ K. Show that

Ram(Bg) = {w € PI(K) : wliesoverv € Ram B and 2 {1 [K,, : F,]}.
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(b) As a converse to (a), suppose that Xx C PI(K) is a finite subset of
noncomplex places of K of even cardinality with the property that if
w € Xk lies over v € PI F, then [K,, : F, ] is odd and moreover

{w €PlF : wliesoverv and [K,, : F\]isodd} C Xg.

Show that there exists a quaternion algebra B over F with the property that
Ram(Bg) = Xk . (We say that the quaternion algebra associated to the set
Yk descends to F.)

(c) As aspecial case, what do (a) and (c) say when [K : F] =27

(d) Restate (a) and (b) in terms of the kernel of the map Br(F)[2] — Br(K)[2]
induced by [B] — [Bk] (see Remark 14.6.10).

Let R be a global ring with F' = FracR, and let K 2 F be a finite Galois
extension with S the integral closure of R in K. Let B be a quaternion algebra
over F and consider Bx = B ®r K. Then Gal(K | F) acts naturally on Bk via
o(a ®x) =a®o(x). (This action is not by K-algebra isomorphism!)

Show that there exists a maximal S-order O C Bk stable under Gal(K | F), i.e.,
0(0O) =0forall o € Gal(K | F).

Let F be a global field, let vy,..., v, be places of F, and for each v; suppose
we are given the condition ramified, split, or inert. Show that there exists a
separable quadratic extension K 2 F that K, satisfies the given condition for
each i. [Hint: follow the proof of Main Theorem 14.7.4.]

Let F be a global field, let By, B>, . . ., B, be quaternion algebras over F, and let
B := B, ® B, ® --- ® B,.. Recalling section 8.2, show (in as many ways as you
can) that B ~ M,,-1(B’) for a quaternion algebra B’ over F. (Recalling 8.3, by
Merkurjev’s theorem this shows the class of every element in the 2-torsion of
the Brauer group Br(F)[2] is represented by a quaternion algebra.)

Let F, be a local field with char F,, = 2. Let n € F,. Show that there exists
t € F, such that x> — tx + n is separable and irreducible.

Prove Lemma 14.7.6 for v an archimedean place.

In this advanced exercise following up on Exercise 9.15, we consider features of
quaternion algebras and orders in the case of a global function field, assuming
background in algebraic geometry.

Let X be a smooth, projective, geometrically integral curve over a finite field k;
then X is a separated, integral Dedekind scheme. Let Ox be its structure sheaf.
Let F be its function field, and let B be a quaternion algebra over F. Define a
sheaf of Ox-orders in B, or simply an Ox-order in B, to be an Ox-lattice & in
B such that for each open set U C X, the Ox (U)-lattice B(U) is a subring of B.
We recall the local-global dictionary for Ox-lattices (Exercise 9.15(c)).

In parts (a)—(c) we work out an example: let X = P! with function field F = k(r)
where div¢ = (0) — (c0). Suppose that char k # 2, and let u € kX \ k*%. Let B
be the quaternion algebra with Ram(B) = {(0), (c0)}.

(a) Show that B = (u,t | F).
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(b) LetU = Spec k[t] = X \{co}. Show that there exists a unique Ox -order %
in B with B(U) = k[t] + k[t]i+ k[t]j + k[t]ij and stalk P () a maximal
Ox («0)-order. Describe explicitly %) and 9B (Spec k[1/t]) as orders in
B.

(c) With & from (b), show that % (X) = k[i].

Restoring generality, let 9 be an Ox-order such that B (U) is a maximal Ox (U)-
order in B for all affine open sets U.

(d) Show that % (X) has a zero divisor if and only if %(X) =~ M;(k) if and
only if B ~ M,(F).

(e) Show that ZB(X) is a k-algebra with a nondegenerate standard involution.

(f) Suppose that B is a division algebra. Show that either %(X) = k or
RB(X) = ky is the quadratic extension of k.

(g) Still supposing that B is a division algebra, show that if %(X) = k,, then
every ramified place of B has odd degree. [Hint: show that B ~ (K, b | F)
where K = Fky is the constant field extension of F of degree 2, and
b € F* N\ k*. Compute the Hilbert symbol at v € Ram(B) to show v(b) is
odd.]



Chapter 15

Discriminants

Discriminants measure volume and arithmetic complexity, and they simultaneously
encode ramification. We devote this chapter to their study.

15.1 > Discriminantal notions

Letxy,...,x, € R", and let A be the matrix with columns x;. Then the parallelopiped
with edges from the origin to x; has volume |det(A)|. We can compute this volume in
another way:

det(A)? = det(AtA) = det(M) (15.1.1)

where M has ijth entry equal to the ordinary dot product x; - x;.

The absolute discriminant of a number field is a volume and a measure of arithmetic
complexity, as follows. If xi,...,x, is a Z-basis for Zr and ¢ : F — F ®y R ~ R"
(normalized with an extra factor of V2 at the complex places), then the volume of Zr
in this embedding is the absolute determinant of the matrix with columns ¢(x;), and
its square is defined to be the absolute discriminant of F. Replacing the dot product
in the definition of M in (15.1.1) with the trace form (x, y) — Trg/g(xy), we see that
the absolute discriminant is a positive integer. A prime p is ramified in F if and only
if it divides the discriminant, so this volume also records arithmetic properties of F.

More generally, whenever we have a symmetric bilinear form 7: V XV — F on
a finite-dimensional F-vector space V, there is a volume defined by the determinant
det(T (x;,x;));,j: and when T arises from a quadratic form Q, this is volume is the
discriminant of Q (up to a normalizing factor of 2 in odd degree, see 6.3.1). In
particular, if B is a finite-dimensional algebra over F, there is a bilinear form

BxB— F
(a,B) — TFB|F(C¥ﬁ)

(or, when B is semisimple, the bilinear form associated to the reduced trace trd)
and so we obtain a discriminant—a “squared” volume—measuring in some way the
complexity of B. As in the commutative case, discriminants encode ramification.

In this chapter, we establish basic facts about discriminants, including how they
behave under inclusion (measuring index) and localization. To illustrate, let B be a

233
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quaternion algebra over Q and let O C B be an order. We define the discriminant of
O to be

disc(O) := |det(trd(a;a;)); ;| € Zso (15.1.2)

b b .
where a, ..., a4 is a Z-basis for O. For example, if B = (a@) with a,b € Z \ {0},
then the standard order O = Z + Zi + Zj + Zk has

disc(O) = (4ab)?;

indeed, this is the discriminant of the quadratic form (1, —a, —b, ab), the reduced norm
restricted to O. If a,b < 0, i.e. B is definite, then the reduced norm is a Euclidean
norm on By, = B ®y R ~ H; normalizing with an extra factor \/5, the discriminant is
square of the covolume of the lattice O C Bo,. For example, the Lipschitz order Z{i, j)
(11.1.1) has disc(Z{i, j}) = 4%, the square of the covolume of the lattice (V2Z)* C R*.

If O’ 2 O, then disc(O) = [0’ : O]?*disc(O’); in particular O’ = O if and only if
disc(O’) = disc(O). It follows that the discriminant of an order is always a square, so
we define the reduced discriminant discrd(O) to be the positive integer square root,
and discrd(O)? = disc(O). The discriminant of an order measures how far the order
is from being a maximal order. We will show (Theorem 15.5.5) that O is a maximal
order if and only if discrd(O) = disc B, where disc B is the (squarefree) product of
primes ramified in B.

In an extension of Dedekind domains, the different of the extension is an ideal
whose norm is the discriminant of the extension (see Neukirch [Neu99, §III.2]).
The different is perhaps not as popular as its discriminant cousin, but it has many
nice properties, including easy-to-understand behavior under base extension. Similar
conclusions holds in the noncommutative context (presented in section 15.6).

15.2 Discriminant

For further reference on discriminants, see Reiner [Rei2003, §10, §14].
Let R be a noetherian domain and let F = Frac R. Let B be a semisimple algebra
over F' with dimg B = n. For elements a1, . .., a, € B, we define

d(aq, e an) = det(trd(aiaj))i,jzl ..... n- (15.2.1)

Let I C B be an R-lattice.

Definition 15.2.2. The discriminant of / is the R-submodule disc(/) C F generated
by the set

{d(ay,...,a,) :ay,...,a, € I}.

15.2.3. If I = O, then for a1, ..., @, € O we have a;a; € O and so trd(a;a;) € R for
alli, j. Thus d(ay,...,a,) € R and therefore disc(O) C R.
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Remark 15.2.4. When working over Z, it is common to take the discriminant instead to
be the positive generator of the discriminant as an ideal; passing between these should
cause no confusion.

Although Definition 15.2.2 may look unwieldly, it works as well in the commutative
case as in the noncommutative case. Right away, we see that if O C O’ are R-orders,
then disc(O’) | disc(O).

The function d itself transforms in a nice way under a change of basis, as follows.

Lemma 15.2.5. Let ay,...,a, € B and suppose B1,...,Bn € B are of the form
Bi = Z‘};zl mija; with mi; € F. Let M = (m,'j),"jzl

.....

d(Bi, ..., Bn) =det(M)’d(ay, ..., an). (15.2.6)

Proof. By properties of determinants, if Sy, ..., 3, are linearly dependent (over F)
then d(By, . .., Bn) = 0 and either a1, . . ., @, are also linearly dependent or det(M) =
0, and in either case the equality (15.2.6) holds trivially.

So suppose that Bi,...,8, are linearly independent, then «i,...,a, are also
linearly independent and the matrix M, a change of basis matrix, is invertible. By
Gaussian reduction, we can write M as a product of elementary matrices (a matrix that
coincides with the identity matrix except for a single off-diagonal entry), permutation
matrices (a matrix interchanging rows suffices), and a diagonal matrix; it is enough
to check that the equality holds when M is a matrix of one of these forms. And
for such a matrix, the equality can be checked in a straightforward manner using the
corresponding property of determinants. O

Corollary 15.2.7. If1 is free as an R-module, and a1, . . ., ay, is an R-basis for I, then
disc(I) =d(ay,...,a,)R.

Proof. The matrix M writing any other By,...,8, € [ in terms of the basis has
M € M, (R) so det(M) € R, and therefore d(B1,...,B,) € d(ai,...,a@,)R by
Lemma 15.2.5. O

15.2.8. More generally, if I is completely decomposable with
I=a1® @ aya,
such as in (9.3.7), then from (15.2.6)
disc(l) = (ay -+ a,)*d(a1, ..., an).

More generally, the discriminant is well-behaved under automorphisms because
the reduced trace is so.

Corollary 15.2.9. If ¢: B = B is an F-algebra automorphism, then disc(¢(I)) =
disc(1).

Proof. By Proposition 7.8.6, we have trd(¢(aB)) = trd(ap) for all @, 8 € B. There-
fore, for all @, ...,a, € B we have d(¢(ay),...,d(an)) =d(ay,...,ay); the result
disc(¢ (1)) = disc([I) follows. O
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Our primary interest will be in the case I = O.

Example 15.2.10. Suppose char F # 2. Let B := (a,b | F) with a,b € R. Let
O := R ® Ri ® Rj & Rij be the standard order. Then disc(O) is the principal R-ideal
generated by

2 0 O 0
N O 2(1 0 O _ 2
d(1,i,j,ij) =det 0 0 2 0 = —(4ab)
0 0 0 -=2ab

The calculation when char F' = 2 is requested in Exercise 15.1.

Example 15.2.11. Let B := M,,(F) and O := M,,;(R). Then disc(O) = R (Exercise
15.2).

15.2.12. Let B := (K, b | F) be a quaternion algebra over F with b € R and let S be
an R-order in K. Let O := § @ Sj; then O is an R-order in B by Exercise 10.7. We
have disc(O) = b? disc(S)?, by Exercise 15.4.

In particular, let F' be a nonarchimedean local field, let R be its valuation ring and
p = Rm its maximal ideal, and let B be a division quaternion algebra over F. Then
by Theorem 13.3.11, we have B ~ (K, | F) with K 2 F an unramified separable
quadratic extension of F. The valuation ring S of K has disc(S) = R, so the valuation
ring O = S @ S of B has discriminant disc(O) = p?.

15.2.13. Equation (15.2.6) and the fact that /() = I ®g R(y) implies the equality
disc(I(y)) = disc(I)(p)

on localizations and for the same reason an equality for the completions disc(/p) =
disc(I)p. In other words, the discriminant respects localization and completion and
can be computed locally. Therefore, by the local-global principle (Lemma 9.4.6),

disc(1) = ﬂ disc(I(p)).
P

Lemma 15.2.14. If B is separable as an F-algebra and I is projective as an R-module,
then disc(I) is a nonzero projective fractional ideal of R.

Proof. Since I is an R-lattice, there exist elements «ay,...,a, which are linearly
independent over F'. Since B is separable, by Theorem 7.9.4, trd is a nondegenerate
bilinear pairing on B so disc(/) is a nonzero ideal of R. It follows from Lemma 15.2.5
that disc(7) is finitely generated as an R-module, since this is true of I: we apply d
to all subsets of a set of generators for / as an R-module. To show that disc(/) is
projective, by 9.2.1 we show that disc(7) is locally principal. Let p be a prime ideal of
R. Since I is a projective R-module, its localization Iy, is free; thus from Corollary
15.2.77, we conclude that disc(/)(y) = disc({(y)) is principal over R(,) and generated
by disc(ay, ..., a,) for an R(y)-basis a1, ..., a, of I, as desired. |
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We conclude this section comparing lattices by their index and discriminant as
follows. We recall the definition of index (section 9.6).

Lemma 15.2.15. Let I,J C B be projective R-lattices. Then
disc(l) = [J : I]édisc(J).
Moreover, if I C J, then disc(I) = disc(J) if and only if I = J.

Proof. For the first statement, we argue locally, and combine (15.2.6) and Lemma 9.6.4.
For the second statement, clearly disc(J) C disc([), and if I = J then equality holds;
and conversely, from disc(/) = [J : I]%e disc(J) = disc(J) we conclude [J : I]g = R,
hence J = I by Proposition 9.6.8. O

Remark 15.2.16. We defined the discriminant for semisimple algebras so that it is given
in terms of the reduced trace. This definition extends to an arbitrary finite-dimensional
F-algebra B, replacing the reduced trace by the algebra trace Trp|r. If B is a central
simple F-algebra of dimension n?, then ntrd = Trp | so when n € F* one can recover
the discriminant as we have defined it here from the more general definition; but if
n =0 € F then the discriminant of B computed with the algebra trace will be zero.

15.3 Quadratic forms

Essentially the same definition of discriminant (Definition 15.2.2) applies to quadratic
modules, as follows. We recall 6.3.1, where the discriminant was defined in all
characteristics.

Let O: M — L be a quadratic module over R (Definition 9.7.3) with tk M = n
and associated bilinearmap 7: M X M — L.

15.3.1. Letxy,...,x, € M and f € LY := Homg (L, R). If n is even, we define
d(x1,...,xp; f) i=det(f(T(xi, x5)))i j=1,...n- (15.3.2)
If n is odd, then by specializing the universal determinant as in 6.3.4, we define
d(xy,...,xp;5 f) = (det/2)(f (T (xi,Xx7)))i,j=1,...n- (15.3.3)
The discriminant of Q is then the ideal disc(Q) C R generated by the set
{dx1, ..., %05 f) 1 x1,...,xn €M, feL"}. (15.3.4)

15.3.5. If M, L are free with R-basis x1, . . ., x, and e, respectively, then letting f € LY
the dual to e with f(e) = 1 gives

disc(Q) = d(x1,...,xn; f)R.

In particular, since M, L are projective and therefore locally free over R, the discrimi-
nant of Q is locally free and hence a projective R-ideal.
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Lemma 15.3.6. The discriminant of a quadratic module is well-defined up to similarity.

Proof. Let Q: M — L and Q’: M’ — L’ be quadratic modules over R similar by
g: M5 M and h: L = L. Itsuffices to check the invariance locally, so to this end
we may suppose that the modules are free; choose a basis M = 3" | Rx; and L = Re,
and let x! = g(x;) and e’ = h(e). Then M’ = 3" Rx/ and L’ = Re’. Let f, f’ be
dual to e, ¢’; then postcomposing Q and Q' by f, f’ we may suppose L = L’ = R and
h is the identity.

We then have Q’(g(x)) = Q(x) for all x € M, so the same is true of the associated
bilinear forms 7,7’. But then d(x;,...,x,;) = d(xy,...,x,), and by 15.3.5 this
implies disc(Q) = disc(Q’) as ideals of R. O

15.3.7. Let B be a finite-dimensional F-algebra with a standard involution. Then the
reduced norm is a quadratic form on B with associated bilinear form T'(«, 8) = trd(af3).
Although the bilinear form differs by the presence of this standard involution from the
definition of discriminant in (15.2.1), the resulting discriminants are the same (up to
R*): see Exercise 15.13.

Lemma 15.3.8. The quadratic module Q is nonsingular if and only if disc(Q) = L.

In particular, suppose that M ~ R" is free with basis e; and L = R, and let
[T] := (T (ei,e}))i,j € Mu(R) be the Gram matrix in this basis. Then Q is nonsingular
if and only if det([T]), (det/2)([T]) € R* according as n is even or odd.

Proof. The map T: M — Hompg(M, L) is an isomorphism if and only if it is an
isomorphism in every localization, so we may suppose that Q is free, with M = R"
and L = R, which is to say we may prove the second statement in the case where R is
local, with maximal ideal p and residue field k := R/p. Let Q mod p: M Qg k — k
be the reduction of Q; its Gram matrix is [7] mod p € M, (k). Over the field k,
we have that O mod p is nonsingular if and only if it is nondegenerate if and only if
det[T7], (det/2)([T]) # O according as n is even or odd; since R is local, these are
equivalent to asking that these values are in R*. An application of Nakayama’s lemma
then implies the result. O

15.4 Reduced discriminant

In this section, we extract a square root of the discriminant for quaternion orders.
Indeed, in Example 15.2.10, we saw that the discriminant of the standard R-order
O C B = (a,b | F) is disc(O) = (4ab)’R, a square. If O’ is another projective
R-order, then disc(O’) = [O : O’]%edisc(O) by Lemma 15.2.15, so in fact the
discriminant of every R-order is the square of an R-ideal.

In fact, there is a way to define this square root directly, inspired by vector calculus.

15.4.1. If u,v,w € R3 then |u - (v X w)], the absolute value of the so-called mixed
product (or scalar triple product or box product), is the volume of the parallelopiped
defined by u, v, w; identifying R? ~ HO as in section 2.4, from (2.4.10) we can write

2u-(vxXw)=u-(vw—wv) =—trd(u(vw — wv)).
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For example, 2 = -2i - (j X k) = —i - (jk — kj) = ted(ijk).
More generally (and carefully attending to the factors of 2) we make the following
definition. Let B be a quaternion algebra over F.

15.4.2. For a1, as, az € B, we define

m(ay, a, a3) = trd((@1a2 — a2a1)az)

= a3 — @3 — Q3Q; @] + @30 Q.

Lemma 15.4.3. The form m: B X B X B — F is an alternating trilinear form which
is well-defined as a form on B/F.

Proof. The form is alternating because for all @1, @y € B we have m(ay, a1, az) =0
and

m(ay, @y, ap) = trd((ajar — azay)ay) = trd(nrd(a))az) — trd(ap nrd(a;)) =0

and similarly m(a, @z, @) = 0. The trilinearity follows from the linearity of the
reduced trace. Finally, from these two properties, the descent to B/F follows from the

computation m(1, a1, ;) = 0 for all @, @; € B.
(Alternatively, one can check that the pairing descends to B/F first, so that the
involution becomes « + F = —a + F, and then the alternating condition is immediate.)
o

Definition 15.4.4. Let / C B be an R-lattice. The reduced discriminant of / is the
R-submodule discrd(/) of F generated by

{m(ay, @z, @3) : a1, @z, a3 € I}.
15.4.5. If a;, B; € B with B; = Ma; for some M € M3(F), then
m(B1, B2, B3) = det(M)m(ay, a2, @3) (15.4.6)

by Exercise 15.10. It follows that if / C J are projective R-lattices in B, then

discrd(I) = [J : I] discrd(/J).
Lemma 15.4.7. If I is a projective R-lattice in B, then disc(I) = discrd(I)?.
Proof. First, we claim that

m(i. j,ij)* = =d(1,i, j.ij).
If char F # 2, then disc(1,1, j,ij) = —(4ab)* by Example 15.2.10 and

m(i, j.ij) = wd((ij — ji)ij) = trd(2i](if)) = 4ab,

as claimed. See Exercise 15.1 for the case char F = 2. This computation verifies the

result for the order O = R ® Ri @ Rj & Rij.
The lemma now follows using (15.2.6) and (15.4.6), for it shows that

m(ay, a2, a3)* = —d(1, 1, @2, @3)

for all a1, @, a3 € B, and the latter generate discrd(/) by Exercise 15.7. O
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The notions in this section extend more generally to an arbitrary algebra B with a
standard involution.

15.5 Maximal orders and discriminants

We now relate discriminants to maximal orders. Throughout this section, we suppose
that R is a Dedekind domain. We record the following important principle.

Lemma 15.5.1. Let O € O’ be R-orders. Then O = O’ if and only if disc O = disc O’.
Proof. In the nontrivial direction, by Lemma 15.2.15 we have
discO =[O0’ O]%e disc(O’)
so disc O = disc O’ if and only if O = O’. O
First, we ensure the existence of maximal orders (cf. 10.4.2) using the discriminant.

Proposition 15.5.2. There exists a maximal R-order O C B, and every order O is
contained in a maximal R-order O’ C B.

Proof. The algebra B has at least one R-order O as the left- or right-order of a lattice
10.2.5. If O is not maximal, then there exists an order O’ 2 O with disc(O’) 2 disc(O)
by Lemma 15.5.1. If O’ is maximal, we are done; otherwise, we can continue in
this way to obtain orders O = O; € O, € ... and an ascending chain of ideals
disc(O;) ¢ disc(O;) < ... of R; but since R is noetherian, the latter stabilizes after
finitely many steps, and the resulting order is then maximal, by Lemma 15.2.15. O

Using the discriminant as a measure of index, we can similarly detect when orders
are maximal. We recall (10.4.3) that the property of being maximal is a local property,
so we begin with the local matrix case.

Lemma 15.5.3. Suppose that R is a DVR, and let O C B := M,,(F) be an R-order.
Then O is maximal if and only if disc O = R.

Proof. First, suppose O is maximal. Then by Corollary 10.5.5, we conclude O =
M,,(R) (conjugate in B). By Corollary 15.2.9, we have disc O = disc M, (R); we
computed in Example 15.2.11 that disc M, (R) = R, as claimed. The converse follows
by taking O’ a maximal order containing O (furnished by Proposition 15.5.2) and
applying Lemma 15.5.1. O

Example 15.5.4. By 15.2.12, if F is a nonarchimedean local field with valuation ring
R and B is a division quaternion algebra over F, then the valuation ring O C B is the
unique maximal order (Theorem 13.3.11) with disc O = p? and discrd O = p. Arguing
as in Lemma 15.5.3, we find that an R-order in B is maximal if and only if it has
reduced discriminant p.

Maximality can be detected over global rings in terms of discriminants, as follows.
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Theorem 15.5.5. Let R be a global ring with field of fractions F, let B be a quaternion
algebra over F, and let O C B be an R-order. Then O is maximal if and only if

discrd(O) = discg(B). (15.5.6)

Proof. Suppose that O is maximal. Then O, is maximal for all primes p of R. If
By = M;(Fp) is split, then by Lemma 15.5.3, discrd Op = Ry; if B, is a division
algebra, then discrd O, = pR,. Since discriminants are defined locally, we conclude
that
discrd(O) = ]_[ p = discg(B)
peRam B\ S

if R as a global ring is the ring of S-integers.

In the other direction, if (15.5.6) holds, we choose O’ 2 O be a maximal R-
superorder and conclude that disc(O) = discg(B)? = disc(O’) so O = O’ is maximal
by Lemma 15.5.1. O

Example 15.5.7. We recall Example 14.2.13, giving an explicit description of quater-
nion algebras B = (a, b | Q) of prime discriminant D = p. We now exhibit an explicit
maximal order in each of these algebras.

For p =2, we have B = (-1, -1 | Q) and take O C B the Hurwitz order.

For p = 3 (mod 4), we took B = (—p,—1 | Q). The order O = Z{(1 +i)/2,j) =
S @ Sj with § := Z[(1 +i)/2] has discrd O = p by 15.2.12, so O is maximal by
Theorem 15.5.5.

For p = 1 (mod 4), we had B = (—p, —q | Q) where ¢ = 3 (mod 4) is prime and
1
4

(z) = —1, so that by quadratic reciprocity (2) =-
q

p
be such that ¢> = —p (mod ¢). Then

= 1. In this case, let ¢ € Z

1+ EBZl(1+]) @Z(C+l)]
2 2 q

is a maximal order: one checks that O is closed under multiplication (in particular, the
basis elements are integral), and then that disc O = p. The order Z{i, (1 + j)/2) € O
has the larger reduced discriminant pg, hence the need for a denominator g in the
fourth element.

For further discussion of explicit maximal orders over Z, see Ibukiyama [Ibu82,
pp- 181-182] or Pizer [Piz80a, Proposition 5.2]. For a more general construction, see
Exercise 15.5.

O=ZeoZ

15.6 Duality

To round out the chapter, we relate the discriminant and trace pairings to the dual and
the different. For a detailed, general investigation of the dual in the context of other
results for orders, see Faddeev [Fad65].

We continue with the hypothesis that R is a domain with F = Frac R. Let B be an
F-algebra with n := dimg B < co. As the trace pairing will play a significant role in
what follows, we suppose throughout that B is separable (in particular, semisimple)
as an F-algebra with reduced trace trd. Let I, J be R-lattices in B.



242 CHAPTER 15. DISCRIMINANTS

Definition 15.6.1. The dual of / (over R, with respect to trd) is
I*:={a € B:td(al) C R} = {a € B: trd(Ie) C R}.
Some properties of the dual are evident.
Lemma 15.6.2.

(a) IfI C J then I* 2 J*.
(b) Forall B € BX, we have (BI)¥ = I#71.
(c) If p C R is prime, then (](p))ﬂ = (Iﬁ)@) and the same with the completion.

Proof. For parts (a) and (b), see Exercise 15.15. The proof of part (c) is similarly
straightforward. O

15.6.3. Suppose that [ is free over R with basis a1, ..., a,. Since the trace pairing on
“eB to a; under the

i
reduced trace trd, so that trd(a?ozj) =0, 1 according asi # jori=j.

Then I* is free over R with basis a?,...,aﬁ: if 8 = blaﬁ1 + -0+ bnag with

bi,...,b, € F,then B € I* if and only if trd(e;8) = b; € R for all i.

B is nondegenerate (Theorem 7.9.4), there exists a dual basis «

Lemma 15.6.4. I* is an R-lattice in B.

Proof. Let ay,...,a, € I be an F-basis for B, and let / = }}; Ra; C I. Then there

exists nonzero r € R such that v € J,soJ C I C r~1J. Let af,...,aﬁ € B be the

dual basis as in 15.6.3. It follows that J# = i Rai.i is an R-lattice, and consequently
by Lemma 15.6.2(a)—(b) we have rJbc It c Jﬁ; since R is noetherian, I is an
R-lattice. o

From now on, we suppose that R is a Dedekind domain; in particular, [ is then
projective as an R-module.

Lemma 15.6.5. The natural inclusion I — (I%)¥ C B is an equality.

Proof. If @ € I and 8 € I* then trd(a8) C R and @ € (I*)%. To show that the map is
an equality, we argue locally, so we may suppose that [ is free over R with basis a;;

then by applying 15.6.3 twice, (I#)# has basis (af)ﬁ = @;, and equality holds. O

Proposition 15.6.6. We have Og (1) = O (I*) and O_(I) = Og(1*).

Proof. First the inclusion (C). Let @ € Og(1); then Ia C I, so I"la C ' and
trd(al*1) = wd(I* 1) € wd(1*1) C R

hence af* C I¥ and @ € O_(I%). Thus Og(1) € O (I*) € Or((I%)¥) = Ox(1) by
Lemma 15.6.5, so equality holds. A similar argument works on the other side. O

The name dual is explained by the following lemma.
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Proposition 15.6.7. The map

I* = Homg (I, R)

(15.6.8)
B — (a — trd(aB))

is an isomorphism of Or(I), O (I)-bimodules over R.

Proof. For B € I,let ¢g: I — R be defined by ¢g(a) = trd(ap) for @ € I. The map
B — ¢g € Homg(I, R) from (15.6.8) is an R-module homomorphism. Moreover, it
a map of Og(7), O, (I)-bimodules: if y € O, (I) theny € Or(Ih by Lemma 15.6.6,
with induced map

$py(@) = rd(aBy) = rd(yap) = ¢p(ya) = (y¢p)(a) (15.6.9)

and similarly on the other side.
Finally, we prove that the map (15.6.8) is also an isomorphism. Extending scalars
to F, the trace pairing gives an isomorphism of F-vector spaces

Homg (I, R) g F ~ Homp(B,F) ~ B
B ¢p
because the pairing is nondegenerate (as B is separable). So immediately the map is

injective; and it is surjective, because if ¢ € Homg (I, R) then ¢ = ¢z for some 8 € B,
but then ¢(@) = trd(eB) € R forall @ € I, so B € I* by definition. O

Remark 15.6.10. The content of Proposition 15.6.7 is that although one can always
construct the module dual, the trace pairing concretely realizes this module dual as a
lattice. (And we speak of bimodules in the proposition because Homg (7, R) does not
come equipped with the structure of R-lattice in B.) This module duality, and the fact
that 7 is projective over R, can be used to give another proof of Lemma 15.6.5.

The dual asks for elements that pair integrally under the trace. We might also ask
for elements that multiply one lattice into another, as follows.

Definition 15.6.11. Let /,J be R-lattices. The left colon lattice of / with respect to
J is the set
(I:J)={aeB:aJ I}

and similarly the right colon lattice is
(I:Nr={a€eB:Ja I}

Note that (1 : I), = O_(I) is the left order of I (and similarly on the right). The
same proof as in Lemma 10.2.7 shows that (I : J), and (I : J)g are R-lattices.

Lemma 15.6.12. We have

Nt =t He= 4 D).
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Proof. We have B € (1J)% if and only if trd(81J) C R if and only if Ba € J* for
alla € I'ifand only if B8 € (J #:1).. A similar argument works on the other side,
considering trd(1Jp) instead. O

Corollary 15.6.13. We have O (1) = (11*)¥ and Og(I) = (1*1)*.

Proof. Combining Lemmas 15.6.5 and 15.6.12,
OLl) = (I: D= ((F)?: D= (I1F)F

and similarly on the right. O

Definition 15.6.14. The level of I is the fractional ideal Iv(1) = nrd(I%) C F.
We now relate the above duality to the discriminant.
Definition 15.6.15. The codifferent of O is
codiff (0) := OF.

Lemma 15.6.16. O, (codiff(O)) = Ogr(codiff(O)) = O and O C codiff(O).

Proof. By Proposition 15.6.6, O = Og(O) = Oy (codiff(O)) and similarly on the
right. And O C codiff (O) since trd(OO) = trd(O) C R. O

The major role played by the codifferent is its relationship to the discriminant, as
follows.

Lemma 15.6.17. disc(O) = [codiff(O) : O]g.

Proof. For a prime p € R we have disc(O)y) = disc(O(y)) and [O?p) :Omlry =

([O% : O] R)(p)> and so to establish the equality we may argue locally. Since Oy is
free over R(,), we reduce to the case where O is free over R, say O = }; Re;. Then
Of = D Rcyi.i with a‘f, R w,ﬁ, € B the dual basis, as in 15.6.3.

The ideal disc(O) is principal, generated by d(ay, . .., a,) = det(trd(a;a;)); j; at
the same time, the R-index [OF : O] is generated by det(§) where ¢ is the change of
basis from a/i.4 to ;. But ¢ is precisely the matrix (trd(a;a;));,; (Exercise 15.14), and
the result follows. O

Remark 15.6.18. In certain circumstances, it is preferable to work with an integral
ideal measuring the discriminant, so instead of the codifferent, a different: we will
want to take a kind of inverse. We study this in the next chapter: see section 16.8.
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Exercises

Unless otherwise specified, let R be a noetherian domain with field of fractions F'.

,b . .
1. Let char F = 2 and let [aT) be a quaternion algebra over F with a,b € R and

b # 0. Show that O = R + Ri + Rj + Rij is an R-order in B and compute the
(reduced) discriminant of O.

2. Let B = M, (F) and O = M,,(R) with n > 1. Show that disc(O) = R. [Hint:
Compute directly on a basis {e;; }; ; of matrix units, which satisfy e;je; jy = e; s
if j =1, otherwise zero.]

3. Suppose R is a global ring, so F is a global field; let B be a quaternion algebra
over F and let O C B be an R-order. Prove that for all primes p C R, we have
Op = M, (Ry) if and only if p 1 disc O.

4. Let B := (K,b | F) be a quaternion algebra over a field F with b € F*. Let

S C K be an R-order with d := disc(S); let b C K be a fractional S-ideal (which
can be but need not be invertible), and finally let O := S @ bj.

(a) Show that O is an R-order if and only if Nmg ¢ b C b7IR.
(b) Compute that discrd O = d(Nmg | b)b.

5. Inthis exercise, we consider a construction of maximal orders as crossed products

°.b
in the simplest case over Q, continuing Exercise 14.9. Let B := 4.2 be a

quaternion algebra of discriminant D, where b € Z is squarefree with D | b and
q is an odd prime with g° = +¢ = 1 (mod 4), the minus sign if B is indefinite.
Let K := Q(\/?) be the quadratic field of discriminant ¢g°. Let S C K be the
ring of integers of K, so disc S = ¢°.

<o

(a) Show that for all odd primes p | (b/D), we have (q_) = 1. Conclude
p

there exists an ideal b C § such that Nmb = b/D.
(b) Let q € S be the unique prime above ¢, and let

O:=Sa(qb)7';

Show that O is a maximal order in B.
(c) Let ¢ € Z satisfy ¢? = ¢° (mod 4b/D). Show that the order O in (b) can

be written
1+ D(c+i)j
O=Z&6Z—®Zj&Z———.
2 U 2bq
6. Let B be a separable F-algebra with dimg B = n. Show that o, ..., @, € B are
linearly independent over F if and only if d(ay,...,a,) #0.

7. Let O be an R-order. Show that disc(O) is generated by

{d(l,a'l, e ,an_l) L, .,Ap—1 € O}
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Let I be an R-lattice in B over F, let K be a finite extension field of F', and let S
be a domain containing R with field of fractions K. Show that

disc(I ®g S) = disc(]) ®g S = disc(/)S.

Let char F # 2 and let B be a quaternion algebra over F. Let @, 8 € B be such
that F(a@) N F(B) = F. Recall the discriminant form A (Exercise 4.3), and let

trd(a) trd(B)

s = trd(aB) — >

Show that

d(1,a.p.ap) = =(s> - 4A(@)A(B))* = ~A(ap)’.
[Hint: reduce to the case where trd(a) = trd(B) = 0, noting the invariance of
s.]

Let B be a quaternion algebra over F. Define m : BX BX B — F by
m(ay, @z, a3) = trd([a;, @z]a3) for a; € B. If B; = Ma; forsome M € M3(F),
show that

m(pB1, B2, B3) = det(M)m(a1, az, a3).

Let B be a quaternion algebra over F. Give another proof that
m(ar, a2, @3)” = d(1, a1, 2, a3)

(cf. Brzezinski [Brz82, Lemma 1.1(a)]) for all a; € B as follows:
(a) Suppose B = M (F). Show that the matrix units

(0 1 {0 0 (10
612_0 07 82]_1 O’ 622_0 0

span B/F, and m(eys, €21, e2)*> = d(1,eq2,ea1,e2). Conclude using
Exercise 15.10.
(b) Reduce to (a) in general by taking a splitting field for B.

Suppose R = R(s) is a global ring with 2 € R*. Let K > F be a quadratic field
extension and S C K an R-order. Let Ram(K) be the set of places of F that are
ramified in K. Show that S is maximal if and only if its discriminant is equal to

discg(S) = ]_[ pPCR
peRam(K)\S

in analogy with Theorem 15.5.5.

Let B be a finite-dimensional F-algebra with a standard involution. Compare
det(trd(e;a;));,; with  det(trd(a;@;));,;

for @; € B, and show that defining the discriminant of an order O C B with
respect to either pairing gives the same result.
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Let B be a semisimple F-algebra with dimg B = n, let I be an R-lattice that is

111’ e, aﬁ € B be the dual basis, so

trd(afa 7) =1,0according as i = j or not. Show that the change of basis matrix

free over R with basis a1, ..., a,, and let «

from {af}[ to {e;}; is given by (trd(a;a;)); ;.
Let I C B be an R-lattice in a separable algebra B.

(a) If J C B is an R-lattice with I C J, show that I* o JE,
(b) Show that for all 8 € B*, we have (81)% = I*3"!

Let R be a DVR with maximal ideal p = 7R, and let O := er 2 for e > 0.

Compute the codifferent codiff(O): in particular, show that codiff(O) is a
principal two-sided O-ideal, and find a generator. Verify Lemma 15.6.17.

Let R be a noetherian domain with F = Frac R. Let B be a central simple
algebra over F. Let O C B be an R-order. We say O is Azumaya if O is
R-simple, which is to say every two-sided ideal I C O is of the form aO = Oa
witha=INRCR.

a) Show that O is Azumaya if and only if every R-algebra homomorphism
O — A is either the zero map or injective.

b) Show that O is Azumaya if and only if O/mO is a central simple algebra
over the field R/m for all maximal ideals m of R.

¢) Suppose that B is a quaternion algebra. Show that the quaternion order O
is Azumaya if and only if disc O = R. Conclude that the only Azumaya
quaternion algebra over the valuation ring R of a local field is M (R), and
that the only Azumaya quaternion algebra over Z is M;(Z).

[See Auslander and Goldman [AG60] or Milne [Milne80, §1V.1].]

Let G be a finite group of order n = #G and let R be a domain with F = Frac R.
Suppose that char F { n. Then B := F[G] is a separable F-algebra by Exercise
7.15.

a) Consider the algebra trace Trp|r and its associated bilinear form. Show
that in the basis of F'[G] given by the elements of G that the trace pairing
is the scalar matrix n.

b) Now write B ~ B| X --- X B, as a product of simple F-algebras. Let K;
be the center of B;, and let dimg, B; = n2. Show that Tr |B, = n;trd. Let

i

O = R[G], and suppose that O =~ O X - -- X O,.. Show that

codiff(0) = n;'Oy x - -- x n;'O,.






Chapter 16

Quaternion ideals and invertibility

Much like a space can be understood by studying functions on that space, often the
first task to understand a ring A is to understand the ideals of A and modules over A
(in other words, to pursue “linear algebra” over A). The ideals of a ring that are easiest
to work with are the principal ideals—but not all ideals are principal, and various
algebraic structures are built to understand the difference between these two. In this
chapter, we consider these questions for the case where A is a quaternion order.

16.1 > Quaternion ideals

To get warmed up for the noncommutative situation, we consider ideals of quadratic
rings. An integer d € Z is a discriminant if d = 0, 1 (mod 4). Let S be the quadratic
order of nonsquare discriminant d € Z, namely,

S=58(d):=Z&Z[(d+Vd)/2] c K =Q(Vd).

The set of ideals of S has a natural multiplicative structure with identity element S
(giving it the structure of a commutative monoid), but we lack inverses and we would
surely feel more comfortable with a group structure. So we consider nonzero S-lattices
a C K, and call them fractional ideals of S; equivalently, they are the S-submodules
d~'a c K with a € S a nonzero ideal and d € Z-, hence the name fractional ideal
(viz. 9.2.4). To get a group structure, we must restrict our attention to the invertible
fractional ideals a C K, i.e., those such that there exists a fractional ideal b with
ab = S. The simplest kind of invertible fractional ideals are the principal ones a = aS
for a € K*, with inverse a~! = a~!S. If a fractional ideal a has an inverse then this
inverse is unique, given by

al={xeK:xacs};

and for a fractional ideal a, we always have aa™! C S (but equality may not hold). If
S = Zk is the ring of integers (the maximal order) of K, then all nonzero fractional
ideals of S are invertible—in fact, this property characterizes Dedekind domains, in
that a noetherian commutative ring is a Dedekind domain if and only if every nonzero
(prime) ideal is invertible. (See also the summary in section 9.2.)

249
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A fractional ideal a of S is invertible if and only if a is locally principal, i.e.,
a®z Z(p) = (p) = a(p)Z(p) is a principal fractional ideal of the localization S, for
all primes p. Every locally principal ideal is invertible, and the extent to which the
converse holds is something that arises in an important way more generally in algebraic
geometry. In the language of commutative algebra, a locally principal S-module is
equivalently a projective S-module of rank 1.

Suppose that S is not maximal; then S(d) = Z+ fZk for a unique integer f € Z,
the conductor of S; accordingly, d = dk f 2 where dx € Z is the discriminant of Zg
(a fundamental discriminant). In this case, there is always an ideal of S that is not
invertible. Specifically, consider the ideal

f=fzZ+Vdz cS. (16.1.1)
Then { is a free Z-module of rank 2 and
= (fZ+2ZVd)* = fZ+ fVdZ = ff

so if f were invertible, then cancelling we would obtain f = S, a contradiction. The
source of this example is that f = fS(dk) since S(dg) = Z + VdkZ, so really this
fractional ideal belongs to the maximal order S(dk ), not to S. For more on the notion
of invertibility for quadratic orders, see Cox [Cox89, §7], with further connections to
quadratic forms and class numbers.

We now turn to the quaternionic generalization, where noncommutativity presents
some complications. Let B be a quaternion algebra over Q and let O C B be an order.
To study ideals of O we must distinguish between left or right ideals and take care with
products. For lattices I, J C B, we say that / is compatible with J if the right order of
I is equal to the left order of J, so that what comes between [ and J in the product / - J
“matches up”.

A lattice I C B is right invertible if there exists a lattice I’ c B such that

1’ =0.(I)

with a compatible product, and we call I’ a right inverse. We similarly define notions
on the left, and we say / C B is invertible if there is a two-sided inverse I’ C B, so

IT' = O.(I) = Ox(I’) and I'I = O, (I') = Og(I)

with both of these products compatible. If a lattice I has a two-sided inverse, then this
inverse is uniquely given by

I'V:={aeB:lal C I}

(defined so as to simultaneously take care of both left and right): we always have that
I1I"' € O, (I), but equality is needed for right invertibility, and the same on the left.

Let O C B be an order. A left fractional O-ideal is a lattice / C B such that
O € OL(1); we similarly define on the right. For a maximal order, all lattices are
invertible (Proposition 16.6.15(b)).
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Proposition 16.1.2. Let O C B be a maximal order. Then a left or right fractional
O-ideal is invertible.

The simplest kind of invertible lattices are the principal lattices
I=0.(Ha=a0g(I)

with @ € B*: its inverse is I™! = a~'O_(I) = Or(I)a"".
The major task of this chapter will be to interrelate these notions in the quaternionic
context. Let
nrd(7) := gcd({nrd(a) : @ € I}),

i.e., nrd([) is a positive generator of the (finitely generated) subgroup of Q generated
by nrd(«) for @ € I. The main result over Q is the following theorem (Main Theorem
16.7.7).

Main Theorem 16.1.3. Let B be a quaternion algebra over Q and let I C B be an
integral lattice. Then the following are equivalent:

(1) 1 is locally principal, i.e., I,y = I ®z Z(p) is principal for all primes p;
(ii) 1 is invertible;

(iii) 1 is right invertible;

(iii") I is left invertible;

(iv) nrd(1)? = [Or(]) : I]; and

GAv’) nrd(1)? = [O.(]) : I].

Accordingly, for I integral, we may define the right absolute norm of 7 by
N(I) :=#(Or(1)/I) = [Or(1) : I] € Z3,

and similarly on the left; by Main Theorem 16.1.3 (iv) & (iv’), when [ is locally
principal, the left and right absolute norms coincide (called then just absolute norm)
and are related to the reduced norm by N(7) = nrd(I)>.

16.2 Locally principal, compatible lattices

The simplest lattices to understand are those that are principal; but as we saw in
section 9.4, lattices over Dedekind domains are inherently local in nature. We are led
to consider the more general class of locally principal lattices. We work first with
lattices, and later we will keep track of their left and right orders.

Throughout this chapter, let R be a Dedekind domain with field of fractions F, let
B be a finite-dimensional algebra over F, and let / C B be an R-lattice.

Definition 16.2.1. [ is principal if there exists @ € B such that
I =0L(Da =aOr(1);

we say that [ is generated by «.
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16.2.2. If ] is generated by « € B, then since [ is a lattice (Definition 9.3.1) we have
IF = Ba = B, so a € B*.

16.2.3. If I = O, (I)a, then Og(I) = o 'O (I)a by Exercise 16.2, so
I=a(e 'O () = aOr(I).

Therefore it is sufficient to check for a one-sided generator (and if we defined the
obvious notions of left principal or right principal, these would be equivalent to the
notion of principal).

The notion of principality naturally extends locally.

Definition 16.2.4. An R-lattice / is locally principal if /() = I ®g R(y) is a principal
R p)-lattice for all primes p of R.

Now let I, J be R-lattices in B. We define the product 1J to be the R-submodule
of B generated by the set

{aB:a€l, BeJ}.

The product /J is an R-lattice: itis finitely generated as this is true of /, J individually,
and there exists a nonzero r € R N I (Exercise 9.2) so rJ C IJ and thus

B=F(rJ)CF(IJ)=B

so equality holds.
When multiplication of two lattices matches up their respective left and right
orders, we give it a name.

Definition 16.2.5. We say that [ is compatible with J if Og(1) = O (J).

We will also sometimes just say that the product /J is compatible to mean that / is
compatible with J. The relation “is compatible with” is in general neither symmetric
nor transitive. (Looking ahead to groupoids in Chapter 17, we might also say that the
two lattices are composable.)

16.2.6. [ has the structure of a right Og (7)-module and J the structure of a left Oy (J)-
module. When Og(I) = O, (J) = O, that is, when [ is compatible with J, it makes
sense to consider the tensor product / ®o J as an R-module. The multiplication map
B ®p B = B defined by @ ® B — ap restricts to give an isomorphism I o J = IJ
as R-lattices. In this way, multiplication of compatible lattices can be thought of as a
special case of the tensor product of modules.

We conclude this section with several other basic properties of lattices.
Definition 16.2.7. An R-lattice [ is integral if /> C I.
In Definition 16.2.7, the product need not be compatible.

Lemma 16.2.8. Let I be an R-lattice. Then the following are equivalent:
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(i) I is integral;

(i) Forall a,B € I, we have af € I;

(iii) I € OL(I), so I is a left ideal of O, (1) in the usual sense;
>iii") I € Or(I); and

@iv) I € O.(I) n Or(1).

If I is integral, then every element of I is integral over R.

Proof. The equivalence (i) < (ii) follows immediately. For (i) & (iii), we have I7 C [
if and only if I € O (1) by definition of O (1), and the same argument gives (i)
& (iii’), and this then gives (i) & (iv). The final statement follows from Lemma
10.3.2. O

In light of Lemma 16.2.8, we need not define notions of left integral or right
integral.

For an R-lattice I, there exists nonzero d € R such that dI is integral, so every
R-lattice I = (dI)/d is fractional in the sense that it is obtained from an integral lattice
with denominator.

Definition 16.2.9. Let O C B be an R-order. A left fractional O-ideal is a lattice
I € B such that O € O, (I); similarly on the right.

If O, O’ C B are R-orders, then a fractional O, O’-ideal is a lattice I that is a left
fractional O-ideal and a right fractional O’-ideal.

Remark 16.2.10. A left ideal / € O in the usual sense is an integral left O-ideal
in the sense of Definition 16.2.9 if and only if /F = B, i.e., [ is a (full) R-lattice.
(Same for right and two-sided ideals.) If 1 is nonzero and B is a division algebra, then
automatically 7 is full and the two notions coincide.

Indeed, suppose I C O is a left ideal of O (in the usual sense). Then O C O (1)
so in particular / has the structure of an R-module, and since O is finitely generated as
an R-module and R is noetherian, it follows that [ is finitely generated. Consequently,
aleftideal I C O is a left fractional O-ideal if and only if /F = B.

Definition 16.2.11. Let / be a left fractional O-ideal. We say that I is sated (as a left
fractional O-ideal) if O = O, (/). We make a similar definition on the right and for
two-sided ideals.

Example 16.2.12. By Lemma 15.6.16, codiff(O) is a two-sided sated O-ideal.

Remark 16.2.13. Our notion of sated is sometimes called proper: we do not use this
already overloaded term, as it conflicts with the notion of a proper subset.

16.3 Reduced norms

Next, we extend the reduced norm to lattices; see also Reiner [Rei2003, §24]. To this
end, in this section we suppose that B is semisimple.

Definition 16.3.1. The reduced norm nrd(/) of / is the R-submodule of F generated
by the set {nrd(a) : @ € I}.
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Lemma 16.3.2. The reduced norm nrd(1) is a fractional ideal of F: i.e., it is finitely
generated as an R-module.

Proof. We first give a proof when B has a standard involution, and nrd is a quadratic
form. Since I is an R-lattice we have IF = B; since nrd(B) # {0}, we have nrd([) #
{0}. And I is generated by finitely many «; as an R-module; the R-module nrd(7) is
then generated by the values a;; = nrd(a;) and a;; = nrd(@; +a;) —nrd(e;) —nrd(a;),
since then

nrd(Xci;) = 3y jaijeics € Xy j Raij

for all ¢; € R.

Now for the general case. Replacing I by rI with r € R nonzero, we may suppose
that 7 is integral, and hence nrd(/) € R. Since [ is a lattice, there exists » € I N R
with r # 0. For all p such that ord,(r) = 0, we have 1 € I(p) so nrd({()) = Ry).
For each of the finitely many primes p that remain, we choose an element @ € I such
that ord, (nrd(«)) is minimal; then nrd(a) generates nrd(/(y)), and by the local-global
dictionary, these finitely many elements generate nrd(7). O

16.3.3. For a prime p of R we have nrd(/)(, = nrd(I(p)), so by the local-global
property of lattices (Lemma 9.4.6),

nrd(7) = ﬂ nrd(1) (p) = ﬂ nrd(1(p)). (16.3.4)

P P

16.3.5. If 1 is a principal R-lattice generated by a € I then nrd(/) = nrd(e)R; more
generally, if [ is an R-lattice and @ € B* then nrd(al) = nrd(a) nrd(/) (Exercise
16.4).

Now suppose that 7, J are lattices. Then nrd(/J) 2 nrd() nrd(J). However, we
need not have equality, as the following example indicates.

Example 16.3.6. It is not always true that nrd(/J) = nrd(/) nrd(J). For example, if
. . . aR R aR aR .
a € R is neither zero nor a unit, then 7 = (a R R and J = R R ) are R-lattices
in M, (F) with nrd(/) = nrd(J) = aR but IJ = M, (R) and so nrd(1J) = R.
We have Og(J) = Ma(R) = O_(I), so J is compatible with /, and nrd(J1) =
a’R = nrd(J) nrd(1); but

R a 'R R R
oR(z)z(aR “R) and OL(J)=(a1R “R),

so [ is not compatible with J.

The issue present in Example 16.3.6 is that the product is not as well-behaved
for noncommutative rings as for commutative rings; we need the elements coming
between [ and J to match up.

Lemma 16.3.7. Suppose that I is compatible with J and that either I or J is locally
principal. Then nrd(1J) = nrd(I) nrd(J).
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Proof. By the local-global property for norms (16.3.4) and since localization com-
mutes with multiplication, i.e.,

(ab)(p) = ap)b(y) for all (finitely generated) R-modules a,b C F,

we may localize and suppose that either I or J is principal. Suppose I is (right)
principal. Then I = aO for some a € B where O = Og([) = O_(J). Then

1J = (a0)J =a(OJ) = aJ

and so nrd(/J) = nrd(a)nrd(J) = nrd(/) nrd(J) by 16.3.5. The case where J is
principal follows in the same way. O

Principal lattices are characterized by reduced norms, as follows.

Lemma 16.3.8. Let I be locally principal and let « € 1. Then « generates I if and
only if nrd(a)R = nrd([7).

Proof. If I = @O then nrd(/) = nrd(a)R by Lemma 16.3.7.

For the converse, let O = Or (7). We want to show that 7 = @O, and we know that
I 2 aO. To prove that equality holds, it suffices to show this locally, so we may suppose
that I = BO. Then @ = Bu with y € O, and nrd(«@) = nrd(Bu) = nrd(B) nrd(u). By
hypothesis, nrd(u) € R*, and thus u € O%, so SO = «O. O

16.4 Algebra and absolute norm

The reduced norm of an ideal is related to its algebra norm, as follows. We continue
to suppose that B is semisimple, so the definitions of left and right norm coincide.

Definition 16.4.1. The (algebra) norm Nmpg r (/) of I is the R-submodule of F
generated by the set {Nmpr(a) : @ € I}.

Remark 16.4.2. The definition of algebra norm by necessity depends on the choice of
domain R; indeed, I is an R-lattice.

Proposition 16.4.3. The following are equivalent:
(i) I is locally principal;
(i) Nmp (1) = [OL(]) : I]g; and
(iii) Nmp|r (1) = [Or(I) : ]k

If B is simple with dimg B = n?, then these are further equivalent to

@iv) nrd()" = [OL(I) : I]g.
(v) nrd()" = [Or(1) : I]g-
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Proof. Let O = O_(I). Let @ € I. Right multiplication by a gives an R-module
isomorphism O = Ow (change of basis between two free R-modules), so by Lemma
9.6.3 we have [O : Oa]g = det(@)R = Nmp|r ()R, thinking of a € Endr (B).

We now prove (i) & (ii). We may suppose R is local, so R is a DVR, and so both
I and O are free over R. Then for all @ € I, we have

[OII]R[[ZOG’]RZ [OZOO/]R :NmB|F(a)R, (1644)

the first equality holding by Lemma 9.6.4 (the index is given by the determinant of
a change of basis). To show (i) = (ii), if / = Oa then Nmp (/) = Nmg|r(@)R
and so by cancelling [/ : Oa]g = R in (16.4.4) we obtain (ii). To show (ii) = (i),
suppose that Nmp g (/) = [O : I]g. Let a € I be such that Nmpg|r () has minimal
valuation; then Nmpr (@) generates Nmp ¢ (/). By (16.4.4), cancelling on both sides
[1: Oa]g = R, and since Oa C I we conclude I = Oa. A similar argument holds on
the right, proving (i) < (iii). Finally, (iii) & (iv) since Nmp|r (@) = nrd(@)", and the
same on the right. O

16.4.5. Recalling the proof of Proposition 16.4.3 and the definition of R-index, we
always have the containment

Nmpr (1) 2 [OL(]) : IR

and the same on the right; by Propostion 16.4.3, equality is equivalent to / being locally
principal.

To conclude this section, we suppose for its remainder that F is a local field with
valuation ring R or a global number field with ring of integers R. Then the reduced
norm is also related to the absolute norm, an absolute measure of size, as follows.

16.4.6. For a nonzero ideal a of R, we define the absolute norm (or counting norm)
N(a) to be
N(a) :=#(R/a) < oo. (16.4.7)

We extend this definition multiplicatively to fractional ideals and to elements a € F*
by defining N(a) := N(aR). Then

N(a) = [Nmf g (a)].

16.4.8. Similarly, if / C B is alocally principal R-lattice, we define the absolute norm
of I to be
N(7) := N([OL(]) : I]r) = N([Or(1) : I]R), (16.4.9)

the latter equality by Proposition 16.4.3. If I is integral then
N(I) = #(OL(D)/1) = #(Or(D)/1).
By Proposition 16.4.3, we have
N(/) = N(Nmp | (1));
and if B is simple with dimz B = n? then

N(I) = N(Nmg#(I)) = N(nrd(I))". (16.4.10)
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Remark 16.4.11. The absolute norm may also be defined for a global function field,
but there is no canonical ‘ring of integers’ as above.

16.5 Invertible lattices

We are now in a position to investigate the class of invertible lattices. Let I C B be an
R-lattice.

Definition 16.5.1. I isinvertible if there exists an R-lattice I’ C B thatis a (two-sided)
inverse to 7, i.e.

II'=0.(I) =Or(I") and I'l = O_(I") = Or(]). (16.5.2)
In particular, both of the products in (16.5.2) are compatible.

16.5.3. If 1,J are invertible lattices and I is compatible with J, then /J is invertible
(Exercise 16.10).

16.5.4. If I is a principal lattice, then [ is invertible: if I = Oa with @ € B* and
O=0.(),then I’ = a 'O has

II' = (Oa)(a™'0) = O(ea™)O =00 =0
so I’ is a right inverse, and
I'l = (¢”'0)(0a) = a'Oa = Og(I)
so I’ is also a left inverse.

A candidate for the inverse presents itself quite naturally. If /I’ = O, (/) and
I'l =Og(I), then II'] = 1.

Definition 16.5.5. We define the quasi-inverse of I as

IV :={a e B:lal CI}. (16.5.6)

Lemma 16.5.7. The following statements hold.
(@) The quasi-inverse I™' is an R-lattice and
m'rci.
(b) If O is an R-order, then O~ = O.

Proof. Statement (a) follows as in the proof of Lemma 10.2.7, and the inclusion is by
the definition of I~!. For statement (b), if @ € O, then OaO < O since O is an order;
conversely, if OaO C O, then taking 1 € O on left and right we conclude € O. O

We now consider the quasi-inverse as an inverse.
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Proposition 16.5.8. The following are equivalent:

() I is a (two-sided) inverse for I;
(i) I = Og(I) and IT™" = O, (I);
(iii) 1 is invertible;
(iv) There is a compatible product II''I = I and both 1 € II™" and 1 € I"'I.

Proof. The implication (i) = (ii) is clear. For (ii) = (i), we need to check the
compatibility of the product: but since I-'1 = Og(I) we have O, (I"") € Og([), and
from the other direction we have the other containment, so these are equal.

The implication (i) = (iii) is clear. For (iii) = (i), suppose that I’ is an inverse
tol. Then I = II'I so I’ C I"! by definition. Therefore I C II~'1 C I and equality
holds throughout. Multiplying by I’ on the left and right then gives

I'='nritary=rir=r.
Again the implication (i) = (iv) is immediate. To prove (iv) = (ii), we need to
show that I7=' = O_(I) and I7'I = Og(I); we show the former. By compatibility,

Or(I'MY=0.()=0.1II'" =JthenJ =1I"' =0(II"")O =0JO,s0J C Oisa
two-sided ideal of O containing 1 hence J = O. O

Invertibility is a local property, as one might expect.
Lemma 16.5.9. [ is invertible if and only 1) is invertible for all primes p.
Proof. We employ Proposition 16.5.8(iv): We have 117! = I if and only if
(”_II)(p) = ](p)(rl)(n)l(p) =1y
for all primes p and e.g. 1 € /717" if and only if 1 € I () I} o
Corollary 16.5.10. If I is locally principal, then I is invertible.
Proof. Combine 16.5.4 with Lemma 16.5.9. O

A compatible product with an invertible lattice respects taking left (and right)
orders, as follows.

Lemma 16.5.11. If I is compatible with J and J is invertible, then O (1J) = O_(I).

Proof. We always have O, (I) € O, (1J) (even without J invertible). To show the
other containment, suppose that @ € Oy (1J), so that «lJ C 1J. Multiplying by J!,
we conclude @/ € I and @ € O ([). O

Not every lattice is invertible, and it is helpful to have counterexamples at hand
(see also Exercise 16.12).
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Example 16.5.12. Let p € Z be prime. Let B := (%) and

O =272 pZi® pZj & Zij
[:=p’Z@Zi®dZj®Zij.

Then O C B is an order and O (1) = Og(I) = O. We compute that

I"'=pZeZieZjeZij (16.5.13)
and
O™ =0r(I'Y=Z+Zi+Zj+ I%Zij =Z+ 11—700; (16.5.14)
so0 in the product
' =1""1=pZ e pZi® pZj & Zij < O (16.5.15)

we see [ is not invertible and the product is not compatible.
Seen a different way, we have I = I and in the compatible product

’=I1=11=pZ@ pZi® pZj & Zij (16.5.16)
we have i, j € OL(I2) = OR(IZ) but i, j ¢ O; therefore, [ is not invertible by Lemma
16.5.11. Indeed,

1 1

OL(I?) =0r(I>) = =1*=Z+-0°.

4 4

Finally, it will convenient to consider invertibility in the context of ideals, labelling
left and right orders as follows.

Definition 16.5.17. Let O, O’ C B be R-orders and let I be a fractional O, O’-ideal.
We say 1 is invertible if / is invertible as a lattice and [ is sated (i.e., O = O (I) and
0" = Or(1)).

16.5.18. The condition that / is sated in Definition 16.5.17 is important: we must be
careful to work over left and right orders and not some smaller order. Indeed, if 7 is
invertible as an R-lattice then it is invertible as a fractional O (1), Og(I)-ideal, but not
for any strictly smaller orders. If I’ is an R-lattice and 11’ = O for some O C O, (1),
then multiplying on both sides on the left by O (1) gives

O=1I'=0.()II' =0.(1)O = O, (I)

and the same on the right. In other words, if we are going to call out an invertible
fractional ideal by labelling actions on left and right, then we require these labels to
be the actual orders that make the inverse work.

Remark 16.5.19. Example 16.1.1 suggested the ‘real issue’ with noninvertible modules
for quadratic orders: as abelian groups, we have

f=fZ+Vdz=f-S(dx),
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so f is principal and hence certainly invertible as an ideal of S(dkx)—but not as an
ideal of the smaller order S(d). More generally, if a C K = Q(Vd) is a lattice in K
(free Z-module of rank 2), we define its multiplicator ring as

S(a) :={x € K :xa C a};

the ring S(a) is an order of K and so is also called the order of a. In the example
above, S(f) = S(f(Z+ VdxZ)) = S(dk) 2 S(d). It turns out that every lattice in
K is invertible as an ideal of its multiplicator ring [Cox89, Proposition 7.4], and this
statement plays an important role in the theory of complex multiplication. (Sometimes,
an ideal a C S is called proper or regular if S = S(a); both terms are overloaded in
mathematics, so we will mostly resist this notion.)

Unfortunately, unlike the quadratic case, not every lattice / C B is projective as
a left module over its left order (or the same on the right): this is necessary, but not
sufficient. In Chapter 24, we classify orders O with the property that every lattice /
having O, (I) = O is projective as an O-module: they are the Gorenstein orders.

Remark 16.5.20. Invertible lattices give rise to a Morita equivalence between their
corresponding left and right orders: see Remark 7.2.20.

16.6 Invertibility with a standard involution

In section 16.6, we follow Kaplansky [Kap69], considering invertibility in the presence
of a standard involution. The main result of this chapter is as follows.

Main Theorem 16.6.1. Let R be a Dedekind domain with field of fractions F, and let
B be a finite-dimensional F-algebra with a standard involution. Then an R-lattice I is
invertible if and only if I is locally principal.

Remark 16.6.2. We can relax the hypothesis that R is a Dedekind domain and in-
stead work with a Priifer domain, a generalization of Dedekind domains to the non-
noetherian context.

We have already seen (Corollary 16.5.10) that the implication (=) in Main Theo-
rem 16.6.1 holds without the hypothesis of a standard involution; the reverse implica-
tion is the topic of this section. This implication is not in general true if this hypothesis
is removed (but is true again when B is commutative); see Exercise 16.18(a).

Remark 16.6.3. The provenance of the hypothesis that R is a Dedekind domain is the
following: if a C R is not invertible as an R-module, and O C B is an R-order, then
a0 is not invertible as an R-lattice. To make the simplest kind of arguments here, we
would like for all (nonzero) ideals a C R to be invertible, and this is equivalent to the
requirement that R is a Dedekind domain (see section 9.2).

Throughout this section, let R be a Dedekind domain with field of fractions F, let
B be a finite-dimensional F-algebra, and let I C B be an R-lattice. The following
concept will be useful in this section.

Definition 16.6.4. We say [ is a semi-order if 1 € 7 and nrd(/) C R.
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(For a semi-order I, we necessarily have nrd(/) = R since 1 € 1.)

Lemma 16.6.5. An R-lattice I is a semi-order if and only if 1 € [ and every a € I is
integral over R.

Proof. We have that « € I is integral over R if and only if trd(«@) € R and nrd(@) € R
(by Corollary 10.3.6, since R is integrally closed) if and only if nrd(e¢) € R and
nrd(a + 1) = nrd(a) + trd(a@) + 1 € R. O

In particular, Lemma 16.6.5 implies that an order is a semi-order (by Corollary
10.3.3); we will see that semi-orders behave enough like orders that we can deduce
local principality from their structure.

16.6.6. Let I:={a: a € I}. Then I is an R-lattice in B. If I, J are R-lattices then
1J = J I (even if this product is not compatible).
If I is a semi-order, then I = I (Exercise 16.15). In particular, if O is an R-order

then O = O.
Lemma 16.6.7. We have O, (I) = Og(I) and Og(I) = O_(1).

Proof. We have @ € O_(I) if and only if ol C I if and only if «f = T@ C 1 if and
only if @ € Og(I) if and only if & € Og(I) = Og(I). O

Corollary 16.6.8. If I is a semi-order, then O (I) = Or(I).
Proof. Apply Lemma 16.6.7 with T = I. |

By Lemma 16.6.7, the standard involution gives a bijection between the set of
lattices 1 with Oy (1) = O and the set of lattices with Og([) = O.

16.6.9. Suppose that R is a DVR (e.g., a localization of R at a prime ideal p). We will
show how to reduce the proof of Main Theorem 16.6.1 to that of a semi-order.

Since R is a DVR, the fractional R-ideal nrd(/) C R is principal, generated by an
element with minimal valuation: let @ € I achieve this minimum reduced norm. Then
the R-lattice J = a~'I now satisfies 1 € J and nrd(J) = R. Thus J is a semi-order,
and J is (locally) principal if and only if 7 is (locally) principal.

Proof of Main Theorem 16.6.1. The proof is due to Kaplansky [Kap69, Theorem 2].
The statement is local; localizing, we may suppose R is a DVR. By 16.6.9, we reduce
to the case where [ is a semi-order. In particular, we have 1 € I. Let «y,..., @, be
an R-basis for /. We may suppose without loss of generality that @ = 1: indeed,
if p is the maximal ideal of R and k := R/p its residue field, then I/pl ~ k™ is a
k-vector space with 1 # 0, so we can extend to a basis and this lifts to a basis over R,
by Nakayama’s lemma.
We claim that
=t (16.6.10)

Since 1 € I, we have /"' C I". It suffices then to prove that a product of n basis
elements of I lies in 77!, If one of these basis elements is 1, this holds. Otherwise,
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the pigeonhole principle applies: there must be a repeated term «; among them. We
recall the formula (4.2.16)

af + Ba = trd(B)a + trd(e) B — trd(a) (16.6.11)

for all @, 8 € B. We can use this relation to “push” the second instance of the repeated
element until it meets with its mate, at the expense of terms lying in /"*. More precisely,
in the R-module /%/I, by (16.6.11),

a;a; = —@ja; (mod I)
for all 7, j; it follows that in 1"/1"‘1,
p(eiaj)v = —p(aje;)v  (mod 1"

for all y, v appropriate products of basis elements. Therefore we may suppose that
the repetition al.z is adjacent; but then «; satisfies a quadratic equation and a/l.z =
trd(a;)a; — nrd(e;) € 1, so in fact the product belongs to 1"~!, and the claim follows.

Now suppose [ is invertible; we wish to show that [ is principal. From the
equality I = "', we multiply both sides of this equation by (I~')*~! and obtain
I =0 =0.(I) = Og(I). In particular, I is principal, generated by 1. O

The above proof has the following immediate corollary.

Corollary 16.6.12. An R-lattice I is an R-order if and only if 1 € I, every element of
1 is integral, and I is invertible. In particular, an invertible semi-order is an order.

We conclude with two consequences.

16.6.13. Let I,J be invertible R-lattices such that / is compatible with J. Then
nrd(1J) = nrd(/) nrd(J), since it is enough to check this locally, and locally both 7
and J are principal and we have proved the statement in this case (Lemma 16.3.7).

16.6.14. In the presence of a standard involution, we can write the inverse in another
way: if 1 is invertible, then

11 =nrd(1)Og(I) and IT = nrd(1)OL (1)

by checking these statements locally (where they follow immediately by computing
the norm on a local generator). Since nrd(/) is a fractional R-ideal and thus invertible
(R is a Dedekind domain), it follows that if 7 is invertible, then

"' =Tnrd(1)7".
In view of 16.6.14, the following important proposition is natural.

Proposition 16.6.15. Let B be a quaternion algebra over F and let I C B be an
R-lattice. Then the following statements hold.

(a) We have {7 = nrd(1)O, where O C B an R-order satisfying O_(I) € O, and
similarly I = nrd(1)O’ with Og(I) € O'.
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(b) If either O (1) or Or(I) is maximal, then I is invertible, and both O\ (I) and
Or(I) are maximal.

Proof. We follow Kaplansky [Kap69, Theorems 6—7]. We again may suppose R is a
DVR and [ is a semi-order, so 1 € I and nrd(I) = R; and I = I.

First we prove (a). We need to show that /> is an order. We showed in (16.6.10)
(without extra hypothesis) that 1> = I*; with B a quaternion algebra, we will im-
prove this to I? = I3, whence (1?)?> = I* = I and consequently /2 is closed under
multiplication and hence an R-order.

Let J = I?; then J> = (I’)> = I® = I’ = J, so J is an R-order. Let p be the
maximal ideal of R and consider the 4-dimensional algebra J/pJ over k = R/p. Then
I/pI C J/pJ is a k-subspace containing 1. If (I/pI)? = I/pl, then by dimensions we
contradict (I/pl)® = J/pJ; therefore (I/pI)> 2 I/pl. If dimy (I/pl) < 2, then I/pl
is a proper k-subalgebra, impossible. Thus dimy (I/pI) > 3 and dimy (I/pI)> > 4,
and so (I/pl)*> = J/pJ. By Nakayama’s lemma, it follows that I> = J = I3. The
containments follow directly, e.g. O, (I) € O, (IT) = O_(O) = O.

For part (b), applying part (a) we have O = O, (I) by maximality and the same on
the right. But since 7 is a semi-order, from Corollary 16.6.8 we have IT = O_(I) =
Or(I) = 11 so by definition, I has inverse 1 O

16.7 One-sided invertibility

In this section, we pause to consider one-sided notions of invertibility. We refresh
our notation, recalling that R is a Dedekind domain with F' = FracR and B is a
finite-dimensional algebra over F' with I C B an R-lattice.

Definition 16.7.1. [ is right invertible if there exists an R-lattice I’ C B, a right
inverse, such that the product /1’ is compatible and 11’ = O (I).

A right fractional O-ideal [ is right invertible if / is right invertible and sated (viz.
16.5.18).

We similarly define left invertible and left inverse. Applying the same reasoning
as in Lemma 16.5.9, we see that one-sided invertibility is a local property.

Remark 16.7.2. For rings, the (left or) right inverse of an element need not be unique
even though a two-sided inverse is necessarily unique. Similarly, left invertibility does
not imply right invertibility for lattices in general, and so the one-sided notions can be
a bit slippery: see Exercise 16.18(b).

Remark 16.7.3. The compatibility condition in invertibility is important to avoid
trivialities. Consider Example 16.3.6: we have IJ = M(R) = O, ({), and if we let
7= bR bR

B (R R
every author requires compatibility in the definition of (sided) invertibility.

) for any nonzero b € R, the equality /J = M;(R) remains true. Not

A natural candidate for the right inverse presents itself: if 71’ = Oy (), then I’
maps [ into Oy (1) on the right. We recall the definition of the colon lattices (Definition
15.6.11). Let I’ := (OL(I) : I)gr. Then II’ C O (I) by definition; however, in general
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equality need not hold and the product need not be compatible. Similarly, since
II7'T € I we have 17! € O, (I), but again equality need not hold.
The sided version of Proposition 16.5.8 also holds.

Proposition 16.7.4. The following are equivalent:

() I7'is a right inverse for I,
(i) I is right invertible;
(iii) There is a compatible product II"'1 = I and 1 € I17'.

Similar equivalences hold on the left.

Proof. This is just a sided restriction of the proof of Proposition 16.5.8. For example,
to show (ii) = (i), we always have 111 C I'so II"! C O, (I);if I is aright inverse to
I, then II'I = O, (I)I = I and I’ C I"", and therefore 11~' D II’ = O, (I). Therefore
II"' = O_(I) and I"! is a right inverse for . o

Returning to the setting of the previous section, however, we can show that the
one-sided notions of invertibility are equivalent to the two-sided notion.

Lemma 16.7.5. Suppose B has a standard involution. Then an R-lattice I is left
invertible if and only if I is right invertible if and only if I is invertible.

Proof. We will show that if [ is right invertible then / is left invertible; the other
implications follow similarly. By localizing, we reduce to the case where R is a DVR.
By the results of 16.6.9, we may suppose that I is a semi-order, so that O (I) =
Or(I)=Oand I =1I. Suppose II’ = O. Then I'I = O=0,and T’ is compatible with
I since o

O =0k(I) = OL(I/) = Or(I)
as desired. O

Corollary 16.7.6. Suppose R is a Dedekind domain and that B has a standard in-
volution. Then an R-lattice I is right invertible with 11’ = O\ (I) if and only if
I'=(0 (D) : Dg=1"".

A similar statement holds for the left inverse; in particular, this shows that a right
inverse is necessarily unique.

Proof. The implication (=) is immediate, so we prove (<). Let O = O (I). Then
O=II'cI(O:HrgcO

so equality must hold, and /1" = I(O : I)g. By 16.7.5, I is invertible, and multiplying
both sides by 17! gives I’ = (O : I)g. o

We collect the results of this section in the following theorem.

Main Theorem 16.7.7. Let R be a Dedekind domain with F = Frac R, let B be a
quaternion algebra over F, and let I C B be an R-lattice. Then the following are
equivalent:
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(i) I is locally principal;
(i1) 1 is invertible;
(iii) I is left invertible;
(iii") I is right invertible;
(iv) nrd(1)? = [O.(]) : I]g; and
(iv’) nrd(I)? = [Ox(I) : I]g.

Proof. Main Theorem 16.6.1 proves (i) < (ii). For the equivalence (ii) & (iii)) &
(iii"), apply Lemma 16.7.5. Finally, the equivalence (i) & (iv) & (iv’) is supplied by
Proposition 16.4.3. O

16.8 Invertibility and the codifferent

To conclude this chapter, we pick up a remaining thread concerning the (co)different.

Definition 16.8.1. We define the different of O to be the quasi-inverse of the codif-
ferent:
diff (0) := codiff(0)™! = {a € B : O*aO¥ c OF}.

Lemma 16.8.2. The different diff (O) is an integral two-sided O-ideal.

Proof. By Lemma 15.6.16, we have OO*O = OF and so if @ € diff(O) then
O (0a0)OF = OfaOF = OF and diff(O) is a two-sided O-ideal. To prove that
diff(O) C O, referring to Lemma 15.6.2, starting with OfaO% C O taking 1 € OF
we have aOf C O so (aO%)F = (Of)fe~! 2 (O¥)¥. By Lemma 15.6.5, we have
(O = 0,50 Oa~"' 2 O, s0 Oa C O and again taking 1 we get a € O. O

16.8.3. If codiff (O) is locally principal (section 16.2), then so is diff(O), and by
Proposition 16.4.3 we have

Nmpg|r (diff(O)) = [O : diff (O)] g = [codiff (O) : O]g = disc(O);
so when further B is a quaternion algebra, we have
nrd(diff (O)) = discrd(O). (16.8.4)
Invertibility of ideals is detected by the (co)different [Fad65, Proposition 24.1].

Proposition 16.8.5. If codiff (O) is right invertible, then all sated left fractional O-
ideals are right invertible. Similarly, if codift(O) is left invertible, then all sated right
fractional O-ideals are left invertible.

Proof. To get started, we refresh a few things: by Corollary 15.6.13, we have (11#)# =
OL(I) = O. The product /1% is compatible by Proposition 15.6.6. By Lemma 15.6.5
we have IT% = OF = codiff (O).

Now by hypothesis of invertibility, O*(O#)~! = O_(O¥) = O is a compatible
product. Therefore the product I f(OMH1is compatible, and

1(FOH ™Y = arHyohH' = of(oH! = 0. (16.8.6)

A similar argument holds on the right. O
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We have the following corollary of Proposition 16.8.5, phrased in terms of the
different.

Corollary 16.8.7. Suppose that B has a standard involution. Then the following are
equivalent:

(1) codiff(O) is invertible;
(i) diff(O) is invertible,
(iii) All sated left fractional O-ideals I are invertible, with inverse I"' = I # diff (0);
and
(iii’) All sated right fractional O-ideals I are invertible, with inverse ™" = diff(O)I*.

Proof. Combine Proposition 16.8.5 and (16.8.6) with Lemma 16.7.5 and Corollary
16.7.6. O

We conclude with a criterion to determine invertibility; it is not used in the sequel.

Proposition 16.8.8 (Brandt’s invertibility criterion). Let I C B be an R-lattice. Then
I is invertible if and only if

nrd(Iﬁ) discrd(7) C nrd([).

Proof. See Kaplansky [Kap69, Theorem 10] or Brzezinski [Brz82, Theorem 3.4]. O

Exercises

Unless otherwise specified, throughout these exercises let R be a Dedekind domain
with field of fractions F, let B be a finite-dimensional F-algebra, and let I C B be an
R-lattice.

1. Let d € Z be a nonsquare discriminant, and let S(d) = Z[(d + Vd)/2] be the
quadratic ring of discriminant d.

(a) Suppose that d = dk f2 with f > 1. Show that the ideal ( f, Vd) of S(d)
is not invertible.

(b) Consider d = —12, and § = §(—12) = Z[V-3]. Show that every invertible
ideal of § is principal (so S has class number 1), but that S is not a PID.

» 2. Show that if I = O, (I)a with & € B, then Or(I) = «~ 'O, (I)a.

» 3. Show that if J is an R-lattice in B and u € B*, then uJ = J if and only if
JIRS OL(J)X

» 4. Show that if @ € B then nrd(a/) = nrd(a)nrd(Z). Conclude that if I is a
principal R-lattice, generated by @ € I, then nrd(/) = nrd(a)R.

5. Let ay,...,a, generate I as an R-module. Give an explicit example where
nrd(7) is not generated by nrd(«;) (cf. Lemma 16.3.2). Moreover, show that for
an R-lattice I, there exists a set of R-module generators «; such that nrd(7) is in
fact generated by nrd(«;).
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Suppose that R is a Dedekind domain, and let O C B be an R-order. Let I be
a locally principal right fractional O-ideal. Show that I can be generated as a
right O-ideal by two elements, and in fact for a € nrd(/) nonzero we can write
I =a0 + BO with 8 € B*.

. Let F be a number field, let R C F be a (Z-)order, and let a C R be a nonzero

ideal. Show that a is projective as an R-module if and only if a is invertible if
and only if a is locally principal. [These are all automatic when R is a Dedekind
domain 9.4.5.]

8. If I,J C B are R-lattices with I C J, is it true that I-! 2 J~1?

» 10.

11.

12.

» 13.

14.

» 15.

16.

. LetI,J, K C B be R-lattices. Show that

(:NDL:Kr=(I:K)g:J)L.

Let 7, J € B be R-lattices and suppose that / is compatible with J. Show that 1./
is invertible (with (1J)~' = J~'I71)if I, J are invertible, but the converse need
not hold.

Let I, J C B be R-lattices, and suppose that J is invertible. Show that (I : J)_ =
IJ7Vand (1 : J)g=J7'I
Let p be prime, let B=(p,p | Q),and let O :=Z{i, j) =Z S Zi ® Zj & Zij.
(@) LetI={@ € O:p|nrd(a)}. Showthat ] = pZ & Zi ® Zj & Zij.
(b) Show I = Oi + OJ, that O is a two-sided O-ideal, and that [O : I] = p.
(c) Show that I(,y # O(pya for all a € I(p). [Hint: show that if a € I, then
p* 1[0 : Oal.]
(d) Compute that O, (I) =Z+Zi+Zj +Z(ij/p) 2 O,and that I = O (I)i =
Ou()).
(e) Compute codiff(O) and diff (O) and show they are invertible.
[Compare Lemurell [Lem2011, Remark 6.4].]

Let K be a separable quadratic field extension of ' and let / C K be an R-lattice.
Let O = O_({) = Or(I).

(a) Show that IT = II = nrd(1)O. [Hint: argue as in Proposition 16.6.15.]
(b) Conclude that I is invertible as a O-module.

Show that if 7, J C B are locally principal (hence invertible) R-lattices, then
[(I:Jr=[J":T"]r
Let B be an F-algebra with a standard involution ~. Show thatif / is a semi-order

then 1 = I.

Let R be a Dedekind domain with field of fractions F, let K O F be a separable
quadratic field extension and let S be an R-order in K. Let Sk be the integral
closure of R in K.

(a) Show that there exists a (unique) ideal f = f(S) C Sk (called the conduc-
tor) such that S = R + {Sk.
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(b) Now let b ¢ K be a fractional S-ideal. Show that the following are

equivalent:
(i) bis alocally principal S-ideal;
(i) bisinvertible as a fractional S-ideal, i.e., there exists a fractional ideal
b~! such that bb~! = § (necessarily b~! = (5 : b));
(iii) There exists d € K* such that db+fN S = S; and
(iv) bis proper, i.e., S = O(b) = {x € K : xb C b}.
» 17. Let O C B be an R-order.

(a) Let @ € B*. Show that I = O« is a lattice with O, (1) = Og(I) = O if
and only if @ € B* and Oa = @O. Conclude that the set of invertible
two-sided principal lattices I with O, (I) = Or(I) = O forms a group.

(b) Show that the normalizer of O,

Npx(0) = {a € B* : «Oa™! = O}

is the group generated by @ € B* such that O« is a two-sided O-ideal.

18. The following example is due to Kaplansky [Kap69, pp. 220, 221]. Let R be a
DVR with field of fractions F and maximal ideal p = 7R.

(a) Consider the R-lattice
R nR R
I=

7R 7R R|c B=M;(F)
R R R

Show that / is invertible but is not principal.
(b) Consider the R-lattice

nR 7R R
I=|7*R 7R R|c B=M;(F)
R R R

Show that [ is left invertible but is not right invertible.



Chapter 17

Classes of quaternion ideals

Having investigated the structure of lattices and ideals in Chapter 16, we now turn to
the study of their isomorphism classes.

17.1 » Ideal classes

For motivation, let K be a quadratic number field and S € K an order. We say that
two invertible fractional ideals a, b € K of S are in the same class, and write a ~ b, if
there exists ¢ € K* such that ca = b; we denote the class of a fractional ideal a as [a].
We have a ~ b if and only if a and b are isomorphic as S-modules. The set C1S of
invertible fractional ideals is a group under multiplication, measuring the failure of S
to be a PID. The class group C1 S is a finite abelian group, by Minkowski’s geometry of
numbers: every class in Cl S is represented by an integral ideal a € S whose absolute
norm is bounded (depending on S, but independent of the class), and there are only
finitely many such ideals. For an introduction to orders in quadratic fields and their
class numbers, with further connections to quadratic forms, see Cox [Cox89, §7].

The first treatment of isomorphism classes of quaternion ideals was given by Brandt
[Bra28]. Let B be a quaternion algebra over Q. In the consideration of classes of lattices
I c B, we make a choice and consider lattices as right modules—considerations on
the left are analogous, with the map I — 1 allowing passage between left and right.
We say that lattices /,J C B are in the same right class, and write [ ~g J, if there
exists @ € B* such that @l = J; equivalently, I ~g J if and only if I is isomorphic to
J as right modules over Og (1) = Og(J). The relation ~g is evidently an equivalence
relation, and the class of a lattice I is denoted [/]g.

Let O C B be an order. We define the right class set of O as

Clsg O := {[I]r : I C B invertible and Og(I) = O};
equivalently, Clsg O is the set of isomorphism classes of invertible right O-modules
in B. The standard involution induces a bijection between Clsg O and the analogously

defined left class set Cls; O; working on the right from now on, we will often abbreviate
Cls O := Clsg O.

269
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Unfortunately, the class set Cls O does not have the structure of a group: only
a pointed set, with distinguished element [O]g. One problem is the compatibility
of multiplication discussed in the previous chapter. But even if we allowed products
between incompatible lattices, the product need not be well-defined: the lattices /J and
IaJ for @ € B* need not be in the same class, because of the failure of commutativity.
(This is the reason we write ‘Cls’ instead of ‘Cl’, as a reminder that it is only a class
set.) In Chapter 19, we will describe the structure that arises naturally instead: a
partially defined product on classes of lattices, a groupoid.

In any case, using the same method of proof (geometry of numbers) as in the
commutative case, we will show that there exists a constant C (depending on O)
such that every class in Cls O is represented by an integral ideal / € O with N(/) =
#(O/I) < C. As a consequence, we have the following fundamental theorem.

Theorem 17.1.1. Let B be a quaternion algebra over Q and let O C B be an order.
Then the right class set Cls O is finite.

Accordingly, we call #Cls O € Z, the (right) class number of O.

Right class sets pass between orders as follows. Let O,O’ c B be orders. If
O = O’ are isomorphic as rings, then of course this isomorphism induces a bijection
ClsO & CIsO’. In fact, O =~ O’ if and only if there exists @ € B> such that
O = a0« by the Skolem—Noether theorem; for historical reasons, we say that
O, O’ are of the same type.

Note that / = Oa = O’ has O_(I) = O and Ogr(I) = O’ (recalling 10.2.5).
With this in mind, more generally, we say that O’ is connected to O if there exists
an invertible lattice J with O_(J) = O and Og(J) = O’, called a connecting ideal.
Because invertible lattices are locally principal, two orders are connected if and only
if they are locally of the same type (i.e., locally isomorphic). If O’ is connected to
O, then right multiplying by a O, O’-connecting ideal J yields a bijection

ClsO = Cls O’

17.1.2
[Tr = (1] (17.1.2)

We define the genus of an order O C B to be the set Gen O of orders in B locally
isomorphic to O, and the type set Typ O of O to be the set of R-isomorphism classes
of orders in the genus of O. The map

ClsO - TypO

(17.1.3)
[I]gr > class of O, (1)

is a surjective map of sets, so the type set is finite: in other words, up to isomorphism,
there are only finitely many types of orders in the genus of O. All maximal orders in B
are in the same genus, so in particular there are only finitely many conjugacy classes
of maximal orders in B. In this way, the right class set of O also organizes the types
of orders arising from O.

The most basic question about the class number is of course its size (as a function
of O). In the case of quadratic fields, the behavior of the class group depends in a
significant way on whether the field is imaginary or real: for negative discriminant
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d < 0, the Brauer—Siegel theorem provides that # C1 S is approximately of size \/m ;
in contrast, for positive discriminant d > 0, one typically sees a small class group and
a correspondingly large fundamental unit, but this statement is notoriously difficult to
establish unconditionally.

The same dichotomy is at play in the case of quaternion algebras, and to state the
cleanest results we suppose that O is a maximal order. Let D := disc B = discrd(O)
be the discriminant of B. If B is definite, which is to say co € Ram B, then B is like
an imaginary quadratic field K: the norm is positive definite. In this case, #Cls O is
approximately of size D, a consequence of the Eichler mass formula, the subject of
Chapter 25. On the other hand, if B is indefinite, akin to a real quadratic field, then
#Cls O = 1, this time a consequence of strong approximation, the subject of Chapter
28. Just as in the commutative case, estimates on the size of the class number use
analytic methods and so must wait until we have developed the required tools.

17.2 Matrix ring

To begin, we first consider classes of ideals for the matrix ring; here, we can use
methods from linear algebra before we turn to more general methods in the rest of the
chapter.

17.2.1. Let R be a PID with field of fractions F, and let B = M,,(F). By Corollary
10.5.5, every maximal order of B = M,,(F) is conjugate to M, (R). Moreover, every
two-sided ideal of M,,(R) is principal, generated by an element a € F* (multiplying
a candidate ideal by matrix units, as in Exercise 7.5(b)), so the group of fractional
two-sided M,, (R)-ideals is canonically identified with the group of fractional R-ideals,
itself isomorphic to the free abelian group on the (principal) nonzero prime ideals of
R.

Just as in the two-sided case, the right class set for M,, (R) is trivial.

Proposition 17.2.2. Let R be a PID with field of fractions F, and let B = M,,(F). Let
I C B be an R-lattice with either O (I) or Og(I) maximal. Then I is principal, and
both O, (I) and Og(I) are maximal.

Proof. We may suppose [ is integral by rescaling by » € R. Replacing I by the
transpose I' = {a' : a € I} interchanging left and right orders (Exercise 10.12) if
necessary, we may suppose that O (I) is maximal. Then, by Corollary 10.5.5, we
have O, (1) = a ' M,,(R)a with @ € B*, so replacing I by a~'I we may suppose
OL(I) = Myu(R).

Now we follow Newman [New72, Theorem II.5]. Let a;,..., @, be R-module
generators for 1. Consider the nm x n matrix A = (a1, ..., a,)". By row reduction
over R (Hermite normal form, proven as part of the structure theorem for finitely
generated modules over a PID), there exists Q € GL,,,(R) such that QA = (B,0)*
and B8 € M,,(R). We will show that I = M,,(R)B. Let vi1,...,vim € M, (R) be
the block matrices in the top n rows of Q. Then 8 = vija; + -+ Vip@, so S € 1
and M, (R)B € 1. Conversely, let uii, ..., unm1 € M, (R) be the block matrices in
the left n columns of Q! € GL,,,,,(R). Since Q™! (B,0)t = A, we have u;| 8 = a; so
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a; € Mp(R)Bfori =1,...,m, thus I € M, (R)B. Therefore I = M,,(R)S, and so
Ok(I) is maximal (16.2.3). O

Returning to the case of quaternion algebras, we have the following corollary of
Proposition 17.2.2.

Corollary 17.2.3. Let R be a Dedekind domain and let B be a quaternion algebra over
F =FracR. Let I C B be an R-lattice with either O (I) or Or(I) maximal. Then I is
locally principal and both O (1) and Og(I) are maximal.

Proof. For each prime p of R, we have that R, is a complete DVR and one of two
possibilities: either B, ~ M;(F}), in which case we can apply Lemma 17.2.2 to
conclude 1, is principal, or By, is a division algebra, and we instead apply 13.3.10 to
conclude that I}, is principal. O

17.3 Classes of lattices

For the rest of this chapter, let R be a Dedekind domain with field of fractions F =
Frac R, and let B be a simple F-algebra.

Definition 17.3.1. Let I,J C B be R-lattices. We say 1, J are in the same right class,
and we write I ~g J, if there exists & € B* such that af = J.

17.3.2. Throughout, we work on the right; analogous definitions can be made on the
left. When B has a standard involution, the map I + [ interchanges left and right.

Lemma 17.3.3. Let I,J C B be R-lattices. Then the following are equivalent:

i) I ~rJ;
(ii) 1 is isomorphic to J as a right module over Og(I) = Or(J).

If further 1,J are invertible with Og(I) = Or(J), then these are equivalent to:
(iii) (J : 1), = JI7is a principal R-lattice.

Proof. For (i) = (ii). If I ~g J then J = al with @ € B*, so Or(J) = Og([) and the
map left-multiplication by @ gives a right O-module isomorphism / = J. Conversely,
for (i) & (ii), suppose that ¢: I = J is an isomorphism of right O-modules. Then
¢r : IQg F = B = J ®g F = B is an automorphism of B as a right B-module.
Then as in Example 7.2.14, such an isomorphism is obtained by left multiplication by
a € B*, so by restriction ¢ is given by this map as well.

Finally, for (i) = (iii), we have a/ = J if and only if «O_(I) = «II™' = JI7' =
(J:1D),. O

The relation ~r defines an equivalence relation on the set of R-lattices in B, and
the equivalence class of an R-lattice I is denoted [/]g. If I is an invertible R-lattice,
then every lattice in the class [/]g is invertible and we call the class invertible.

In view of Lemma 17.3.3(ii), we organize classes of lattices by their right orders.
Let O C B be an R-order.
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Definition 17.3.4. The (right) class set of O is
Clsg O := {[I]r : I an invertible right fractional O-ideal}.

In view of 17.3.2, we will soon abbreviate Cls O := Clsg O and drop the subscript
r from the classes, when no confusion can result.

Remark 17.3.5. The notation C1 O is also used for the class set, but it sometimes means
instead the stably free class group or some other variant. We use “Cls” to emphasize
that we are working with a class set.

17.3.6. The set Clsg O has a distinguished element [O]g € Clsg O, so it has the
structure of a pointed set (a set equipped with a distinguished element of the set).
However, in general it does not have the structure of a group under multiplication:
for classes [I]r, [/]r, We have [aJ]g = [J]r for @« € B* but we need not have
[IaJ]r = [1J]R, because of the lack of commutativity.

17.3.7. An argument similar to the one in Proposition 17.2.2, either arguing locally or
with pseudobases (9.3.7), yields the following [CR81, (4.13)].

Let R be a Dedekind domain with F' = Frac R, let B = M,,(F), and let / C B be an
R-lattice with O (I) = M, (R). Then there exists 8 € GL,(F) and fractional ideals
ag,--- ,a, such that

I =M, (R) diag(ay,...,a,)B (17.3.8)

where diag(ay, ..., a,) is the R-module of diagonal matrices with entries in the given
fractional ideal. The representation (17.3.8) is called the Hermite normal form of
the R-module /, because it generalizes the Hermite normal form over a PID (allowing
coeflicient ideals).

By 9.3.10, the Steinitz class [a; - - - a,] € CIR is uniquely defined. Switching to
the right, this yields a bijection

CIR = Cl.sR(Mn(R)) (17.3.9)
[a] = [diag(a,1,...,1)M,(R)]r

17.4 Types of orders

Next, we consider isomorphism classes of orders. Let O, O’ C B be R-orders.

Definition 17.4.1. We say O, O’ are of the same type if there exists @ € B* such that
O’ =a'0a.

Lemma 17.4.2. The R-orders O,O’ are of the same type if and only if they are
isomorphic as R-algebras.

Proof. If O, O’ are of the same type, then they are isomorphic (under conjugation).
Conversely, if ¢: O = O’ is an isomorphism of R-algebras, then extending scalars
to F we obtain ¢p: OF = B = B = O’F an F-algebra automorphism of B. By
the theorem of Skolem—Noether (Corollary 7.7.4), such an automorphism is given by
conjugation by @ € B*, so O, O’ are of the same type. O
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17.4.3. If O, O’ are of the same type, then an isomorphism O = O’ induces a bijection
Cls O = Cls O’ of pointed sets. By Lemma 17.4.2, such an isomorphism is provided
by conjugation O’ = a~'Oa for some & € BX. The principal lattice I = Oa = O’
has O_(I) = O and Og(I) = O’.

Generalizing 17.4.3, the class sets of two orders are in bijection if they are con-
nected, in the following sense.

Definition 17.4.4. O is connected to O’ if there exists a locally principal fractional
O, O’-ideal J C B, called a connecting ideal.

The relation of being connected is an equivalence relation on the set of R-orders.
If two R-orders O, O’ are of the same type, then they are connected by a principal
connecting ideal (17.4.3).

Definition 17.4.5. We say that O, O’ are locally of the same type or locally iso-
morphic if Op and Oj are of the same type (i.e., Op = Oy) for all primes p of
R.

Lemma 17.4.6. The R-orders O, O’ are connected if and only if O, O’ are locally
isomorphic.

Proof. Let J be a connecting ideal, a locally principal fractional O, O’-ideal. Then for
all primes p of R we have J, = Oy with @y, € By, and consequently Oy, = Or(Jp) =
a;lOpap. Therefore O is locally isomorphic to O’.

Conversely, if O, O’ are locally isomorphic, then for all primes p of R we have
O}, = a,'Opa, with @ € By. Since R is a Dedekind domain, O}, = O, for all but
finitely many primes p, so we may take ap, € Oy = Oj, for all but finitely many primes
p. Therefore, there exists an R-lattice I with I, = Opay by the local-global principle
for lattices, and 7 is a locally principal fractional O, O’-ideal. O

Lemma 17.4.7. If O, O’ C B are maximal R-orders, then OO’ is a O, O’-connecting
ideal.

The product in Lemma 17.4.7 is not necessarily compatible.

Proof. Since O, O’ are R-lattices, their product / := OO’ is an R-lattice. We visibly
have O € O, (I) and the same on the right; but O, O’ are maximal, so equality holds
and [ is a fractional O, O’-ideal. Finally, [ is invertible by Proposition 16.6.15(b),
hence locally principal by Main Theorem 16.6.1. O

In analogy with the class set, we make the following definitions.

Definition 17.4.8. Let O C B be an R-order. The genus Gen O of O is the set of R-
orders in B locally isomorphic to O. The type set Typ O of O is the set of isomorphism
classes of orders in the genus of O.

17.4.9. The orders in a genus have a common reduced discriminant, since the dis-
criminant can be defined locally and is well-defined on (local) isomorphism classes,
by Corollary 15.2.9.



17.4. TYPES OF ORDERS 275

17.4.10. Recalling section 15.5, there is a unique genus of maximal R-orders in a
quaternion algebra B—that is to say, every two maximal orders are locally isomorphic—
and this genus has a well-defined reduced discriminant equal to discg B.

The importance of connected orders is attested to by the following result.

Lemma 17.4.11. Let O, O’ be connected R-orders, and let J be a connecting O, O’-
ideal. Then the maps

CISR O = CISR O/
[I1r = [17]&
[Tk — [I']r

are mutually inverse bijections. In particular, if O" € GenO then #Clsg O =
#Clsg O'.

Proof. By definition, J is invertible with O, (J) = O and Ogr(J) = O’. Therefore
the map / — 1J induces a bijection between the set of invertible right O-ideals
and the set of invertible right O’-ideals (Lemma 16.5.11), with inverse given by
I’ — I'’J7', and each of these products is compatible. This map then induces a
bijection ClsO = Cls O’, since is compatible with left multiplication in B, i.e.,
(al)J = a(1J) for all @ € B*. O

Remark 17.4.12. The equivalence in Lemma 17.4.11 is a form of Morita equivalence:
see Remark 7.2.20.

Lemma 17.4.11 says that the cardinality of the right class set is well-defined on the
genus Gen O; and of course the cardinality of the type set is also well-defined on the
genus (as it is the number of isomorphism classes).

Lemma 17.4.13. The map

Clsg O — Typ O

(17.4.14)
[I]r > class of O (1)

is a surjective map of sets.

Proof. If O’ is connected to O, then there is a connecting O’, O-ideal I, and [I]g €
Clsg O has O (1) ~ O'. O

Remark 17.4.15. The fibers of the map (17.4.14) are given by classes of two-sided
ideals: see Proposition 18.5.10.

17.4.16. Let B = M(F) and O = M, (R). From the bijection (17.3.9), the classes in

Clr(M32(R)) are represented by I, = (a

R a) for [a] € C1R. Consequently

R
ot =[5 )
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We will see later (28.5.11) that there is a bijection

CIR/(CIR)* = TypM,(R)

a (17.4.17)
3

R
class of [a] up to squares — class of (a‘l

17.5 » Finiteness of the class set: over the integers

Over the next two sections, we will show that the set Cls O of invertible right (fractional)
O-ideals is finite using the geometry of numbers. In this section, we carry this out
for the simplest case, when B is definite over Q; we consider the general case in the
next section. For further reading on the rich theory of the geometry of numbers, see
Cassels [Cas97], Gruber—Lekkerkerker [GrLe87], and Siegel [Sie89].

Our strategy is as follows: if J is an invertible right O-ideal, we will show there
exists @ € J~! with the property that @/ = I C O has bounded absolute norm
N(I) = #(O/I) < C where C € R, is independent of J. The result will then follow
from the fact that there are only finitely many right O-ideals of bounded absolute norm.

We begin with some definitions (generalizing Definition 9.3.1 slightly).

Definition 17.5.1. A Euclidean lattice is a Z-submodule A € R" with A ~ Z" such
that RA = R". The covolume of a Euclidean lattice A is covol(A) = vol(R"*/A).
17.5.2. Equivalently, a Euclidean lattice A ¢ R” is the Z-span of a basis of R”, and if

A = P, Za;, then covol(A) = |det(a;;); ;.

Lemma 17.5.3. A subgroup A C R" is a Euclidean lattice if and only if A is discrete
and the quotient R /A is compact.

Proof. Exercise 17.6. O

Definition 17.5.4. Let X C R" be a subset.

(a) Xisconvexifrx+ (1—1t)ye Xforallx,y € Xandt € [0, 1].
(b) X is symmetric if —x € X forall x € X.

The main result of Minkowski’s geometry of numbers is the following convex body
theorem.

Theorem 17.5.5 (Minkowski). Let X C R" be a closed, convex, symmetric subset of
R", and let A € R" be a Euclidean lattice. If vol(X) > 2" covol(A), then there exists
0OfaeANX.

The following proposition can be seen as a generalization of what was done for the
Hurwitz order (11.3.1).
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Proposition 17.5.6. Let B be a definite quaternion algebra over Q and let O C B
be an order. Then O* = O! is a finite group, and every right ideal class in Cls O is
represented by an integral right O-ideal with

8
N(I) < = discrd(O)
s
and the right class set Cls O is finite.

b b . . . . . .
Proof. Let B = (a@), with a, b € Zo. Since B is definite, there is an embedding

B — Bsw = B®g R ~ H. Inside By, = R* with Euclidean norm nrd, the order O
sits as a Euclidean lattice. The set O! is therefore a discrete subset of the compact set
Bl ~H!', so it is finite.

Explicitly, we identify

B, = R*
(17.5.7)
t+xi+yj+zij = V2(t,xv/]al, yV|bl, zv/|abl)
Then 2nrd(a) = ||a||® for @ € B in this identification, and we have covol(O) =

discrd(O) (Exercise 17.7).

Let J C B be an invertible right fractional O-ideal. To find I with [/] = [J] and
I integral, we look for a small @ € J~! so that I = @J C O will do. As a measure of
(co)volume, counting cosets and applying the definition (16.4.9), we obtain

covol(J™) =[O : J71z covol(O) = N(J 1) discrd(O). (17.5.8)
Let ¢ > 0 satisfy ¢* = (32/72) covol(J7!), and let
X={xeR*: x| <c}.

Then X is closed, convex, and symmetric, and vol(X) = n2c¢*/2 = 16covol(J7}).
Then by Minkowski’s theorem (Theorem 17.5.5), there exists 0 # @ € J -I'nX,and

1
N(aJ) = Nmg|g(a)N(J) = nrd(@)’N(J) = ZIIGII4N(J)
| p (17.5.9)
< —¢*N(J) = = diserd(O).
4 n?
Since « is nonzero and B is a division algebra, @ € B*. Since a € J7 the integral
right fractional O-ideal I = aJ C O is as desired.
If I C Ohas N(I) =#(O/I) < C for C € Z+(, then CO C I C O hence there are
only finitely many possibilities for /, and the second statement follows. O

17.6 > Example

We pause for an extended example. We steal the following lemma from the future.



278 CHAPTER 17. CLASSES OF QUATERNION IDEALS

Lemma 17.6.1. Lete € Z5o. Then every principal right Mo (Z,)-ideal I withnrd(I) =
p¢ is of the form I = a My(Z,,) where

u
a € {(pc l?v) Tu,v €EZso, u+v=e, andCEZ/pVZ}. (17.6.2)
Proof. The lemma follows from the theory of invariant factors: a more general state-
ment is proven in Lemma 26.4.1. O
-1,-23
Example 17.6.3. Let B = , and let
1+j 1+j
O=z+zZi+z—L +zi—L.

We have discrd(O) = disc B = 23, so O is a maximal order, and 8 = (1 + j)/2 satisfies
% — B +6 = 0. For convenience, let @ = i, so O = Z(«a, B). Then

aB+ Ba = a. (17.6.4)

By Proposition 17.5.6, it is sufficient to compute the (invertible) right O-ideals
I € O such that

nrd(7)? = N(I) < %(23) < 18.7
T

sonrd(/) < 4. For nrd(]) = 1, we can only have I = O, and the class [/;] = [O]. Let
O, =0.

We move to nrd(/) = 2, and refer to Lemma 17.6.1. Since B is split at 2, there is
an embedding

O‘—)Mz(Zz)
0 -1\ (1-b9 O
“’ﬂ'_’(l 0)’( 0 bo)'
Whereb()=2+8+16+32+---eZzsatisﬁesb%—b0+6=0andboEO(mod2).
We have

_ (1 0} {0 O\ (1 O
ﬁ,ﬁ+1,(a+1),3=(0 0),(0 ]),(1 O) (mod 2)
so we obtain the three right ideals
1(1:0) =20 +IBO, [(0:1) =ZO+(ﬁ— I)O, 1(1:1) =20+((Z+ I)BO (17.6.5)

labelled by the corresponding nonzero column. If one of these three ideals is principal,
then it is generated by an element of reduced norm 2. We have

nrd(f + xa + yB + zaB)

=12 +1y+ x> +x7+6y* +67°

5 5 (17.6.6)
( 1 ) ( 1 ) 23 , 23,
=\t+Zy| +{x+=Z2)] +—y +—2".

2 2 4 4
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Sonrd(y) =2 withy € Ohast,x,y,z € Zand therefore y=z=0andr = x = 1, i.e.,
I1:1y = (@ +1)Ois principal, and the ideals /1.y, /(0:1) are not. But [/(1.0)] = [L(0:1)]
because a/l(j.g) = I(o.1) because & € O* and by (17.6.4)

@20+ (B - 1)0) =220 + (B - 1)0 = 20 - B0 = Iy

(We have al(1.g) # I(1.0) precisely because & ¢ O (I).) In this way, we have found
exactly one new right ideal class, [I] = [I(1.0)]. We compute its left order to be

(1 .
Oy:=0.(h) =Z+pZ+ %Z+ 2ij)z +# O

and we also have a new type [O,] # [O;] € Typ O.

In a similar way, we find 4 right ideals of reduced norm 3, and exactly one new
right ideal class, represented by the right ideal /3 = 30 + (@ + 1) 0. For example, we
find that the right ideal /” = 30 + SO is not principal using (17.6.6): letting

1 —
(I' L) =IlL'= 5”2
and we find a shortest vector

(1-p)/2e (" : D)y,

so [I'] =[]
Repeating this with ideals of reduced norm 4 (Exercise 17.8), we conclude that

ClsO = {[I1],[L]. [I5]}

and letting O3 := Oy (13), checking it is not isomorphic to the previous two orders, we
have

Typ O ={[0O1], [02], [Os]}.

17.7 Finiteness of the class set: over number rings
We now turn to the general case.

Main Theorem 17.7.1. Let F be a number field, let S C P1 F be eligible and R = R s
be the ring of S-integers in F. Let B be a quaternion algebra over F, and let O C B
be an R-order in B. Then the class set Cls O and the type set Typ O are finite.

We call # Cls O the (right) class number of O. (By 17.3.2, the left class number
suitably defined is equal to the right class number.) This result will be drastically
improved upon in Part IIT of this text from analytic considerations; the proof in this
section, using the geometry of numbers, has the advantage that is easy to visualize, it
works in quite some generality, and it is the launching point for algorithmic aspects.
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17.7.2. Before we begin, two quick reductions. The finiteness of the type set follows
from finiteness of the right class set by Lemma 17.4.13. And if R = ZF is the ring of
integers of F, then the general case follows from the fact that the map

Cls O — CI(O ®r R(s))

17.7.3
1] [I8x Ris)] (17.7.3)

is surjective for an eligible set S.

Let F be a number field of degree n = [F : Q], let R = ZF be the ring of integers
in F, and let B be a quaternion algebra over F'.

17.7.4. Suppose that F has r real places and ¢ complex places, so that n = r + 2c.
Then
Fe Fo=FggR=|[F, =R xC", (17.7.5)
v |oo
Taking the basis 1,7 for C, we obtain F,, ~ R", and then in the embedding (17.7.5),
the ring of integers R ~ Z" sits discretely inside F, ~ R" as a Euclidean lattice.

,b . .
17.7.6. Suppose B = (GT) and let 1,7, j, k be the standard basis for B with k = ij,
soB=F@Fi®Fj®Fk =~ F*as F-vector spaces. Then
B~ Bo=B®yR=~B®F Foo ~ Far (17.7.7)

in this same basis. Via (17.7.5) in each of the four components, the embedding (17.7.7)
then gives an identification B, =~ (R")* ~ R*",

The order R{i, j, k) = R+Ri+Rj+Rk is discrete in B, exactly because R is discrete
in F. But then implies that an R-order O is discrete in B, since [O : R{i, j, k)]z < oo.
Therefore O < R*" has the structure of a Euclidean lattice.

In the previous section, the real vector space B, was Euclidean under the reduced
norm. In general, that need no longer be the case. Instead, we find a positive definite
quadratic form Q: B., — R that majorizes the reduced norm in the following sense:
we require that

INmp /g (nrd(e))| < Q(a)" (17.7.8)

forall « € B C Bw.

Remark 17.7.9. With respect to possible majorants (17.7.8): in general, there are
uncountably many such choices, and parametrizing majorants arises in a geometric
context as part of reduction theory. As it will turn out, the only “interesting” case to
consider here is 17.7.10, by strong approximation (see Theorem 17.8.3).

17.7.10. Let B be a totally definite (Definition 14.5.7) quaternion algebra over F, a
totally real number field. Then the quadratic form
0:B—>Q
a o Trpjg(nrd(a) = > v(nrd(e)) (17.7.11)

Voo
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is positive definite: B, =~ H and so v(nrd(a)) > 0 with equality if and only if
a = 0. We call this quadratic form the absolute reduced norm. In this case, by the
arithmetic-geometric mean,

1/n
Nmp/Q(nrd(a))l/” = (1—[ v(nrd(a/)))

v

(17.7.12)
< %Z v(nrd(a)) = %Q(Q)

(with equality if and only if v(nrd @) agrees for all v).
We pause to note the following important consequence of 17.7.10.

Lemma 17.7.13. Let B be a totally definite quaternion algebra over a totally real field
F and let O C B be a Zg-order. Then the group of units of reduced norm 1

O'={y e O:nrd(y) = 1}
is a finite group.

In Lemma 17.7.13, if F = Q then O* = O, so we have captured the entire unit
group.

Proof. Asin 17.7.10, we equip B := B ® R =~ H" ~ R*" with the absolute reduced
norm giving O < By the structure of a Euclidean lattice (17.7.7). We have

O'={ye0:0(y) =n} (17.7.14)

by the arithmetic-geometric mean (17.7.12). But the set {x € Bgr : Q(x) = n} is an
ellipsoid in R** so compact, and O is a lattice so discrete. Therefore the intersection
O! is finite. O

17.7.15. We now generalize 17.7.10 to the general case. For v an infinite place of F,
define

0,:B, —»R
t4xi+yj+zij = v + (@I + v v + v (ab)llv(2) %
then Q,, is a positive definite quadratic form on B,,, and
[v(nrd(@))| = |v(£2 — ax® = by? + abz?)|
< @OP + (@lv@) P+ vB)lv) P + v(ab)llv(z)? - (17.7.16)
=0y (a).
Let m, = 1,2 depending on if v is real or complex, and define

Q:Bm:nBvﬁR

Voo

(ay)y Z m, Q0 (ay).

Voo

(17.7.17)
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Then Q is a positive definite quadratic form on B, again called the absolute reduced

a,b
norm (relative to a, b); it depends on the choice of representation B = (?)

Nevertheless, (17.7.16) and the arithmetic-geometric mean yield

1
INmp g (nrd(@)]'/" < — > my|v(nrd(a))|

Voo

1 (17.7.18)
< ;omvgv(oo =Q(a).

We are now ready to prove the main result of this section.

Proposition 17.7.19. There exists an explicit constant C € R such that for all R-
orders O, every right ideal class in Cls O is represented by an integral right O-ideal
I with

N(I) £ CN(discrd(O)).

Proof. If B ~ M, (F), then we appeal to 17.3.7, where such a bound comes from the
finiteness of Cl1 R. So we may suppose that B is a division ring.
Let
X ={(x); eR*": Q(a) < 1}. (17.7.20)

Then X is closed, convex, and symmetric.
Let O be an R-order in B and let J be an invertible right fractional O-ideal. As in
(17.5.8), counting cosets gives

covol(J™1) = N(J)~! covol(O). (17.7.21)
Let

—1y\ 1/4n
=2 (M) (17.7.22)

vol(X)
Then vol(cX) = ¢*" vol(X) = 2*" covol(J~!). By Minkowski’s theorem, there exists
0£aecJ'ncX,s0Q(a)<c? By (17.7.18),
1 C2n
|NmF/Q(nrd(a/))| < n—nQ(Q)n < n—n
Consequently

4n
N(@) = INmg g (nrd(@)) PN() < “N()

24N (J)~! covol(O) 24 covol (O) (17.7.23)
= N(]) - —
n2" vol(X) n2" vol(X)
= CN(discrd(0O))

with
C o= 24n covol(O)
" n27 vol(X) N(discrd(0))

(17.7.24)
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The ratio covol(O)/N(discrd(O)) is a constant independent of O: if O’ is another
R-order then
N(discrd(O’))  [O: O’]zN(discrd(O)) _ N(discrd(O))
covol(0’) ~  [O:0’]zcovol(O) ~  covol(O)

Since « is nonzero and B is a division algebra we conclude that @ € B*, and since
@ € J7!, the ideal I = aJ is as desired. m]

Remark 17.7.25. For an explicit version of the Minkowski bound in the totally definite
case, with a careful choice of compact region, see Kirschmer [Kir2005, Theorem
3.3.11].

Lemma 17.7.26. For all C > 0, there are only finitely many integral right O-ideals [
with N(I) < C.

Proof. For such I € O, we have N(I) = [O : I]z < C, the index taken as abelian
groups. But there are only finitely many subgroups of O of index < C, since O
is finitely generated: they correspond to the possible kernels of surjective group
homomorphisms O — A where #4 =n < C. O

We now have the ingredients for our main theorem.

Proof of Main Theorem 17.7.1. Combine Proposition 17.7.19, the reductionsin 17.7.2,
and Lemma 17.7.26. O

Remark 17.7.27. The finiteness statement (Main Theorem 17.7.1) can be generalized
to the following theorem of Jordan—Zassenhaus. Let R be a Dedekind domain with
F = Frac(R) a global field, let O C B be an R-order in a finite-dimensional semisimple
algebra B, and let V be a left B-module. Then there are only finitely many isomorphism
classes I € Bwith O € O (I). Specializing to V = B a quaternion algebra, we recover
the Main Theorem 17.7.1. For a proof, see Reiner [Rei2003, Theorem 26.4]; see also
the discussion by Curtis—Reiner [CR81, §24].

17.8 Eichler’s theorem

In this section, we state a special but conceptually important case of Eichler’s theorem
for number fields: roughly speaking, the class set of an indefinite quaternion order is
in bijection with a certain class group of the base ring.

Let F be a number field with ring of integers R = Zr and let B be a quaternion
algebra over F.

Definition 17.8.1. We say B satisfies the Eichler condition if B is indefinite.

Definition 17.8.1 introduces a longer (and rather opaque) phrase for something
that we already had a word for, but its use is prevalent in the literature. There are two
options: either B is totally definite (F is a totally real field and all archimedean places
of F are ramified in B) or B is indefinite and satisfies the Eichler condition.
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17.8.2. Recall 14.7.2 that we define Q C Ram B to be the set of real ramified places
of Band F :90 to be the positive elements for v € Q.
We now define the group Clg R as

the group of fractional ideals of F under multiplication
modulo

the subgroup of nonzero principal fractional ideals
generated by an element in F. jﬂo

If Q is the set of all real places of F, then Clg R = CI* R is the narrow (or strict) class
group. On the other hand, if Q = 0, then Clg R = Cl1 R. In general, we have surjective
group homomorphisms CI* R — Clg R and Clg R — CIR. In the language of class
field theory, Clg R is the class group corresponding to the cycle given by the product
of the places in Q.

Theorem 17.8.3 (Eichler; strong approximation). Let F' be a number field and let B
be a quaternion algebra over F that satisfies the Eichler condition. Let O C B be a
maximal Zg-order. Then the reduced norm induces a bijection

ClsO = ClgR
[1] = [nrd(D)].

where £ C Ram B is the set of real ramified places in B.

(17.8.4)

Proof. Eichler’s theorem is addressed by Reiner [Rei2003, §34], with a global proof
of the key result [Rei2003, Theorem 34.9] falling over several pages. We will instead
prove a more general version of this theorem as part of strong approximation, when
idelic methods allow for a more efficient argument: see Corollary 28.5.17. O

Eichler’s theorem says that when B is not totally definite, the only obstruction for
an ideal to be principal in a maximal order is that its reduced norm fails to be (strictly)
principal in the base ring. In particular, we have the following corollary.

Corollary 17.8.5. If #CI* R = 1, then #CIsO = 1: i.e., every right O-ideal of a
maximal order in an indefinite quaternion algebra is principal.

Proof. Immediate from Eichler’s theorem and the fact that C1* R surjects onto Clg R,
by 17.8.2. O

Corollary 17.8.6. There is a bijection Cls M, (Zr) = ClZp.

Proof. Immediate from Eichler’s theorem; we proved this more generally for a matrix
ring (17.3.9) using the Hermite normal form. O

17.8.7. 1t is sensible for the class group Clg R to appear by norm considerations. Let
v € Q; then B, ~ H, and if @ € B* then v(nrd(a)) > 0, as the reduced norm is
positive.

The class sets of totally definite orders are not captured by Eichler’s theorem, and
for good reason: they can be arbitrarily large, a consequence of the Eichler mass
formula (Chapter 25).
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Exercises

Unless otherwise specified, throughout these exercises let R be a Dedekind domain
with field of fractions F, let B be a quaternion algebra over F, and let O C B be an
R-order.

1. Argue for Proposition 17.2.2 directly in a special case as follows. Let I € Mj(F)
be a lattice with Og (1) = M3 (R).

(a) By considering I ®g F show that

I C (g g) M;(R) & (2 2) M;(R).

(b) Suppose that R is a PID. Conclude that / is principal.

2. Let O, O’ C B be R-orders. Show that the map in Lemma 17.4.11 is a bijection
of pointed sets if and only if O is isomorphic to O’.

» 3. Let O, O’ C B be R-orders with O € O’.

(a) If I is an invertible right O-ideal, show that /O’ is an invertible right
O’-ideal. (The product IO’ is not necessarily compatible.)
(b) Show that the map

ClsO — CIsO’
[I] = [107]

is well-defined, surjective, and has finite fibers. [Hint: let r € R be
nonzero such that O’ C r='O. If IO’ = I, then I’ = IO’ C r'I C I’
sorl’” €1 C I, and conclude there are only finitely many possibilities for

1]

4. Let O,0’ C B be maximal R-orders. In this exercise, we prove the following
statement:

There is a unique integral connecting O, O’ ideal I of minimal re-
duced norm; moreover, we have nrd(/) = [O : ON O’].

(a) Show that this statement is local, i.e., the statement is true over R if and
only if it is true over R, for all primes p of R.

(b) Suppose R is a DVR. Show that the statement is true if B is a division
algebra.

(c) Suppose R is a DVR with maximal ideal p, and that B ~ M, (F). Show that
there is a unique @ € O\pO such that O’ = &~ Oa up to left multiplication
by O%, and conclude that I = Oe is the unique integral connecting O, O’
ideal of minimal reduced norm. [Hint: Ng,(r)(M2(R)) = F* GL2(R).]

(d) Continuing (c), show that nrd(@) = [O : O N O’]. [Hint: the statement
is equivalent under left or right multiplication of a by O* ~ GL,(R), so
consider invariant factors.| [For another perspective, see section 23.5.]
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Let O C B be an R-order and let / be an invertible fractional right O-ideal. Let
a C R be a nonzero ideal. Show that there exists a representative J € [I]g (in
the same right ideal class as I) such that / C O and nrd(J) is coprime to a.
[Hint: look for @ € (O : I)r and then look locally.]

Prove Lemma 17.5.3: asubgroup A c R" is a Euclidean lattice if and only if A is
discrete (every point of A is isolated, i.e., every x € A has an open neighborhood
U > x such that AN U = {x}) and the quotient R" /A is compact.

Let B be a definite quaternion algebra over Q and let O C B be an order.

(a) Let B, = B ® R. Show that nrd is a Euclidean norm on By, and O is
discrete in B, with covol(O) = 4 discrd(O). [So it is better to take V2 nrd
instead, to get covol(O) = discrd(O) on the nose.]

(b) Let K1, K> C B be quadratic fields contained in B with K; N K> = Q. Let
S; .= K; N O and d; = disc S;. Show that

(|di| = 1)(|da| = 1) > 4discrd(O).

[Hint: write S; = Z[«;] and consider the order Z{a1, a3).]
(c) Prove that if aq, @» € O have

y/discrd(O)

nrd(a;), nrd(az) < >

then ajan = .

. Complete Example 17.6.3 by showing explicitly that all right O-ideals of reduced

norm 4 are in the same right ideal class as one of I, I», I5.

Let R be a global ring with #CI R = 1, i.e., every fractional R-ideal is principal
a = aR. Suppose further that #CIsO = 1. Let @ € O have nrd(a) # O,
and factor nrd(a@) = w71 -+ -, € R where m; € R are pairwise nonassociate
nonzero prime elements (equivalently 7; R are pairwise distinct nonzero prime
ideals).

(a) Show that there exist @y, @>, . .., @, € O such that @ = w @ - - - @, and
nrd(w;)R =m;Rforalli=1,...,r.
(b) Show that every other such factorization is of the form

a= (o) (v '@y (v @)

where yq,...,y, € O%.
(c) Suppose that nrd(O*) = R*. Refine part (a) and show that the stronger
conclusion that there exist @; such that nrd(w;) = n; for all i.

[This generalizes Theorem 11.4.8.]

We have seen that maximal orders in (definite) quaternion algebras of discrim-
inant 2 (the Hurwitz order) and discriminant 3 (Exercise 11.12) are Euclidean
with respect to the norm, and in particular they have trivial right class set.

(a) Show that maximal orders O in quaternion algebras of discriminants
5,7,13 have #Cls O = 1.
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(b) Conclude that the quaternary quadratic forms
P Hix+ty +1z+x2+xy+xz7+2y% — yz +27%,
P4tz +x% +xy+2y7 +272%,
241y +17+2x7 +xy +2x7 4 2y% + yz + 422
are multiplicative and universal, i.e., represent all positive integers.
(c) Show that for discriminant 7, 13 the maximal orders are not Euclidean with
respect to the norm.

[We discuss the maximal orders of class number 1 in Theorem 25.4.1. The
maximal order for discriminant 5 is in fact norm Euclidean: see Fitzgerald
[Fit2011].]

11. In this exercise, we show that the group of principal two-sided ideals PIdl(O)
need not be normal in the group of invertible fractional O-ideals IdI(O) of an
order.

Let B=(-1,-1| Q), and let O C B be the Hurwitz order. Let O’ =Z + 50 =
O(5) (cf. Exercise 18.6). Show that

I'=100"+ (1 =2i + j)O’
is a two-sided invertible O’-ideal, and that
I'j(I) ' =50"+ (i+3) + k)OO’
is not principal.

12. The finiteness of the class group (see Reiner [Rei2003, Lemma 26.3]) can be
proven replacing the geometry of numbers with just the pigeonhole principle, as
follows. Let B be a division algebra over a number field ' with ring of integers
R, and let O C B be an R-order.

(a) To prove the finiteness of Cls O, show that without loss of generality we
may take F = Q.

(b) Show that Nmp|g(x1@1 + - - + x,a@pn) € Q[x1,...,x,] is a homogeneous
polynomial of degree n.

(c) Show that there exists C € Z- such that for all # > 0 and all x € Z" with
|x;| <t, we have |[Nmpr(xja) + - +x,0,)| < Ct".

(d) Let I € O be alattice. Let s € Z be such that

sSTSNW) =#O/D) < (s+ D™

Using the pigeonhole principle, show that there exists @ = },; x;a; € 1
with x; € Z and |x;| < 2(s+ 1) for all i.
(e) Show that N(aO) < 2"(s + 1)"C, and conclude that

#(I/20) < 4"C.
(f) Let M = (4"C)! and show that MI C aO, whence

MOcI cO
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where I’ = (Ma~")I. Conclude that the number of possibilities for I is
finite, hence the number of right classes of lattices I € O is finite, and
hence #Cls O < oo.



Chapter 18

Two-sided ideals and the Picard group

In this chapter, we treat maximal orders like noncommutative Dedekind domains, and
we consider the structure of two-sided ideals (and their classes), in a manner parallel
to the commutative case.

18.1 » Noncommutative Dedekind domains

Let R be aDedekind domain with field of fractions F: then by definition R is noetherian,
integrally closed, and all nonzero prime ideals of R are maximal. Equivalently, every
ideal of R is the product of prime ideals (uniquely up to permutation). To establish this
latter property of unique factorization of ideals, there are two essential ingredients:
first, every proper ideal contains a finite product of prime ideals, and second, every
nonzero prime ideal p C R is invertible. The first of these uses that R is noetherian
and that nonzero prime ideals of R are maximal; the second uses that R is integrally
closed.

Here, the theorems are no easier to prove in the case of a quaternion algebra, so
we might as well consider them in more generality. Let B be a simple F-algebra and
let O C B be an R-order.

To draw the closest analogy with Dedekind domains, we suppose that O C B
is maximal: this is the noncommutative replacement for integrally closed. Since O
is finitely generated, if / € O is a two-sided O-ideal, then / is a finitely generated
R-submodule, so the noetherian condition on R automatically implies that every chain
of ideals of O stabilizes. We say a two-sided ideal P C O is prime if P # O and for
all two-sided ideals I, J € O, we have

IJCcP = [CPorJCP.
Running parallel to the above, we have the following initial lemma.
Lemma 18.1.1. A nonzero two-sided O-ideal is prime if and only it is maximal,
and every nonzero two-sided O-ideal contains a product of prime nonzero two-sided

O-ideals.

289
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Completing the analogy with the commutative case, we then have the following
theorem.

Theorem 18.1.2. Let R be a Dedekind domain with field of fractions F = Frac R, let
B be a simple F-algebra and let O C B be a maximal R-order. Then the following
statements hold.

(@) If I C B is an R-lattice such that O_(I) = O or Og(I) = O, then I is invertible
and both O (I) and Og(I) are maximal R-orders.

(b) Multiplication of two-sided O-ideals is commutative, and every nonzero two-
sided O-ideal is the product of finitely many prime two-sided O-ideals, uniquely
up to permutation.

Let Id1(O) be the group of invertible two-sided fractional O-ideals. Put another
way, Theorem 18.1.2 says that if O is maximal, then Id1(O) is isomorphic to the free
abelian group on the set of nonzero prime two-sided O-ideals under multiplication.

We now consider classes of two-sided ideals, in the spirit of section 17.1. Two
candidates present themselves. On the one hand, inside the group Id1(O) of invertible
fractional two-sided O-ideals, the principal fractional two-sided O-ideals (those of
the form OaO = Oa = O for certain @ € B*) form a subgroup PIdI(O), and we
could consider the quotient. On the other hand, for a commutative ring S, the Picard
group Pic(S) is defined to be the group of isomorphism classes of rank one projective
(equivalently, invertible) S-modules under the tensor product. When S is a Dedekind
domain, there is a canonical isomorphism C1 S = Pic(S).

For simplicity, suppose now that R = Z. In this noncommutative setting, we
analogously define Pic O to be the group of isomorphism classes of invertible O-
bimodules (over Z) under tensor product. If 7, J € Id1(O), then I, J are isomorphic as
O-bimodules if and only if J = al with a € Q*, and this yields an isomorphism

Pic O =~ IdI(O)/Q*.
Let
Npx(0) = {a € B* : @O = Oa}
be the normalizer of O in B. By the Skolem—Noether theorem,
Np<(0)/Q* = Aut(O)
is the group of Z-algebra (or ring) automorphisms of O.

Theorem 18.1.3. Let B be a quaternion algebra over Q of discriminant D := disc B,
and let O C B be a maximal order. Then

Pic O ~ ]_[ 7/2Z

pID

generated by (unique) prime two-sided O-ideals with reduced norm p | D, and there
is an exact sequence
0 — Npx(0)/(Q*0*) — Pic O — 1d1(O)/PId1(O) — 0

X X (18.1.4)
a(Q*07) - [0aO].
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In particular, Pic O is a finite abelian 2-group. As an application of Theorem
18.1.3, we revisit the map (17.1.3):

ClsO - TypO
[I]g + class of O, (1)

We recall that this map is surjective. The fibers are given by Theorem 18.1.3 (see
Proposition 18.5.10): the fiber above the isomorphism class of O’ is in bijection with
the set PId1(O”)\ Id1(O’).

Remark 18.1.5. The structure of Pic O is more complicated when O is not necessarily
a maximal order: in general, the group Pic O is finite but it may be nonabelian (see
Exercise 18.6); worse still, in general the subgroup PIdI(O) may not be a normal
subgroup in Id1(O).

18.2 Prime ideals

Throughout this chapter, let R be a Dedekind domain with field of fractions F' = Frac R,
let B be a simple finite-dimensional F-algebra, and let O C B be an R-order.

18.2.1. Let I € O be a nonzero two-sided ideal. In view of Remark 16.2.10, we see
that 7 is automatically an R-lattice: /F C B is a two-sided ideal of B, so since B is
simple and 7 # {0} we must have /F = B.

Definition 18.2.2. A two-sided ideal P C O is prime if P # O and for all two-sided
ideals I,J € O we have

IJCP = [ICPorJCP.

A two-sided O-ideal M € O is maximal if M # O and M is not properly contained
in another two-sided ideal.

Example 18.2.3. The zero ideal P = {0} is prime: see Exercise 18.2.

18.24. Let P C O be a two-sided ideal. Then the two-sided O/P-ideals are in
bijection with the two-sided O-ideals containing P. If P # O, then P is prime if and
only if for all two sided O/ P-ideals I/P, J /P, we have

(I/P)(J/P)={0} = I/P={0}orJ/P ={0}. (18.2.5)
Lemma 18.2.6. If M is a maximal two-sided O-ideal, then M is prime.

Proof. Suppose IJ € M. Then (I + M)(J+ M) C M. But I + M 2 M so either
I+ M =M or I + M = O by maximality, and the same is true for J. Since M # O we
must have either /+ M = M or J + M = M, whichistosay Il C M orJ C M. O

Proposition 18.2.7.

(a) A nonzero two-sided O-ideal is prime if and only it is maximal.
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(b) If P € O is a nonzero prime two-sided O-ideal, then p = P N R is a nonzero
prime ideal of R, and O/ P is a finite-dimensional simple algebra over the field
R/p.

Proof. We follow Reiner [Rei2003, Theorem 22.3]. The implication (=) in (a) follows
from Lemma 18.2.6. Conversely, let P be a nonzero prime two-sided O-ideal, and let
p = PN R. We show p is a nonzero prime. By 18.2.1, P is an R-lattice, so p # {0};
since 1 ¢ P, we have p # R and p is nontrivial. If a,b € R, then ab € p implies
(aO)(bO) C P; since P is prime, we have aO C P or bO C P,soa € por b € p.
Now let J/P = rad(O/P) be the Jacobson radical of O/P (see section 7.4). By
Lemma 7.4.8, the ideal J/P is nilpotent; by (18.2.5), we conclude J/P = {0}. Thus
O/P is semisimple by Lemma 7.4.2 and thus is a product of simple R/p-algebras by
the Wedderburn—Artin theorem (Main Theorem 7.3.10). But the simple components
of O/P are two-sided ideals that annihilate one another; again by (18.2.5), there can
be only one component, and O/P is simple. Thus O/P has no nontrivial ideals, and
P is maximal. O

Lemma 18.2.8. Every nonzero two-sided ideal of O contains a (finite) product of
prime nonzero two-sided ideals.

Proof. If not, then the set of ideals which do not contain such products is nonempty;
since O is noetherian, there is a maximal element M. Since M cannot itself be prime,
there exist ideals /, J, properly containing M, such that /J € M. But both I, J contain
products of prime ideals, so the same is true of M, a contradiction. O

We now turn to notions of invertibility.

18.2.9. Let I be an invertible two-sided fractional O-ideal (cf. Definition 16.2.9 and
16.5.17). 1In particular, O_(I) = Og(I) = O. If J is another invertible two-sided
fractional O-ideal, then so is IJ, by Lemma 16.5.11: we have O_(IJ) = O (1) = O
and Og(1J) = Or(J) = O. Let IdI(O) be the set of invertible two-sided fractional
O-ideals. Then Id1(O) is a group under multiplication with identity element O.

The structure of 1d1(O), and quotients under natural equivalence relations, is the
subject of this chapter.

18.3 Invertibility

We now consider invertibility first in the general context of orders, then for maximal
orders. The general theory of maximal orders over Dedekind domains in simple
algebras was laid out by Auslander—Goldman [AG60]. One of the highlights of this
theory are the classification of such orders: they are endomorphism rings of a finitely
generated projective module over a maximal order in a division algebra. For a quite
general treatment of maximal orders, see the book by Reiner [Rei2003]; in particular,
the ideal theory presented here is also discussed in Reiner [Rei2003, §§22-23].

Lemma 18.3.1. Let J be a two-sided O-ideal, not necessarily invertible. If J ¢ O,
then J-' 2 O.
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Proof. The R-lattice J~' has J™! 2 O and O_(J™") € Ogr(J) = O and the same result
holds interchanging left and right.

We follow Reiner [Rei2003, Lemma 23.4] (who calls the proof “mystifying”).
Assume for the purposes of contradiction that J=! = O. Since J ¢ O, there exists a
maximal two-sided O-ideal M 2 J. Thus M~! c J=! = O. By Lemma 18.2.6, M
is prime. Let @ € R N J~! be nonzero. By Lemma 18.2.8, aO contains a product of
prime two-sided O-ideals, so

M2a0 2 PPy P,

with each P; prime. We may suppose without loss of generality that r € Z.( is minimal
with this property. Since P;---P, € M and M is prime, we must have P; C M, so
P; = M by Proposition 18.2.7. Thus

M 2a0 2 J 1 MJ,

with J1, J» two-sided O-ideals. From a~'JiMJ, C O, we have J;(a~'MJ,)J, C J1,
so by definition a~'MJ>J; € Oy (J;) = O. Thus M(a~'J,J\)M € M and a~'JoJ; C
M~' € Os0J2J; C aO. This shows that aO contains the product J,J; of r — 1 prime
two-sided O-ideals, contradicting the minimality of r. O

Using this lemma, we arrive at the following proposition for maximal orders.

Proposition 18.3.2. Let I C B be an R-lattice such that O (1) is a maximal R-order.
Then I is right invertible, i.e., II"' = O (I).

Of course, one can also swap left for right in the statement of Proposition 18.3.2.
Using the standard involution, we proved Proposition 18.3.2 when B is a quaternion
algebra (Proposition 16.6.15(b)).

Proof of Proposition 18.3.2. We follow Reiner [Rei2003, Theorem 23.5]. Let O =
O.(I). LetJ =I1I"" cO. ThenJI =II"'T CI,s0J € O (I) =Oand J is a
two-sided O-ideal. We have

JI't=1r'y co,
so I7'J7! ¢ I"! and therefore J~' € Og(I™"). Additionally,

Or(I'MY20.(1)=0; (18.3.3)

but O is maximal, so equality holds in (18.3.3) and therefore J=' € O. But O C J~!
as well, so J~! = O. If J € O, then we have a contradiction with Lemma 18.3.1; so
J = O, and the proof is complete. O

Putting these ingredients together, we have the following theorem.

Theorem 18.3.4. Let R be a Dedekind domain with F = Frac R, let B be a simple
F-algebra, and let O C B be a maximal R-order. Then:
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(a) Multiplication of two-sided ideals is commutative: if I, J are two-sided O-ideals,
then 1J = JI.

(b) Every nonzero two-sided O-ideal is invertible and uniquely expressible as a
product of prime two-sided ideals in O.

Proof. For (b), invertibility follows from Proposition 18.3.2. For (b) without unique-
ness, assume for purposes of contradiction that there is a two-sided ideal of O that is
not the product of prime ideals; then there is a maximal counterexample J. Since J is
not prime, there exists a prime Q withJ ¢ Q € O,s0J c JQ~ ' ¢ O. If J = JQ,
so by cancelling Q = O, a contradiction. Therefore JQ~! = Py - - - P, is the product of
primes by maximality, and J = P; - - - P,Q is the product of primes, a contradiction.

We now prove (a). If P,Q C O are distinct nonzero prime two-sided ideals, and
we let Q’ = P~'QP, then Q’ C P~'OP = Ois prime and PQ’ = QP C Q,s0 P C Q
or Q' C Q; but equality would hold in each case by maximality, and since P # Q, we
must have O’ = Q, and multiplication is commutative.

Finally, uniqueness of the factorization in (b) follows as in the commutative case.
IfPy---P,=0Q;- - Qy, then P; = Q; for some i; multiplying by Pl‘l and repeating
the argument, we find that {P1,...,P,} ={Q1,...,Qs}, and the result follows. O

Corollary 18.3.5. With hypotheses as in Theorem 18.3.4, the group 1d1(O) is isomor-
phic to the free abelian group on the set of nonzero prime ideals.

With these arguments in hand, we have the following foundational result for quater-
nion orders.

Theorem 18.3.6. Suppose that R is a Dedekind domain. Let B be a quaternion algebra
over F and let O C B be a maximal R-order. Then the map

{Prime two-sided O-ideals} < {Prime ideals of R}

(18.3.7)
P—PNR
is a bijection.
Moreover, if R is a global ring, then there is an exact sequence
0 — IdI(R) — 1d1(O) — HZ/ZZ -0
pID (18.3.8)

a+— 0OaO
where D = discg(B).

Proof. The map (18.3.7) is defined by Proposition 18.2.7, and it is surjective because
pO C P is contained in a maximal therefore prime ideal.

Next we show that the map is injective. Let P be a prime ideal, and work with
completions at a prime p. Then P, = P ®g R, C O, is a maximal ideal of O,. If
By =~ Mj(Fp), so Op =~ My(R,), then the only maximal two-sided ideal is pOy; if
instead By is a division algebra, then there is a unique maximal two-sided ideal P,
with P% = pO, by Theorem 13.3.11. We can also describe this uniformly, by the proof
of Proposition 18.2.7: in all cases, we have P, = rad(Oy).
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There is a natural group homomorphism

Id1(R) — Id1(O)
at+ 0a0 = a0

This map is injective, since if aO = O then a® = nrd(aO) = nrd(O) = R, so a = R.
The cokernel of the map is determined by the previous paragraph. O

Remark 18.3.9. Many of the theorems stated in this section (and chapter) hold more
generally for hereditary orders: this notion is pursued in Chapter 21. To see what this
looks like in a more general context, see Curtis—Reiner [CR81, §26B]. A very general
context in which one can make an argument like in section 18.3 was axiomatized by
Asano; for an exposition and several references, see McConnell-Robson [McCR87,
Chapter 5].

18.4 Picard group

We now proceed to consider classes of two-sided ideals. We begin with a natural but
abstract definition, in terms of bimodules. (Recall 20.3.7, that a bimodule is over R if
the R-action on left and right are equal.)

Definition 18.4.1. The Picard group of O over R is the group Picg (O) of isomorphism
classes of invertible O-bimodules over R under tensor product.

Remark 18.4.2. Some authors also write Picent(O) = Picz0)(O) when considering
the Picard group over the center of O, the most important case. To avoid additional
complication, in this section we suppose that B is central over F, so Picg(O) =
Picent(O).

18.4.3. If I C B is an R-lattice that is a fractional two-sided O-ideal, then [ is a
O-bimodule over R. Conversely, if I is a O-bimodule over R then [ g F =~ B as
B-bimodules, and choosing such an isomorphism gives an embedding I < B as an
R-lattice.

Lemma 18.4.4. Let I,J C B be R-lattices that are fractional two-sided O-ideals.
Then I is isomorphic to J as O-bimodules over R if and only if there exists a € F*
such that J = al.

Proof. See Exercise 18.9. O
18.4.5. By 18.4.3, there is a natural surjective map
Id1(O) — Picg(O);

we claim that the kernel of this map is PIdI(R) < Id1(O). By Lemma 19.5.1, every
isomorphism class of invertible O-bimodule is represented by an invertible R-lattice
I C B, unique up to scaling by F*, and if a € F* then aO = O if and only if
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a € RNO* = R*, sothe ideal aR € PIdI(R) is well-defined. Thus, we obtain a natural
isomorphism
Id1(O) /PIdI(R) = Picg(O). (18.4.6)

Equivalently, the sequence
1 - R - F* = 1dl(O) — Picg(0) — 1
is exact. One might profitably take (18.4.6) as the definition of Picg (O).

18.4.7. If O’ is locally isomorphic O (so they are in the same genus), then there is a
O, O’-connecting ideal J, and the map

1d1(0) — 1d1(O’)
I—J

is an isomorphism of groups restricting to the identity on CI R, so from (18.4.6) we
obtain an isomorphism
Picg(O) = Picg(O’),

analogous to Lemma 17.4.11.

Our remaining task in this section is to examine the structure of Picg(O), and to
this end we suppose that B is a quaternion algebra over F.

18.4.8. Suppose that O is a maximal R-order with F = Frac R a global field. Then
taking the quotient by PId1(R) in the first two terms in (18.3.8) yields an exact sequence

OHQRHﬁww%ﬁT%MaQ (18.4.9)
p|D

Although this sequence need not split, it does show that the Picard group of the maximal
order O is not far from the class group CI R, the difference precisely measured by the
primes that ramify in B.

In general, for a quaternion R-order O we have the following result.
Proposition 18.4.10. Picg(O) is a finite group.

Proof. If O is maximal, we combine (18.4.9) with the finiteness of CI R and the fact
that there are only finitely many primes p dividing the discriminant D.

Now let O be an R-order. Then there exists a maximal R-order O’ 2 O. We argue
as in Exercise 17.3. We define a map of sets:

Picg (O) — Picg(0O’)
[I] - [O'10]
The class up to scaling by F* is well-defined, and I’ := O’IO’ 2 I an R-lattice with

left and right orders containing O’, but since O’ is maximal these orders equal O’ and
I’ is invertible.
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By the first paragraph, by finiteness of Picg (O’), after rescaling we may suppose 1’
is one of finitely many possibilities. But there exists nonzero r € R such that rO” c O,
SO
=010 c ("'O) I 0) = r 2T 7T
so r2I’ € I C I'; since I’/r?I’ is a finite group, this leaves only finitely many

possibilities for /. O

Remark 18.4.11. The study of the Picard group is quite general. It was studied in
detail by Frohlich [Fr673]; see also Curtis—Reiner [CR87, §55].

18.5 Classes of two-sided ideals

In this section, we compare the Picard group to the group of “ideals modulo principal
ideals”.

Let PIdI(O) < IdI(O) be the subgroup of principal two-sided fractional O-ideals
(invertible by 16.5.4). Let

Npx(0) = {a € B* : a”'Oa = O}
be the normalizer of O in B*.

Lemma 18.5.1. There is an exact sequence of groups

1 - O — Npx(0O) — PIdI(O) — 1
a — 0aO.

Proof. We have @ € Npx(O) if and only if «aO = O if and only if OaO is a
principal two-sided fractional O-ideal, as in Exercise 16.17; this gives a surjective
group homomorphism Ngx(O) — PIdI(O). The kernel is the set of @ € B* such that
a0 = O, and this normal subgroup is precisely O*. O

(18.5.2)

Proposition 18.5.3. There is an isomorphism of groups

Npx(0)/(F*0*) = PIdI(O)/PIdI(R)

18.5.4
aF*O*  class of OaO. ( )

IfP1d1(O) < Id1(O) is normal, then the isomorphism (18.5.4) induces a natural exact
sequence

0 — Np«(0)/(F*0) — Picg(0) — IdI(0)/PIdI(0) — 0

18.5.5
aF*O* + class of OaO. ( )

Proof. There is an isomorphism Npx(0O)/O* =~ PIdl(O) by (18.5.2). The image of
F* < Npx(O) in PIdI(O) under this map consists of two-sided ideals of the form
OaO with a € F*; we have OaO = O if and only if a € O* if and only if a € R*, so
this image is isomorphic to the group PIdI(R) of principal fractional R-ideals via the
map aR — OaO. The first isomorphism follows. The exact sequence (18.5.5) is then
just rewriting the natural sequence

0 — PIdI(O)/PIdI(R) — 1d1(O)/PIdI(R) — IdI(O)/PIdI(O) —s 0. o
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Remark 18.5.6. The moral of Proposition 18.5.3 is that, unlike the commutative
case where the two notions coincide, the two notions of “isomorphism classes of
invertible bimodules” and “ideals modulo principal ideals” are in general different for
a quaternion order. These notions coincide precisely when Ngx(O)/F* =~ O*/R*, or
equivalently (by the Skolem—Noether theorem) that every R-algebra automorphism of
O is inner, which is to say Autg (O) = Inng(O) = O*/R*.

18.5.7. Unfortunately, the subgroup PIdI(O) < Idl(O) need not be normal in general
(Exercise 17.11), so statements like Proposition 18.5.3 depend on the order O having
good structural properties. If O is a maximal order, then Id1(O) is abelian, so the result
holds in this case.

In general, from the proof but using cosets one still obtains the equality

#(1d1(0) /PIdI(O)) - #(Ng« (0)/(F*O%)) = #Picg(O). (18.5.8)

Remark 18.5.9. If O, O’ are connected, then Picg (O) =~ Picg(O’) by 18.4.7 but this
isomorphism need not respect the exact sequence (18.5.5). Each order O “balances” the
contribution of this group between the normalizer Ngx(O)/(F*O*) and the quotient
Id1(O)/PIdl(O)—and these might be of different sizes for O’. We will return to
examine more closely this structure in section 28.9, when strong approximation allows
us to be more precise in measuring the discrepancy.

We conclude with an application to the structure of (right) class sets. We examine
from Lemma 17.4.13 the fibers of the surjective map (17.4.14)

ClsO - TypO
[1] — class of O (I).

Refreshing our notation, let B be a central simple F-algebra and let O c B an R-order.

Proposition 18.5.10. The map I — [I] induces a bijection
PIdI(O)\1d1(O) « {[I] € CIsO : O (1) = O}.

Proof. Let O’ be an order of the same type as O. Since (17.4.14) is surjective, there
exists [I] € Cls O such that O, (I) ~ O’. We are free to replace O’ by an isomorphic
order, so we may suppose O, (1) = O’. Forall [I’] € Cls O with O (") = O’ (running
over the fiber), since O, (al’) = aO’a™! for @ € BX we may suppose without loss of
generality that the representative I’ has O (1) = O’.

We then define a map

PIAI(OH\IdAI(O’) - {[I'] e ClsO : O (I") = O’} (18.5.11)

J — [J]] o
The map is surjective, because if J* = I’I~! then O, (J’) = Og(J’) = O, s0 J' is a two-
sided invertible O’-ideal. It is injective because if [J'I] = [K’I] for J/, K’ € 1d1(O’)
then K’ = o’J’ with @’ € B, but further we need O, (K’) = a’O’a’~! = O/, so in fact
[JI] = [K'I] if and only if @’ € Nx(O’), and the result then follows from Lemma
18.5.1. O
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We have the following corollaries.
Corollary 18.5.12. We have
1

#CsO= > [ldI(0)) : PLAO)] = #Picg Oy —
o
[O’']€TypO [O’]1€TypO

where zor = [Npx(O’) : F*O™].

Proof. For the first equality, combine Lemma 17.4.13 and Proposition 18.5.10, com-
puting the size of the fibers. For the second, substitute (18.5.8) and use 18.4.7. O

Corollary 18.5.13. Let O; be representatives of Typ O. For each i, let I; be a
connecting O;, O-ideal, and let J; ; be representatives of PId1(O;)\ 1d1(O;). Then the
set {J; j1;}i,j is a complete set of representatives for Cls O.

Proof. We choose representatives and take the fibers of the map (17.4.14). [

Remark 18.5.14. When PId1(O) < Idl(O), then in Proposition 18.5.10 we have written
the class set Cls O as a disjoint union of abelian groups. The fact that the bijection is
noncanonical is due to the fact that we choose a connecting ideal, so without making
choices we obtain only a disjoint union of principal homogeneous spaces (i.e., torsors)
under the groups PId1(O")\ 1d1(O’).

Exercises

Unless otherwise specified, let R be a Dedekind domain with field of fractions F =
Frac R, let B be a simple finite-dimensional F-algebra, and let O C B be an R-order.

1. Show that the following are equivalent:

(i) O is a maximal R-order;
(i) OL(I) = Ogr(I) = O for all fractional two-sided O-ideals I; and
(iii)) OL(I) = Or(I) = O for all two-sided O-ideals I C O.

2. Show that the zero ideal is a prime ideal of O.

3. LetJ C O be a nonzero two-sided ideal of O in the ring-theoretic sense: J is an
additive subgroup closed under left and right multiplication by O. Show that J
is an R-lattice.

R ﬁ) C B = My(F).

Show that the two-sided ideal p M, (R) C O is not a prime ideal.
5. Let R :=Z[V-6] and F := Q(V-6). Let B:= (2, V-6 | F).

(a) Show that 2R = p% and 3R = pg for primes p,, p3 C R.

(b) Show that Ram(B) = {p;, p3}.

(¢) Let O be a maximal order in B. Show that there is a unique two-sided
ideal P, such that P = pO.

4. Let R be a DVR with maximal ideal p, and let O =
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(d) Prove that [P;] € Picg(O) has order 4, and conclude that the sequence
(18.4.9) does not split.
(e) Show that we may take

O=R+p;'(V=6+i)+Rj +p;' (V=6 +0)
as the maximal order, and then that [ is generated by i and V—6ij/2, and

finally that I? = (V=6 +1)/2.

6. Let B=M,(F) withn > 2,let O = M, (R), let p C R be prime with k = R/p,
and let O(p) = R + pO.

(a) Show that O(p) is an order of reduced discriminant p>.
(b) Show that O* ~ GL,,(R) normalizes O(p) C O, so that

O(p)* < O* = GLx(R),
and that the map
O* — IdI(O)
y = Oy=y0
induces an injective group homomorphism PGL,, (k) — 1dl(O). Con-
clude that Id1(O) is not an abelian group.

7. Show that Theorem 18.3.4 holds more generally for B a semisimple F-algebra
(but still O € B maximal). [Hint: Decompose B into a product of simple
F-algebras.|

8. Let O be maximal, and let Py, ..., P, € O be distinct prime two-sided ideals.

Let . .,
1=[]pP¢ and J:=[]Pf
i=1 i=1
with e;, f; € Z.
(a) Prove that I C Oifand only if ¢; > O foralli = 1,...,n, and in this case

there is a ring isomorphism
-
o/1 =P oy/P.
i=1

(b) Prove that / 2 J if and only if e; < f; for all i. ‘
(c) Show I+J = [T/, PM™ R and 10 J =[], P,
» 9. Prove Lemma 18.4.4: Show that fractional two-sided O-ideals I,J C B are

isomorphic as O-bimodules over R if and only if there exists @ € F* such that
J =al. [Hint: Peek at Lemma 19.5.1.]

10. Let K 2 F be a finite, separable extension and let S be the integral closure
of R in K. Show that the map / — [ ®g S defines a group homomorphism
Pic O — Pic(O ®g 9).



Chapter 19

Brandt groupoids

In this chapter, we study the relationship between multiplication and classes of quater-
nion ideals.

19.1 » Composition laws and ideal multiplication

To guide our investigations, we again appeal to the quadratic case. Let d € Z be
a nonsquare discriminant. A subject of classical interest was the set of integral
primitive binary quadratic forms of discriminant d, namely

Q(d) = {ax* + bxy +cy* 1 a,b,c € Z, b* —4ac = d, and ged(a, b, ¢) = 1}.

Of particular interest to early number theorists (Fermat, Legendre, Lagrange, and
Gauss) was the set of primes represented by a quadratic form Q € Q(d); inquiries of
this nature proved to be quite deep, giving rise to the law of quadratic reciprocity and
the beginnings of the theory of complex multiplication and class field theory.

An invertible, oriented change of variables on a quadratic form Q € Q(d) does
not alter the set of primes represented, so one is naturally led to study the equivalence
classes of quadratic forms under the (right) action of the group SL,(Z) given by

(Q18)(x,y) =0((x,y)-g) for geSLy(Z). (19.1.1)

The set Cl(d) of SL,(Z)-classes of forms in Q(d) is finite, by reduction theory: when
d < 0, every form in Q(d) is equivalent under the action of SL;(Z) to a unique
reduced form, of which there are only finitely many (see section 35.2). To study this
finite set, Gauss defined a composition law on Cl(d), giving Cl(d) the structure of
an abelian group by an explicit formula. Gauss’s composition law on binary quadratic
forms can be understood using 2 X2 x 2 Rubik’s cubes, by a sublime result of Bhargava
[Bha2004a].

Today, we see this composition law as a consequence of a natural bijection between
Cl(d) and a set equipped with an obvious group structure. Let S = S(d) be the quadratic
ring of discriminant d. Define the narrow class group CI*(S) as

the group of invertible fractional ideals of S under multiplication

301
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modulo

the subgroup of nonzero principal fractional ideals
generated by a totally positive element

(i.e., one that is positive in every embedding into R, so if d < O then this is no
condition). (Alternatively, C1*(S) can be thought of as the group of isomorphism
classes of oriented, invertible S-modules, under a suitable notion of orientation.) Then
there is a bijection between CI(d) and CI*(S): explicitly, to the class of the quadratic
form Q = ax® + bxy + cy?> € Q(d), with a > 0, we associate the class of the ideal
—b+Vd
)

a=aZ+( Z c S(d). (19.1.2)

Conversely, the quadratic form is recovered from the norm form on K = Q(Vd) via

Nmg:a— 2
(19.1.3)
Nmq (@) = Nmg g(@)/a
where a = Nm(a) > 0, with respect to an oriented basis.

Much of the same structure can be found in the quaternionic case, with several
interesting twists. It was Brandt who first asked if there was a composition law for
(integral, primitive) quaternary quadratic forms: it would arise naturally from some
kind of multiplication of ideals in a quaternion order, with the analogous bijection
furnished by the reduced norm form. Brandt started writing on composition laws
for quaternary quadratic forms in 1913 [Bral3], tracing the notion of composition
back to Hermite, who observed a kind of multiplication law (bilinear substitution) for
quaternary forms x(z) + F(x1,x2,x3) in formulas of Euler and Lagrange. He continued
on this note during the 1920s [Bra24, Bra25, Bra28, Bra37], when it became clear that
quaternion algebras was the right framework to place his composition laws; in 1943,
he developed this theme significantly [Bra43] and defined his Brandt matrices (that
will figure prominently in Chapter 41).

However, in the set of invertible lattices in B under compatible product, one cannot
always multiply! However, this set has the structure of a groupoid: a nonempty set
with an inverse function and a partial product that satisfies the associativity, inverse, and
identity properties whenever they are defined. Groupoids now figure prominently in
category theory (a groupoid is equivalently a small category in which every morphism
is an isomorphism) and many other contexts; see Remark 19.3.11.

Organizing lattices by their left and right orders, which by definition are connected
and hence in the same genus, we define

Brt(O) = {I : I c B invertible R-lattice and O (1), Og(I) € GenO};  (19.1.4)

visibly, Brt(O) depends only on the genus of O. Organizing lattices according to the
genus of orders is sensible: after all, we only apply the composition law to binary
quadratic forms of the same discriminant, and in the compatible product we see
precisely those classes whose left and right orders are connected. In other words,
the set of invertible lattices in the quadratic field K = Q(Vd) has the structure of a
groupoid if we multiply only those lattices with the same multiplicator ring.
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Theorem 19.1.5. Let B be a quaternion algebra over Q and let O C B be an order.
Then the set Brt(O) has the structure of a groupoid under compatible product.

We call Brt(O) the Brandt groupoid of (the genus of) O.

We now consider classes of lattices. A lattice I/ Cc B has the structure of a
OL(I), Og(I)-bimodule. Two invertible lattices I,J with the same left and right
orders O (I) = O, (J) and Og(I) = Ogr(J) are isomorphic as bimodules if and only
if there exists a € Q* such that J = al. Accordingly, we say two lattices I, J C B are
homothetic if there exists a € Q* such that J = al.

For connected orders O, O’ C B, we define

Pic(O, Q") :={[I] : I c B invertible and O (1) = O and Og(I) = O’}  (19.1.6)

to be the set of homothety classes of lattices with left order O and right order O, or
equivalently the set of isomorphism classes of O, O’-bimodules over R. Restricting to
the subset of lattices with O = O’, and the lattices I C B are O-bimodules, we recover
Pic(O, O) = Pic O the Picard group from the previous chapter.
Now let O C B be an order and let O; be representative orders for the type set
Typ O. Let
BriC10 :=| | Pic(0;,0)). (19.1.7)
.

Theorem 19.1.8. Let B be a quaternion algebra over Q and let O C B be an order.
Then the set BrtClO has the structure of a groupoid that, up to isomorphism, is
independent of the choice of the orders O;.

In particular, BrtCl O depends only on the genus of O. We call the set BrtCl O the
Brandt class groupoid of (the genus of) O.

Returning to quadratic forms, to each R-lattice / with nrd(/) = aZ and a > 0, we
associate the quadratic form

nd;: I > 7Z
nrdy (1) = nrd(u)/a

Alternatively, up to similarity we can just take the quadratic module nrd |; : 7 — nrd(7)
remembering that the quadratic form takes values in nrd(/). The discriminant of an
invertible lattice I C B is equal to the common discriminant N2 of the genus of its
left or right order. The quadratic forms nrd; are all locally similar, respecting the
canonical orientation 5.6.7 on B. Therefore, there is a map

Quaternary quadratic forms over Z
BrtCl1 O — { locally similar to nrd |p }
up to oriented similarity

[I] — nrdy

is (well-defined and) surjective. Unfortunately, this map is not injective (a reflection
of the lack of a natural quotient groupoid homomorphism): the Brandt class is a kind
of rigidification of the oriented similarity class. Nevertheless, Theorem 19.1.8 can be
viewed as a generalization of Gauss composition of binary quadratic forms, defining a
partial composition law on (rigidified) classes of quaternary quadratic forms.
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19.2 Example

-2,

7
Consider the quaternion algebra B := ) with standard basis 1,7, j, k = ij,

and the maximal order O of reduced discriminant 37 defined by
1+i+j 2+i+k
; J74 ; Z. (19.2.1)

The type set Typ O of orders connected to O has exactly two isomorphism classes,
represented by O; = O and

O:=Z+iZ+

3-Ti+j 2-3i+k
Z
6 T g

These orders are connected by the O, O;-connecting ideal

Z.

O, :=Z+3iZ+

L 243 — L
3 1+JZ+ +3i kZ=3O+3 i+7]

2 4 ©.

1:=3Z+3iZ+

There are isomorphisms
Pic(O) = Pic(O,) ~Z/2Z

with the nontrivial class in Pic(Oy) represented by the principal two-sided ideal J; =
jO = Oj with j € Nx(O), and the nontrivial class in Pic(O;) represented by the
nonprincipal (but invertible) ideal

111 =259 + |
I = 1L =370, + %Oz.

In particular,
Clsg(O1) ={[O1], [1], [J21]} and Clsg(O2) = {[O2], [2], [1]},

with [J1] = [O4].
We can visualize this groupoid as a graph as in Figure 19.2.2, with directed edges
for multiplication:

[IJ1] = [J2]]

[172] = [J11]
Figure 19.2.2: BrtCl1 O, for discrd O = 37
The Brandt class groupoid
BrtCl1 O = Pic(O;) U Cl(O1, O2) U CI(O2, Oy) U Pic(O)
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has 2 + 4 + 4 + 2 = 12 elements; it is generated as a groupoid by the elements
[J1], [J2], [1], with relations

112 =[01], [)* =101, [Ja]l1] = [11[J1].

Restricting the reduced norm to these lattices, we obtain classes of quaternary
quadratic forms of discriminant 37
_ 2 2 2 2
nrdo, =t + 1ty +tz+2x" +xy +2xz7+5y" + yz + 10z
nrdp, = P +ix+1z+4x% —xy +4xz + 5y + 2yz + 62°
nrd; =312 — tx + 1y + 17+ 3x% = 3xy —xz +4y* — yz + 577
nrdy = 312 4 1x — ty — 17+ 3x% = 3xy —xz +4y* — yz + 577

nrdy, = 262 — tx + 1y + 2x% = 2xy + x7 + 3y + 2yz + 1027

The quadratic forms nrd; and nrd; are isometric but not by an oriented isometry.

19.3 Groupoid structure

We begin with some generalities on groupoids.

Definition 19.3.1. A partial function f: X — Y is a function defined on a subset of
the domain X.

Definition 19.3.2. A groupoid G is a set with a unary operation ! : G — G and a
partial function * : G X G — G such that  and ~! satisfy the associativity, inverse,
and identity properties (as in a group) whenever they are defined:

(a) [Associativity] For all a, b, c € G such that a = b is defined and (a * b) * ¢ is
defined, both b * ¢ and a * (b * ¢) are defined and

(axb)yxc=ax=(bx*c).

-1

(b) [Inverses] For all a € G, there exists a~' € G such that a *xa~! and a~! = a are

defined (but not necessarily equal).
(c) [Identity] For all a, b € G such that a = b is defined, we have

(axb)yx*b'=a and a7 'x(axb)=0b. (19.3.3)
A homomorphism ¢: G — G’ of groupoids is a map satisfying
¢(axb) = ¢(a) = ¢(b)
forall a,b € G.

19.3.4. Let G be a groupoid. Then the products in the identity law (19.3.3) are defined
by the associative and inverse laws, and it follows that e = a * ™, the left identity of
a, and f = a~!  a the corresponding right identity of a, satisfy e xa = a = a * f
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for all @ € G. (We may have that e # f, i.e., the left and right identities fora € G
disagree.) The right identity of a € G is the left identity of a~! € G, so we call the set

{e=axa':aeG}
the set of identity elements in G.

19.3.5. Equivalently, a groupoid is a small category (the class of objects in the category
is a set) such that every morphism is an isomorphism: given a groupoid, we associate
the category whose objects are the elements of the set S := {e =a*a~' : a € G} of
identity elements in G and the morphisms between e, f € S are the elements a € G
such that e = a and a * f are defined (see Proposition 19.3.9 below). Conversely, to
a category in which every morphism is an isomorphism, we associate the groupoid
whose underlying set is the union of all morphisms under inverse and composition.

Example 19.3.6. The set of homotopy classes of paths in a topological space X forms
a groupoid under composition: the paths yi,7y2 : [0,1] — X can be composed to a
path y oyy : [0,1] — X if and only if y>(0) = y;(1).

Example 19.3.7. A disjoint union of groups is a groupoid, with the product defined if
and only if the elements belong to the same group; the set of identities is canonically
in bijection with the index set of the disjoint union.

19.3.8. Let G be a groupoid and let e, f € G be identity elements. We say that
e is connected to f if there exists a € G such that a has left identity e and right
identity f. The relation of being connected defines an equivalence relation on the set
of identity elements in G, and the resulting equivalence classes are called connected
components of G. We say G is connected if all identity elements e, f € G are
connected; connected components of a groupoid are connected.

Viewing the groupoid G as a small category as in 19.3.5, we say two objects are
connected if there exists a morphism between them, and the category is connected if
every two objects are connected.

If e € G is an identity element in a groupoid G, then the set of elements a € G
with left and right identity equal to e has the structure of a group; for the associated
category, this is the automorphism group of the object. More generally, the following
structural result holds.

Proposition 19.3.9. Let G be a connected groupoid, and let e, f be identity elements
in G. Let

G(e,f) ={a€eG:exaandax* f are defined}.

Then the following statements hold.

(a) The set G(e,e) is a group under .
(b) There is a (noncanonical) isomorphism G (e, e) ~ G(f, f).
(c) The set G (e, f) is a principal homogeneous space for G(e,e) ~ G(f, f).
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Proof. The set G (e, e) is nonempty, has the identity element ¢ € G, andifa € G (e, e)
thenaxa™! = a 'xa = e. Ife, f areidentity elements, since G is connected there exists
aeG(e f),soa"! € G(f,e) and the map G(e,e) = G(f,f)byx — axx+a”!
is an isomophism of groups. Similarly, the set G (e, f) has a right, simply transitive
action of G (e, e) under right multiplication by . O

19.3.10. The moral of Proposition 19.3.9 is that the only two interesting invariants of
a connected groupoid are the number of identity elements (objects in the category) and
the group of elements with a common left and right identity (the automorphism group
of every one of the objects). A connected groupoid is determined up to isomorphism
of groupoids by these two properties.

Remark 19.3.11. After seeing its relevance in the context of composition of quaternary
forms, Brandt set out general axioms for his notion of a groupoid [Bra27, Bra40].
(Brandt’s original definition of groupoid is now called a connected groupoid.) This
notion has blossomed into an important structure in mathematics that sees quite general
use, especially in homotopy theory and category theory. Itis believed that the groupoid
axioms influenced the work of Eilenberg—Mac Lane [EM45] in the first definition of
a category: see e.g., Brown [Bro87] for a survey, Bruck [Bruc71] for context in the
theory of binary structures, as well as the article by Weinstein [Wein96].

Groupoids exhibit many facets of mathematics, arising naturally in functional anal-
ysis (C*-algebras) and group representations, as Figure 19.3.12 indicates (appearing
in Williams [Will2001, p. 21], and attributed to Arlan Ramsay).

( R

group

actions
groups
sets

. J
equivalence
groupoids relations

. J

Figure 19.3.12: Groupoids, as they relate to other mathematical objects

(In this diagram, for example, a set X is a groupoid with only the multiplications
x *x = x for x € X. The corner between sets and groups can be explained by a set
with one element which can be made into a group in a unique way.)

19.4 Brandt groupoid

Let R be a Dedekind domain with field of fractions F and let B be a quaternion algebra
over F.
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Proposition 19.4.1. The set of invertible R-lattices in B is a groupoid under inverse
and compatible product, the R-orders in B are the identity elements in this groupoid.

Proof. Multiplication is defined by 16.5.3. For the associative law, suppose I, J, K
are invertible R-lattices with IJ and (/J)K compatible products. Then Og(l) =
OL(J) =OL(JK) and Og(1J) = Or(J) = OL(K) by Lemma 16.5.11, so the products
JK and I(JK) are compatible. Multiplication is associative in B, and it follows that
I(JK) = (IJ)K. Inverses exist exactly because we restrict to the invertible lattices.

The law of identity holds as follows: if /, J are invertible R-lattices such that 1J is
a compatible product, then (1J)J~! is a compatible product since Og(1J) = Or(J) =
O, (J71), and by associativity

(INJ ' =1JYHY =10.(J) = IO(I) =1,

with a similar argument on the left. If 7 is an invertible R-lattice, then I1~' = O (1)
is an R-order in B, and every R-order O arises by taking I = O itself, so the R-orders
are the identity elements in the groupoid. O

Lemma 19.4.2. The connected components of the groupoid of invertible R-lattices in
B are identified by the genus of the (left or) right order, and the group defined on such
a component corresponding to an order O is I1d1(O), the group of invertible two-sided
O-ideals.

Proof. By Proposition 19.4.1, the identity elements correspond to orders, and two
orders are connected if and only if there is a (invertible, equivalently locally principal)
connecting ideal if and only if they are in the same genus, as in section 17.4. The
second statement follows immediately. O

As a consequence of Lemma 19.4.2, the subset of R-lattices whose (left or) right
order belong to a specified genus of orders is a connected subgroupoid.

Definition 19.4.3. Let O C B be an R-order. The Brandt groupoid of (the genus of)
Ois
Brt(O) = {I : I c B invertible R-lattice and O, (1), Or(I) € Gen O}.

In the next section, we consider a variant that considers classes of lattices, giving
rise to a finite groupoid.

19.5 Brandt class groupoid

We now organize lattices up to isomorphism as bimodules for their left and right
orders.

Lemma 19.5.1. Let I,J C B be lattices with O_(I) = Op(J) = O and Og(I) =
Or(J) = O'. Then I is isomorphic to J as O, O’-bimodules if and only if there exists
a € F* such that J = al.
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Proof. We have F = Z(B). If J = al with a € F*, then multiplication by a gives an
R-module isomorphism I — J that commutes with the left and right actions and so
defines a O, O’-bimodule isomorphism.

Conversely, suppose that ¢: I = J is a O, O’-bimodule isomorphism. Then
d(uav) = ug(a)v for all @ € I and u,v € O. Extending scalars to B, we obtain a
B-bimodule isomorphism ¢: IF = B — JF = B. Let ¢(1) = B. Then for all @ € B,
we have ¢(a) = ¢(1)a = Ba; but by the same token, ¢(a) = af for all @ € B, so
BeZ(B)=F. |

Definition 19.5.2. Let I, J C B be R-lattices. We say that I is homothetic to J if there
exists a € F* such that J = al.

Homothety defines an equivalence relation, and we let [I] denote the homothety
class of an R-lattice /. The left and right order of a homothety class is well-defined.

19.5.3. The set of homothety classes of invertible R-lattices / C B has the structure
of a groupoid under compatible product, since the compatible product [1.J] is well-
defined: if I’ = al and J’ = bJ with a,b € F*, then [I'J'] = [ablJ] = [IJ] since
a, b are central.

The map which takes an invertible lattice to its homothety class yields a surjective
homomorphism of groupoids. Taking connected components we obtain a connected
groupoid associated to a (genus of an) R-order O. Recalling 19.3.10, we note that the
group at an R-order O is Picg (O), but there are still infinitely many orders (objects in
the category).

In order to whittle down to a finite groupoid, we fix representatives of the type set,
and make the following definitions.

19.5.4. For R-orders O, O’ C B, let
Picg(O,0’) = {[I] : I c Binvertible and O, (I) = O, Og(I) = O’}

be the set of homothety classes of R-lattices in B with left order O and right order
O’; equivalently, by Lemma 19.5.1, Pic(O, O’) is the set of isomorphism classes of
invertible O, O’-bimodules over R. In particular, Picg (O) = Picg (O, O).

We have Picg (O, O’) # 0 if and only if O is connected to O’.

Let O C B be an order and let O; be representative orders for the type set Typ O.

We define
BrtCl O := |_| Picg(0;, 0,).
i.J

Theorem 19.5.5. Let R be a Dedekind domain with field of fractions F, and let B be
a quaternion algebra over F. Let O C B be an order. Then the set BrtCl O has the
structure of a finite groupoid that, up to isomorphism, is independent of the choice of
the orders O;.

In particular, by Theorem 19.5.5 BrtCl O depends only on the genus of O up to
groupoid isomorphism. We call the set BrtCl O the Brandt class groupoid of (the
genus of) O.
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Proof. The groupoid structure is compatible multiplication, with
Picg (O;, O;) Picr (O}, Ox) < Picg(O;, Ok)

for all 7, j, k; in other words, BrtCl O is a connected subgroupoid of the groupoid of
homothety classes of R-lattices 19.5.4.

The groupoid is finite, by 19.3.10: the type set Typ O is finite by Main Theorem
17.7.1 and Picg (O) is finite by Proposition 18.4.10. Explicitly, if [1;;] € Picr(O;, O;)
then the map

PICR(O) = PiCR(O,') - PiCR(Oi, O])
11+ [1135)
is a bijection of sets, just as in the proof of Proposition 19.3.9. Therefore

#BrtC1 O = #Picg (O)# Typ O. (19.5.6)

Finally, this subgroupoid is independent of the choices of the orders O; as follows:
all other choices correspond to O} = a,-Oial.‘] with @; € B*, and the induced maps

Picg(0;, O;) — Pic(O;, O})
(1] = [ila;'] = [I']
together give an isomorphism of groupoids, since
[r'J] = [aila;-lachx;l] = [a,JJa,:l]
for all [I] € Picr(O;, O;) and [J] € Picg(O;, Ox). O
Remark 19.5.7. Unfortunately, there is not in general a natural equivalence relation on

Brt(O) giving rise to a quotient groupoid homomorphism Brt(O) — BrtCl O. Rather,
we find that BrtCl O is naturally a subgroupoid of Brt(O).

Turning to the invariants 19.3.10, we see that the Brandt class groupoid BrtCl1 O
encodes two things: the group Picg (O) and the type set Typ O.

Remark 19.5.8. The modern theory of Brandt composition was investigated by Ka-
plansky [Kap69] and generalized to Azumaya quaternion algebras over commutative
rings by Kneser—Knus—Ojanguren—Parimala—Sridharan [KKOPS86].

19.6 Quadratic forms

We now connect the Brandt class groupoid to quadratic forms. For simplicity, we
suppose char F' # 2 throughout this section.

19.6.1. We begin by recalling Proposition 4.5.17: for the quaternary quadratic form
nrd: B — F, every oriented similarity of nrd is of the form

B— B
xn—>a/x,84

with @, 8 € B (in particular, respecting the canonical orientation 5.6.7 of B); the
similitude factor of such a map is u = nrd(«@) /nrd(B).
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Let I c B be a projective R-lattice.

19.6.2. Generalizing Exercise 10.2, the reduced norm restricts to give a quadratic form
on /. We are given that [ is projective of rank 4 as an R-module. Therefore the map

nrd;: I — L = nrd(])

is a quaternary quadratic module over R.

If J c B is another projective R-lattice, and f is an oriented similarity from nrd; to
nrdy, then extending scalars by F we obtain a oriented self-similarity of nrd: B — B;
by 19.6.1, we conclude that J = eI~ for some «, 8 € B*:

nrdy

?l“‘ﬁ ?lab (19.6.3)
J=alf—"Y o apL
19.6.4. Suppose that nrd(I) = L = aR is principal. Then there is a similarity

nrdy
I%L =
¢

aR
H lal (19.6.5)
i a ''nrdy R

In other words, if every value of the quadratic form is divisible by a, then up to
similarity it is equivalent to consider the quadratic form a~! nrd, taking values in R.

Lemma 19.6.6. Suppose I is invertible. Then the quadratic form nrd;: I — L is
locally oriented similar to ntdg: O — R, where O = Og(I).

Proof. By 19.6.3,if I = aO is principal, then nrd; is similar to nrdp. If I is invertible,
then [ is locally principal, so for all primes p of R the quadratic form nrd: I, — L, is
similar to nrd: O, — R, where Oy, is the right order of 7,,. (A similar statement holds
on the left.) m]

19.6.7. From Lemma 15.3.6, it follows from Lemma 19.6.6 that
disc(nrdy) = disc(O)
and in particular this discriminant is a square.

The quadratic forms nrd; are all locally similar, respecting the canonical orientation
5.6.7 on B. Therefore, the map

Quaternary quadratic forms over Z
BrtC10 — { locally similar to nrdp }
up to oriented similarity

[1] ¥ nrd;

is (well-defined and) surjective.
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Remark 19.6.8. The Brandt groupoid is connected as a groupoid. This can also be
viewed in the language of quadratic forms: a connected class of orders is equivalently
a genus of integral ternary quadratic forms, and this is akin to a resolvent for the
quaternary norm forms. We refer to Chapter 23 for further development.

Exercises

1.
2.

10.

Verify the computational details in the example of section 19.2.

Let B = (-1,-11 | Q) with discB = 11 and O = Z(i, (1 + j)/2) a maximal
order. Compute BrtCl O, in a manner analogous to the example of section 19.2.

Let G be a groupoid.

(a) Show that if a,b,c € G and both a = b and a * ¢ are defined, then
b b~! = ¢« ¢! (and both are defined).
(b) Show that for all « € G we have (a=')7!.

Let G be a group acting on a nonempty set X. Let
A(G,X)={(g,x): g€ G,x € X}.
Show that A(G, X) has a natural groupoid structure with (g, x) = (h, y) = (gh,y)

defined if and only if x = 2y. What are the identity elements?

Show that in a homomorphism ¢: G — G’ of groupoids, the set of identity
elements of G maps to the set of identity elements of G’.

Let C be a small category. Show that there is a unique maximal subcategory
that is a groupoid. [Hint: Discard all nonisomorphisms. |

. Let X be a set and let ~ be an equivalence relation on X, thought of as a

subset S € X X X. Equip S with the partial binary operation * defined by
(x,y) * (y,2) = (x,z2) for (x,y), (y,z) € S (and (x,y) * (w, z) is not defined if
y # w). Show that § is a groupoid. [This shows that “equivalence relations are
groupoids”, cf. (19.3.12).]

Let F be a field and let GL(F) = |;,_; GL,,(F). Show that GL(F) has a natural
structure of groupoid, sometimes called the general linear groupoid over F'.

Show that the reduced norm is a homomorphism from the groupoid of invertible
R-lattices in B to the group(oid) of fractional R-ideals in F.

Let X be a nonempty topological space, and let x,y € X. Recall that a path
from x to y is a continuous map vg: [0, 1] — X with v(0) = x and v(1) = y.
We say that paths vg, v1: [0, 1] — X from x to y are homotopic if there exists
a continuous map H: [0, 1] x [0, 1] — X such that H(0,s) =xand H(1,s) =y
for all s € [0,1] and H(t,0) = vg and H(z,1) = v (¢) for all ¢t € [0,1]. [So
each H(t, s) for fixed ¢ € [0, 1] is a path from x to y, and this set of paths varies
continuously.]

(a) Check that being homotopic defines an equivalence relation on the set of
continuous paths from x to y.
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11.

(b) Check that paths can be composed (going at twice speed) and that compo-
sition of paths is well-defined on homotopy classes.

(c) Show that composition of homotopy classes of continuous paths is asso-
ciative.

Let TI(X) be the category whose objects are the points of X and with mor-
phisms to be the set of homotopy classes of continuous paths from x to y under
composition.

(d) Show that I1(X) is a category.

(e) Show that IT(X) is a groupoid, called the fundamental groupoid of X.

(f) Finally, for all x € X, show the set of all morphisms from x to x in I[1(X) is
a group (the more familiar fundamental group ; (X, x) with base point

X).

Continuing the previous exercise, show that if X is path-connected, then IT1(X)
is equivalent as a category to a groupoid with one object. [Hint: choose a point
x € X, look at the group(oid) m1(X,x).]






Chapter 20

Integral representation theory

In this chapter, we consider a slightly more general framework on the preceding
chapters: we consider lattices as projective modules, and relate this to invertibility and
representation theory in an integral sense.

20.1 » Projectivity, invertibility, and representation theory

Let R be a Dedekind domain with field of fractions F' = Frac R. Finitely generated,
projective R-modules have played an important role throughout this text, and we now
seek to understand them in the context of orders.

To this end, let B be a finite-dimensional F-algebra and let O C B be an R-order.
A left O-lattice M is an R-lattice that is a left O-module, i.e., M is a finitely generated,
projective (locally free) R-module that has the structure of a left O-module. We make
a similar definition on the right.

We say that a left (or right) O-lattice M is projective if it is a direct summand of
a free left (or right) O-module. Projectivity for lattices in B is related to invertibility
as follows (Theorem 20.3.3).

Theorem 20.1.1. Let I € B be an R-lattice. Then I is invertible if and only if I is
projective as a left O (I)-module and as a right Og(I)-module.

One can also tease apart left and right invertibility if desired; in the quaternion
context, these are equivalent anyway because of the standard involution (Main Theorem
20.3.9).

Given our efforts to understand invertible lattices, one may think that Theorem
20.1.1 is all there is to say. However, two issues remain. First, there may be finitely
generated (projective) O-modules that are not lattices, and they play a structurally
important role for the order O. Second, and this point is subtle: there may be lattices
I C B that are projective as a left O-module, but with O, (/) 2 O; in other words, such
lattices are invertible over a larger order, even though they still have good properties
as modules over the smaller order.

315
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Example 20.1.2. Let

Z Z
= CB:=
0=(% 7 er=m@
be the order consisting of integral matrices that are upper triangular modulo a prime
p. We will exhibit both of the issues above. First, we consider O as a left O-module:
it decomposes as

0-ofy §)=ofs §)-(% &)=(6 3

~ ((%)) (<) (;) = [1 @12.

The two left O-modules 1}, I; are visibly projective, and they are not isomorphic:
intuitively, an isomorphism would have to be multiplication on the left by a 2 xX2-matrix
that commutes with multiplication O, and so it must be scalar. More precisely, suppose
¢ € Homp (11, I) is an isomorphism of left O-modules. Extending scalars, we have

(20.1.3)

_orn - Q) _.
QL =QL = (Q) =V,

and the extension of ¢ gives an element in Autg(V) where B = M;(Q) = Endg(V),
so commutes with the action of B and is therefore central: which is to say ¢ is a scalar
matrix, and that is absurd.

The lattice I = M;(2) is invertible as a lattice, since it is an order (!); and it is a
two-sided fractional O-ideal, but it is not sated. We claim that / is also a projective
O-module: this follows from the fact that M, (Z) ~ 12€B2 as a left O-module, so M;(Z)

is isomorphic to a direct summand of O®2,

In this chapter, we establish some basic vocabulary of modules in the language of
the representation theory of an order. In the case of algebras over a field, we defined
a Jacobson radical as a way to measure the failure of the algebra to be semisimple.
Similarly, for every ring A, we define the Jacobson radical rad A to be the intersection
of all maximal left ideals of A: it again measures the failure of left indecomposable
modules to be simple. There is a left-right symmetry to rad A, and in factradA C A
is a two-sided A-ideal.

Locally, the Jacobson radical plays a key role. Suppose R is a complete DVR with
unique maximal ideal p. Then p = rad O since it is the maximal ideal. Moreover, we
will see that pO C rad O, so O/rad O is a finite-dimensional semisimple k-algebra.
Much of the structure of O-modules is reflected in the structure of modules over the
quotient O/rad O (see Lemma 20.6.8).

Remark 20.1.4. In representation theory, generally speaking, to study the action of a
group on some kind of object (vector space, simplicial complex, etc.) one introduces
some kind of group ring and studies modules over this ring. The major task becomes
to classify such modules. For example, let R be a Dedekind domain with F' = Frac R,
and let O be an R-order in a finite-dimensional F-algebra B. A finitely generated
integral representation of O is a finitely generated O-module that is projective as
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an R-module (in particular, is R-torsion free). The integral representations of O are
quite complicated! Nevertheless, integral representation theory is a beautiful blend of
number theory, commutative algebra, and linear algebra. In section 20.6, we will see
some of the basic ingredients when R is a DVR, and in section 21.4 in the next chapter
we will show that hereditary orders have a tidy integral representation theory. For
more on the subject, see the surveys by Reiner [Rei70, Rei76] as well as the massive
treatises by Curtis—Reiner [CR81, CR87].

20.2 Projective modules

As we will need the notion over several different rings, we start more generally: let A
be a ring (not necessarily commutative, but with 1). For an introduction to the theory
of projective modules and related subjects, see Lam [Lam99, §2] and Curtis—Reiner
[CRS81, §2], and Berrick—Keating [BK2000, §2].

Definition 20.2.1. Let P be a finitely generated left A-module. Then P is projective
as a left A-module if it is a direct summand of a free left A-module.

A finitely generated free module is projective. The notion of projectivity is quite
fundamental, as the following proposition indicates.

Proposition 20.2.2. Let P be a finitely generated left A-module. Then the following
are equivalent:

(i) P is projective;
(ii) There exists a finitely generated left A-module Q such that P ® Q is free as a left
A-module.
(>iii) Every surjective homomorphism f: M — P (of left A-modules) has a splitting
g:P—> Mlie., fog=idp);
(iv) Every diagram

q 7/
/
s
i

M—N——0
of left A-modules with exact bottom row can be extended as indicated, with
p=fog; and
(v) Homu (P, —) is a (right) exact functor.
Proof. See Lam [Lam99, Chapter 2]. In statement (v), given a short exact sequence
0-Q—->M-—>N-—->0

then Hom4 (P, —) is always left exact, so

0 — Homu (P, Q) — Homyu (P, M) — Homu (P, N) (20.2.3)
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is exact; the condition for P to be projective is that Homx4 (P, —) is right exact, so the
full sequence

0 — Homyu (P, Q) — Homyu (P, M) — Homu(P,N) — 0 (20.2.4)
is short exact. O

20.2.5. A finite direct sum P = B, P; of finitely generated A-modules is projective
if and only if each summand P; is projective: indeed, the functor Homg (P, —) is
naturally isomorphic to []; Homg(P;, —), so we apply condition (v) of Proposition
20.2.2.

20.2.6. Localizing Proposition 20.2.2(v), and using the fact that a sequence is exact
if and only if it is exact locally (Exercise 20.1(a)), we see that P is projective as a left
O-module if and only if Py is projective as a left O y)-module for all primes p € R

Definition 20.2.7. A left O-lattice is an R-lattice M that is a left O-module.
We make a similar definition on the right.

20.2.8. Aleft O-lattice M is locally free of rank r > 1if M, ~ Oy as left O-modules
for all primes p C R. If follows from 20.2.5 and 20.2.6 that a locally free O-lattice is
projective.

20.3 Projective modules and invertible lattices

Now let R be a noetherian domain with F := Frac R, let B be a finite-dimensional
F-algebra, and let O C B be an R-order.

One can extend the base ring of the module while preserving projectivity, as
follows.

Lemma 20.3.1. Let O C O’ be R-orders in B and let M be a left O'-lattice. If M is
projective as a left O-module, then M is projective as a left O’-module.

Proof. Suppose M is projective as a left O-module; then M @ N ~ O" for some r > 0.
Tensor with O’ to get

(O'® M)a® (0" ® N) =~ (0)". (20.3.2)

Since multiplication gives an isomorphism of left O’-modules O’'®@o M = O'M = M,
the result follows. (More generally, see Harada [Har63a, Lemma 1.3].) O

In the commutative case, an R-lattice a C F is invertible as an R-module if and
only if a is projective as a (left and right) R-module. Something is true in this more
general context.

Theorem 20.3.3. Let I C B be an R-lattice.

(@) I"'1 = Og(I) if and only if I is projective as a left O (I)-module, and II™" =
OL (1) if and only if I is projective as a right Og(I)-module.
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(b) 1 is projective as a left O (I)-module and a right Or(I)-module if and only if
is invertible (as an R-lattice).

The difference between (a) and (b) in Theorem 20.3.3 is the compatibility of the
two products.

Proof. We begin with (a). To prove the implication (=), suppose I~'1 = Og([I); then

there exist a; € I and o € 17! such that ¥, a;a; = 1. We may extend the set {a;};

to generate [ as a left O, (/)-module by taking a = O if necessary. We define the
surjective map

f:M= EBOL(I)ei -1

i (20.3.4)

e — ;.

Consider the map
g:1-M
B Zﬁa? eis
i

the map g is defined because for all 8 € I, we have Sa; € II"', and as always I1~'1 C I
so II-' € O, (I). The map g is a splitting of f since

(Fo)(B) =) pojai =B ) ojar=p

1

Therefore [ is a direct summand of M, so I is projective as a left O, (/)-module.

Next we prove (). There exists a nonzero r € I N R (Exercise 9.2), so to show
that I-'7 = Og(I), we may replace I with »~'I and therefore suppose that 1 € I.
Following similar lines as above, let {a;}; generate I as a left O, (/)-module, and
consider the surjective map f: M = @i OvL(I)e; — I by e; — ;. Then since I is
projective as a left O (I)-module, this map splits by a map g : I — M; suppose that
g(1) = (a7); with a; € O_(I); then

(fog)()=1=) ajar. (20.3.5)

For all g € I, we have g(B) = (Ba;}); € M, so pa; € O_(I) for all i; therefore for
all a, 8 € I we have Ba;a € OL(I)I C I, whence a; € I~! by definition. Thus from
(20.3.5) we have 1 € I"'I, whence

Or(I) C I"'IOR(I) = I"'T € OR(1)

and thus equality holds.
For part (b), the implication (<) follows from (a), and the implication (=) for
compatibility follows from Proposition 16.5.8. O

Remark 20.3.6. The proof of Theorem 20.3.3 follows what is sometimes called the
dual basis lemma for a projective module: see Lam [Lam99, (2.9)], Curtis—Reiner
[CRS1, (3.46)], or Faddeev [Fad65, Proposition 18.2].
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20.3.7. Let O, O’ C B be R-orders. A O, O’-bimodule over R is an abelian group M
with a left O-module and a right O’-module structure with the same action by R on
the left and right (i.e., acting centrally, so rm = mr for all r € R and m € M). The
R-lattice I C B is an Oy (1), Og(I)-bimodule over R.

When the equivalent conditions of Theorem 20.3.3(b) hold, we say that / is pro-
jective as a O (I), Og(I)-bimodule over R.

Remark 20.3.8. In Theorem 20.3.3, we only considered an R-lattice / as a module
over its left and right orders (i.e., we considered only sated fractional O, O’-ideals),
for the reasons explained in 16.5.18.

Although invertible requires working in this way, it is possible for an R-lattice / to
be projective as a left O-module but still O € O, (I): for example, if O is a hereditary
order (see Chapter 21) contained properly in a maximal order O ¢ O’, then O’ is
projective as a left O-module.

Although this may seem a bit complicated, it is refreshing that for quaternion
algebras, all of the sided notions coincide. We recall the equivalences in Main Theorem
16.7.7, building upon them.

Main Theorem 20.3.9. Suppose R is a Dedekind domain and B is a quaternion
algebra over F = FracR, and let I C B be an R-lattice. Then the following are
equivalent:

(i1) 1 is invertible;

(iii) I is left invertible;
(iii") I is right invertible;

(v) I is projective as a left O (I)-module; and
(V") 1 is projective as a right Og(I)-module.

Proof. The equivalences (ii) & (ii’) & (iii) are from Main Theorem 16.7.7 (proven in
Lemma 16.7.5). Theorem 20.3.3(a) gives (v) = (iii) and (v’) = (iii’), and Theorem
20.3.3(b) gives (ii) = (v), (V/). |

Example 20.3.10. Consider again Example 16.5.12. The lattice I has O () =
Ok (1) = O (so has the structure of a sated O, O-bimodule) but / is not invertible; from
Main Theorem 20.3.9, it follows that / is not projective as a left or right O-module.

20.4 Jacobson radical

Before proceeding further in our analysis of orders, we pause to extend some notions
in sections 7.2 and 7.4 from algebras to rings. We follow Reiner [Rei2003, §6a]; see
also Curtis—Reiner [CRS81, §5].

Throughout, let A be a ring (not necessarily commutative, but with 1).

Definition 20.4.1. Let M be a left A-module. We say M is irreducible or simple
if M # {0} and M contains no A-submodules except {0} and M. We say M is
indecomposable if whenever M = M| & M, with M, M, left A-modules, then either
M = {0} or M, = {0}.
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20.4.2. We generalize Lemma 7.2.7. If I is a maximal left ideal of A, then A/I is a
simple A-module. Conversely, if M is a simple A-module, then for any x € M nonzero
we have Ax = M; therefore M ~ A/I where

I =ann(x) :={a € A : ax =0}.

Definition 20.4.3. The Jacobson radical rad A is the intersection of all maximal left
ideals of A. The ring A is Jacobson semisimple if rad A = {0}.

Lemma 20.4.4. The Jacobson radical rad A is the intersection of all annihilators of
simple left A-modules; rad A C A is a two-sided A-ideal.

Proof. The same proof as in Lemma 7.4.5 and Corollary 7.4.6 applies, mutatis mu-
tandis. O

Example 20.4.5. If A is a commutative local ring, then rad A is the unique maximal
ideal of A.

Example 20.4.6. Let R be a complete DVR with maximal ideal p = rad R. Let
F = Frac R and let D be a division algebra over F. Let O C D be the valuation ring,
the unique maximal R-order (Proposition 13.3.4). Then O has a unique two-sided
ideal P by 13.3.10, and so rad O = P.

Lemma 20.4.7. A/rad A is Jacobson semisimple.

Proof. LetJ =rad A. Since JM = {0} for each simple left A-module M, we may view
each such M as asimple left A/J-module. Now let @ € A be suchthata+J € rad(A/J);
then (a + J)M = {0}, so aM = {0} and @ € J; thus rad(A/J) = {0}, and A/J is
Jacobson semisimple. O

Lemma 20.4.8. We have
radA={B€A:1-afap € A forall aj,a, € A}.
Proof. See Exercise 20.6. O
Corollary 20.4.9. rad A is the intersection of all maximal right ideals of A.
Proof. Lemma 20.4.8 gives a left-right symmetric characterization of rad A. O

Corollary 20.4.10. If¢: A — A’ is a surjective ring homomorphism, then ¢(rad A) C
rad A’ and we have an induced surjective homomorphism A/rad A — A’ /rad A’.

Proof. Let B € rad A, let a/;,a/é € A’; since ¢ is surjective, there exist preimages
a1, ap € A. By Lemma 20.4.8, 1 — @ B8a; € A* and

¢(1—a1fiar) =1 - ajp(B)a) € A%,
so by the same lemma, ¢(B) € rad A’. o

Corollary 20.4.11. Let I C A be a two-sided A-ideal.



322 CHAPTER 20. INTEGRAL REPRESENTATION THEORY

(a) If A/I is Jacobson semisimple, thenrad A C I.
(b) IfI Crad A, then (rad A)/I =rad(A/I).

Proof. We have asurjection ¢: A — A/I. For (a), we get ¢(rad A) C rad(A/I) = {0}
from Corollary 20.4.10, so rad A C I. For (b), we get rad(A)/I C rad(A/I) from the
surjection, and applying (a) to (A/I)/(rad(A)/I) we get rad(A/I) C rad(A)/I. O

Lemma 20.4.12 (Nakayama’s lemma). Let M be a finitely generated left A-module
such that (rad A)M = M. Then M = {0}.

Proof. If M # {0}, let x,...,x, be a minimal set of generators for M as a left
A-module. Since x; € M = (rad A)M, we may write

X1 =Bix1+- -+ Buxy

with 3; € rad A. Butthen 1 -] € A%, so the generator x| is redundant, a contradiction.
O

Corollary 20.4.13. Let M be a finitely generated left A-module, and let N € M be a
submodule such that N + (rad A)M = M. Then N = M.

Proof. By hypothesis, M /N is finitely generated, and (rad A)(M/N) = M /N, so by
Nakayama’s lemma, M /N = {0} and M = N. O

Lemma 20.4.14. Let I be a maximal two-sided ideal of A. Then I contains rad A.

Proof. 1If I does not contain rad A, then I + rad A is a two-sided ideal of A containing
rad A and properly containing /. Since / is maximal, we have [ + rad A = A. By (the
corollary to) Nakayama’s lemma, we get I = A, a contradiction. O

20.5 Local Jacobson radical

Suppose now that R is a complete DVR with fraction field F = Frac R, maximal ideal
p =rad R, and residue field k = R/p. Let B be a finite-dimensional F-algebra, and let
O C B be an R-order.

In this setting, we may identify the Jacobson radical via pullback as follows.

Theorem 20.5.1. Let ¢: O — O/pO be reduction modulo p. Then
rad O = ¢! (rad O/pO) 2 pO,
and (rad O)" C pO for some r > 0.
Proof. See Reiner [Rei2003, Theorem 6.15]. O
Corollary 20.5.2. O/rad O is a (finite-dimensional) semisimple k-algebra.

Proof. Since rad O 2 pO, we conclude that O/pO is a k-algebra; it is Jacobson
semisimple by 20.4.7 and hence semisimple by Lemma 7.4.2. O
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Definition 20.5.3. A two-sided ideal J C O is topologically nilpotent if /” C pO for
some r > 0.

Remark 20.5.4. The order O as a free R-module has a natural topology induced from
the p-adic topology on R; J is topologically nilpotent if and only if J* — {0} in this
topology.

Corollary 20.5.5. Let I C O be a two-sided ideal. Then the following are equivalent:

(a) I CradO;
(b) I" C rad O for some r > 0; and
(¢) I is topologically nilpotent.

Proof. See Reiner [Rei2003, Exercise 39.1, Exercise 6.3]. m|

20.6 Local integral representation theory

We continue our notation that R is a complete DVR. We now turn to some notions in
integral representation theory. In this local case, there is a tight connection between
the representation theory of O (viewed in terms of O-modules) and the representation
theory of the quotient O/pO which is a k-algebra of finite dimension over &, since O
is finitely generated as an R-module.

20.6.1. Recall that a representation of B over F is the same as a left B-module. If M is
a finitely-generated left O-module, then V := M ®g F is a left B-module, and M C V
is an R-lattice. A O-supermodule of M is a left O-module V 2 M’ 2 M.

The following result is foundational.

Theorem 20.6.2 (Krull-Schmidt). Every finitely generated left O-module M is ex-
pressible as a finite direct sum of indecomposable modules, uniquely determined by
M up to O-module isomorphism and reordering.

Proof. Since M is finitely generated over R it is itself noetherian, so the process of
decomposing M into direct summands terminates. See Curtis—Reiner [CR81, (6.12)]
or Reiner [Rei2003, §6, Exercise 6] for hints that lead to a proof of the second
(uniqueness) part. O

Corollary 20.6.3. Let M = M| & - - - & M, be a decomposition into finitely generated
indecomposable left O-modules, and let N € M be a direct summand. Then N =
M;, & --- ® M;_ for some subset {iy,...,is} C{1,...,n}

Proof. By hypothesis, we can write (B, M; = N @ N’, with N’ a finitely generated
left O-module. By the Krull-Schmidt theorem (Theorem 20.6.2), if we write N, N’ as
the direct sums of indecomposable modules, the conclusion follows. O
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20.6.4. We saw in 7.2.19 that idempotents govern the decomposition of the F-algebra B
into indecomposable left B-modules. The same argument shows that a decomposition

O=Pi®---0®P, (20.6.5)

into a direct sum of indecomposable left O-modules corresponds to an idempotent
decomposition 1 = e + - - - + e,-, with the e; a complete set of primitive orthogonal
idempotents. Moreover, each P; = Oe; is a projective indecomposable left O-module.

Conversely, if P is a projective indecomposable finitely generated left O-module,
then P ~ P; for some i: taking a set of generators we have a surjective O-module
homomorphism O" — P, and since P is projective we have P C O" a direct summand,
so Corollary 20.6.3 applies.

Consequently, if P is a projective left O-lattice, then P ~ Plean1 @ ® P> with
n; >0fori=1,...,r.

20.6.6. The decomposition of an order into projective indecomposables is a nice way
to keep track of other orders, as follows. We extend our notation slightly, and define

O.(M) ={adeB:aM C M}

for every left O-submodule M C B.
Take a decomposition of O in (20.6.5); since each P; is a left O-module, extending
scalars it is a left B-module, so

ﬂ OL(P;) = O. (20.6.7)
i=1

Now let I € B be an R-lattice with O c O, (I) that is projective as an O-module.
By 20.6.4, considering [ as a left O-module, we have an isomorphism of left O-modules

¢p:1 5P 0PN
with n; > 0. We claim that
o) = () Ou(Py).
n,-l>0

Indeed, we have al C I if and only if ¢(al) = a¢p(I) C ¢(I), since ¢ is a O-module
homomorphism so extends to a B-algebra homomorphism, and finally a¢(I) C ¢(I)
if and only if aP; C P; for all i with n; > 0, as in (20.6.7).

We now relate a decomposition of O into a decomposition of O/pO.

Lemma 20.6.8. Let J = rad O. The association I — 1/JI gives a bijection between
isomorphism classes of indecomposable finitely generated projective left O-modules
and isomorphism classes of simple finite-dimensional left O /J-modules.

Proof. The proof requires a bit of fiddling with idempotents, but is otherwise straight-
forward—so it makes a good exercise (Exercise 20.7). O
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Corollary 20.6.9. If 1 is projective indecomposable, then JI C I is the unique maximal
O-submodule of 1.

Proof. By Lemma 20.6.8, since I is indecomposable, 1/J1 is simple so J1 is a unique
maximal submodule. If I’ C [ is another maximal O-submodule, then JI+1’ = I, and
by Nakayama’s lemma [/’ = I, a contradiction. O

We finish our local study over R a complete DVR with composition series for
modules over an order.

Definition 20.6.10. Let M be an O-lattice. A composition series for M is a strictly
decreasing sequence
M=My2>2M 2D2M,2...

such that (2, M; = {0} and each composition factor M;/M;,, is simple as a O-
module.

The length of a composition series is the largest integer r such that M, = {0} if r
exists (in which case we call the series finite), and otherwise the length is co.

20.6.11. If M has a finite composition series, then its length (M) is well-defined,
independent of the series. For example, taking R = F and O = B, a finitely generated
B-module is a finite-dimensional F-vector space, so every composition series is finite
and every B-module V has a well-defined length £(V).

20.6.12. Let N € M be a maximal O-submodule. We claim that JM C N. Otherwise,
N +JM = M by maximality, so by Nakayama’s lemma (Corollary 20.4.13), N = M,
a contradiction.

20.7 = Stable class group and cancellation

To conclude this chapter, we apply the above results and consider a different way to
form of a group of ideal classes; for further reference on the topics of this section, see
Curtis—Reiner [CR87, §§49-51] or Reiner [Rei2003, §38].

Let R be a Dedekind domain with field of fractions F.

20.7.1. Recall that the group CIR records classes of fractional ideals, or what is
more relevant here, isomorphism classes of projective modules of rank 1. Here is
another way to see the group law on CI R: given two such fractional ideals a, b up to
isomorphism, there is an isomorphism of R-modules

a®b=Rab,
and the class of ab is uniquely determined by this isomorphism by 9.3.10.

We now consider an analogous construction to 20.7.1 in the noncommutative
setting. Let B be a simple F-algebraand O C B an R-order. We begin with a technical
lemma.
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Lemma 20.7.2 (Weak approximation). Let I be a locally principal left fractional
O-ideal and let a C R be an ideal. Then there exists B € B* such that I3 C O and

(IB)y =0, forallp|a. (20.7.3)

Proof. For each prime p, we have I, = Oyay with @y € Bj. Because F is dense in
Fy, there exists 8 € (O : I)g such that @p8, = 1 (mod pO,) for all p | a. By norms,
we have 8 € B*. Letting u, = apfBy, we have u, — 1 € pO, 2 rad O, by Theorem
20.5.1 so up € O by Lemma 20.4.8. Therefore (/8), = Oy for all p | a. O

Proposition 20.7.4. If 1,1’ C B are locally principal left fractional O-ideals, then
there exists a locally principal left fractional O-ideal J and an isomorphism

lel'~Ja 0O (20.7.5)
of left O-modules.

Proof. We may suppose without loss of generality that 7, I’ C O. Then we have exact
sequences of left O-modules

0—>1i>O—>O/I—>0
O—>1’i>O—>O/1’—>O

The module O/I is R-torsion, annihilated by the (nonzero) R-ideal a = [O : I]g, and
similarly with /’, annihilated by a’ = [O : I’|g. By weak approximation (Lemma
20.7.2), replacing I” with 1’8 we may suppose that I, = Oy, for all p | a, and hence
a,a’ are coprime. Then for all primes p of R, we have either (O/I), = {0} so ¢, is
surjective, or correspondingly ¢y, is surjective.

Now consider the left O-module homomorphism

p+¢ 1l > O (20.7.6)

obtained by summing the two natural inclusions. We just showed that (¢ + ¢"),
is surjective for all primes p, so it follows that ¢ + ¢’ is surjective: the cokernel
M := coker(¢ + ¢’) has M, = {0} for all p, and M = {0}. Moreover, since O is
projective as a left O-module, the map ¢ + ¢’ splits (or note that the map splits locally
for every prime p, so it splits globally, Exercise 20.1(b)). If we let J := ker(¢ + ¢’),
we then obtain an isomorphism

1ol ~JaO. (20.7.7)

To conclude, we show that J is locally principal. To this end, we localize at a prime
p and note that 7, I’ are locally principal, so

Lol,~05 =], 0,. (20.7.8)

But by the Krull-Schmidt theorem (Theorem 20.6.2) and Exercise 20.8, we can cancel
one copy of O, from both sides! We conclude that J, =~ O, as left O-modules and
therefore by Lemma 17.3.3 that J, is (right) principal. O
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The candidate binary operation in Proposition 20.7.4 has a simple description in
the “coprime” case.

Lemma 20.7.9. Let I,1I’ C O be locally principal integral left O-ideals, and suppose
for every prime p C R either I, = Oy or I, = Oy. Then

Ieol'=0®J, whereJ=INT.
Moreover, writing I, = Oay, and I;, = Oa;, we have
Jp = Opapay, = Opayary.

By weak approximation (Lemma 20.7.2), the hypothesis of Lemma 20.7.9 can
always be arranged to hold for 7, I’, up to isomorphism (as left O-ideals).

Proof. By hypothesis, if ¢, ¢: 1,1’ < O are the inclusions, then the map ¢ + ¢’: [ &
I’ — O as in (20.7.6) is surjective. We have

ker(p+¢') ={(a,@’) el :a+a’ =0} =INT

by projection onto either coordinate, since « = —a’ € I N I’. This gives an exact
sequence

0—-INl'—>I8l' -0—-0

and as above / ® I’ = J & O with J = I N I’. The final statement follows from the
hypothesis that either 7, = Oy or I, = Oy, since then a; € Oy or ay, € O5. ]

In order to get a well-defined binary operation, we need an equivalence relation:
we will need to identify J,J’ if J & O ~ J’ & O. But the copies of O needed for the
axioms start to pile up, so we make the following more general definition.

Definition 20.7.10. Let J,J’ C B be locally principal left O-ideals. We say that J is
stably isomorphic to J’ if there exists an isomorphism of left O-modules

JeO% ~J 0%

for some r > 0.
Let [J]s: denote the stable isomorphism class of a left O-ideal J and let StC1 O be
the set of stable isomorphism classes of left O-ideals in B.

Proposition 20.7.11. StC1O is an abelian group under the binary operation (20.7.5),
written [I]s. + [I']s. = [J]s:, with identity [O]s..

Accordingly, we call StC10 the stable class group of O; it is also referred to as
the locally free class group of O.
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Proof. The operation is well-defined: if [I1]s, = [I2]s: via I} ® O%" ~ I, & O®" and
the same with [I{]s; = [;]s:, and we perform the binary operation I} ® I{ =~ J; & O
and the same with the subscripts », then

J @ OeB(r+r'+1) ~ (Il ® OEBV) ® (I{ ® OEBr')
= (LeO0%) e (;®0°%) (20.7.12)
=~ ® OGB(r+r’+l)

so [Ji]lst = [J2]se. It is similarly straightforward to verify that the operation is
associative and commutative and that [O]s; is the identity.

To conclude, we show that StC1 O has inverses. Let I C O be a locally principal
O-ideal. For each prime p C R, we have I;, = Oy, with @), € By, and ay = 1 for all
but finitely many p. Let I’ be the R-lattice with I}, = Opagl for all p. Then I’ is a
left fractional O-ideal, because this is true locally. By weak approximation (Lemma
20.7.2), there exists 8 € B> such that (I’8), = O, for all p such that I, # O,, i.e.,
for all p such that @, # 1. But now we can perform the group operation as in Lemma
20.7.9: we have [I]s; + [I']st = [J]se where J = I N I’B, and for all p we have

Ty = Opapa,' By = Opp
soJ =0BandJ ~ O, so [I]s; + [I']s: = [O]s: and I’ is an inverse. O

Remark 20.7.13. There is a related group to StCl O, defined as follows. Let A be
aring, and let P (A) be the category of finitely generated projective left A-modules
under isomorphisms. We define the group K((A) to be the free abelian group on the
isomorphism classes [ P] of objects P € P (A) modulo the subgroup of relations

[P®P'|=[P]+[P], forP,P'cP(A);
equivalently relations [P] + [P’] = [Q] for each exact sequence
0-P—-Q0—-P —0

since such a sequence splits. The group K((A) is sometimes called the projective
class group of A. (The group K((A) is the Grothendieck group of the category P (A).)

Then for P, Q € P(O), we have [P] = [Q] € Ky(O) if and only if P, Q are stably
isomorphic [CR87, Proposition 38.22]. Moreover, there is a natural map

Ko(O) — Ko(B)
[P] = [F®r O],

and we let SK((O) be its kernel, called the reduced projective class group of O. The
abelian group SKy(O) is generated by elements [P] — [Q] where P,Q € P (O) and
F ®g P =~ F ®g Q. Finally, we have an isomorphism [CR87, Theorem 49.32]

StC10 =5 SKy(O)

(20.7.14)
[{]se — [1] - [O].
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In other words, after all of this work—at least for maximal orders—the reduced
projective class group and the stable class group coincide. (For a more general
order, one instead compares to a maximal superorder via the natural extension maps
StC10 — StC10O’.)

The stable class group was first introduced and studied by Swan [Swa60, Swa62]
in this context in the special case where O = Z[G] is the group ring of a finite group
G.

Definition 20.7.15. We say that O has stable cancellation (or the simplification
property) if stable isomorphism implies isomorphism, i.e., if whenever I, I’ are locally
principal left O-ideals with / @ O” ~ I’ ® O" for r > 0, then in fact [ ~ I’.

If we had defined stable isomorphism and cancellation for locally free O-modules,
we would arrive at the same groups and condition, so stable cancellation is also called
the locally free cancellation.

From now on, suppose that R is a global ring with F = FracR, and O C Bis a
maximal R-order in a quaternion algebra B over F'. We recall section 17.8, and the
class group Clg R, where Q C Ram B is the set of real ramified places.

Theorem 20.7.16 (Frohlich-Swan). Let R = R(s) be a global ring, let B be a quater-
nion algebra over F, and let O C B be a maximal R-order. Then the reduced norm
induces an isomorphism

nrd: StC1O = Clg R (20.7.17)

of finite abelian groups.

Proof. See Frohlich [Fr675, Theorem 2, §X], Swan [Swa80, Theorem 9.4], or Curtis—
Reiner [CR87, Theorem 49.32]; we will sketch a proof of a more general version of
this theorem in section 28.10, when we have idelic methods at our disposal. O

20.7.18. Since B is a quaternion algebra, the notions of invertible and locally principal
coincide. Then there is a surjective map of sets

Cls. O — StC10

20.7.19
(1] [Ils. (207.19)

Suppose further that F = Frac R is a number field and R is a global ring. Then Cls. O
is a finite set, by Main Theorem 17.7.1; consequently, the stable class group StC1 O is
a finite abelian group. However, the map (20.7.19) of sets need not be injective.

The order O has stable cancellation if and only if the map (20.7.19) is injective
(equivalently, bijective).

20.7.20. Suppose that B satisfies the Eichler condition. Then by Eichler’s theorem
(Theorem 17.8.3), the reduced norm also gives a bijection Cls O = Clg R compatible
with the surjective map Cls; O — StCl1O (20.7.19) which must therefore also be a
bijection.
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What remains, then, is the case where B is definite. We restrict attention to the
case where the base field F is a number field, hence a totally real field, and we work
with R-orders O C B, where R = Zp is the ring of integers of F. Vignéras [Vig76b]
initiated the classification of definite quaternion orders with stable cancellation, and
showed that there are only finitely many such orders. Hallouin—-Maire [HM2006] and
Smertnig [Sme2015] extended this classification to certain classes of orders, and the
complete classification was obtained by Smertnig—Voight [SV2019].

Theorem 20.7.21 (Vignéras, Hallouin—Maire, Smertnig, Smertnig—Voight). Up to
isomorphism, there are exactly 316 definite quaternion R-orders with stable cancella-
tion.

The isomorphisms in Theorem 20.7.21 are as R-orders; up to ring isomorphism
(identifying Galois conjugates), there are exactly 247.

Example 20.7.22. If O is a definite maximal quaternion Z-order, by Theorem 20.7.16
we have StC1O = #CI* Z = 1, so O has stable cancellation if and only if #Cls O = 1.
These orders will be classified in section 25.4: they are the orders of discriminant
D = 2,3,5,7,13. (More generally, if R = Zr has #CI*Zr = 1, then a definite,
maximal quaternion R-order has stable cancellation if and only if #Cls O = 1.)

Remark 20.7.23. Jacobinski [Jaci68] was the first to consider the stable class group for
general orders in the context of his work on genera of lattices; his cancellation theorem
states more generally that if B is a central simple algebra over F and B is not a totally
definite quaternion algebra, then every R-order O C B has stable cancellation. This
result was reformulated by Frohlich [Fr675] in terms of ideles and further developed
by Frohlich—Reiner—Ullom [FRU74]. Swan [Swa80] related cancellation to strong
approximation in the context of K-groups.

Brzezinski [Brz83b] also defines the spinor class group of an order, a quotient of
its locally free class group; this group measures certain invariants phrased in terms of
quadratic forms.

Remark 20.7.24. More generally, a ring A in which every stably free right A-module
is free is called a (right) Hermite ring by some authors: for further reference and
comparison of terminology, see Lam [Lam2006, Section 1.4]. If O has locally free
cancellation, then O is Hermite; however, the converse does not hold in general—
a counterexample is described in detail by Smertnig [Sme2015]. Smertnig—Voight
[SV2019] show that there are exactly 375 definite quaternion R-orders with the Hermite
property up to isomorphism.

Exercises

Throughout these exercises, let R be a noetherian domain with F' = Frac R, let B be a
finite-dimensional F-algebra, let O C B be an R-order, and let J = rad O.

» 1. Let M, N be left O-lattices.
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(a) Show that a sequence 0 - M — N — M’ — 0 of left O-lattices is exact
if and only if the sequences 0 — M, — N, — M; — 0 are exact for
all primes p C R. [Hint: Consider the modules measuring the failure of
exactness and show they are locally zero, hence zero.]

(b) Let ¢: M — N be a surjective O-module homomorphism. Show that
¢ splits (there exists y: N — M such that ¢y = idy) if and only if
¢p : M, — N, splits for all primes p € R.

» 2. Suppose R is a DVR and B is a quaternion algebra. Let J = rad O. Show that
J =J and O (rad O) = Og(rad O).
3. Let R be a complete DVR with p = rad R. Show that the p-adic topology and
the J-adic topology on O are the same.

4. Let R be a DVR with maximal ideal p, and let O = R g

I C B be a left fractional O-ideal. Show that either I is invertible as a O-ideal
or [ is conjugate to M, (R) by an element of B*.

C B=M;(F). Let

5. Let O be a maximal R-order, and let M be a projective left O-lattice. Show
that M is indecomposable if and only if FM is a simple left B-module. [Hint:
Suppose W C FM is a left B-submodule of FM, and let N := M N W. Show
that M/ N is a projective O-lattice, so the sequence0 - N — M — M /N — 0
splits. ]

» 6. Let A be a ring (not necessarily commutative, but with 1. In this exercise, we
prove Lemma 20.4.8, that

radA={Be€A:1-afayc A" forall a;,a; € A}.

We first show the inclusion (C).

(a) Since rad A is a two-sided ideal, it suffices to show that 1 — 8 € A*. Show
that A(1 — ) = A.

(b) Let @ € A be such that @(1 — 8) = 1. Repeating the argument, show that
A(l-(1-a)) =Aa =A.

(c) Show that « is also a right inverse of 1 — 8,501 — 8 € A*.

Next we show the inclusion (D).

(d) Let 8 € Abesuchthat 1 — aBy € A* forall @,y € A. Let M be a simple
left A-module. Show that M = {0}. Conclude that @ € rad A.

» 7. Suppose R is a complete DVR. Prove Lemma 20.6.8: the association I
I/J1 gives a bijection between isomorphism classes of indecomposable finitely
generated projective left O-modules and isomorphism classes of simple finite-
dimensional left O/J-modules.

» 8. Let R be a complete DVR, and let 1, I’, J be finitely generated left O-modules
such that
loJ=I'eJ

as left O-modules. Prove that I ~ I’ as left O-modules.
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9. Let A = M,,(O) with n > 1. Show that StCl1 A = StC1O.
10. Show that the Lipschitz order has stable cancellation.
11. Let B=(-1,-3| Q) andlet O =Z +Z3i) + Z(-1+ j) /2 + Z(3i + i)/2.

(a) Show that O is an order with discrd O = 9.
(b) Show that O has stable cancellation.



Chapter 21

Hereditary and extremal orders

In this chapter, we consider hereditary orders, those with the simplest kind of module
theory; we characterize these orders in several ways, including showing they have an
extremal property with respect to their Jacobson radical.

21.1 » Hereditary and extremal orders

Let R be a Dedekind domain. Then R is hereditary: every submodule of a projective
module is again projective. (Hence the name: projectivity is inherited by a submodule.)
A noetherian domain is hereditary if and only if every ideal of R is projective, or
equivalently, that every submodule of a free R-module is a direct sum of ideals of
R. This property is used in the proof of unique factorization of ideals and makes the
structure theory of modules over a Dedekind domain quite nice. (Note, however, that
every order in a number field which is not maximal is not hereditary.)

It is important to identify those orders for which projective modules abound. Let
B be a simple finite-dimensional F-algebra and let O C B be an R-order.

Definition 21.1.1. We say O is left hereditary if every left O-ideal I C O is projective
as a left O-module.

We could define also right hereditary, but left hereditary and right hereditary are
equivalent for an R-order O, and so we simply say hereditary. We have O hereditary
if and only if every O-submodule of a projective finitely generated O-module is
projective—that is to say, projectivity is inherited by submodules. Moreover, being
hereditary is a local property.

Maximal orders are hereditary (Theorem 18.1.2), and one motivation for hereditary
orders is that many of the results from chapter 18 on the structure of two-sided ideals
extend from maximal orders to hereditary orders (Theorem 21.4.9).

Proposition 21.1.2. Suppose O is hereditary. Then the set of two-sided invertible

fractional O-ideals of B forms an abelian group under multiplication, generated by
the prime O-ideals.

333
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Hereditary orders are an incredibly rich class of objects, and they may be charac-
terized in a number of equivalent ways (Theorem 21.5.1). We restrict to the complete
local case, and suppose now that R is a complete DVR with unique maximal ideal p
and residue field kK = R/p.

Just as maximal orders are defined in terms of containment, we say O is extremal
if whenever O’ 2 O and rad O’ 2 rad O, then O’ = O. If O is not extremal, then

O :=0.(rad0) 2 0 (21.1.3)
is a superorder. We then have the following main theorem (Theorem 21.5.1).

Main Theorem 21.1.4. Let R be a complete DVR and let O C B be an R-order in a
simple F-algebra B. Let J :=rad O. Then the following are equivalent:

(1) O is hereditary;
(i) J is projective as a left O-module;
(ii") J is projective as a right O-module;
>iii) OL(J) = O,
(iii") Or(J) = Oy
(iv) J is invertible as a (sated) two-sided O-ideal; and
v) O is extremal.

The fact that hereditary orders are the same as extremal orders is quite remarkable,
and gives tight control over the structure of hereditary orders: extremal orders are
equivalently characterized as endomorphism algebras of flags in a suitable sense, and
so we have the following important corollary for quaternion algebras.

Corollary 21.1.5. Suppose further that B is a quaternion algebra. Then an R-order
O C B is hereditary if and only if either O is maximal or

R R
Oz(p R)QMg(F):B.

It is no surprise that we meet again the order from Example 20.1.2! The reader who
is willing to accept Corollary 21.1.5 can profitably move on from this chapter, as the
ring of upper triangular matrices is explicit enough to work with in many cases. That
being said, the methods we encounter here will be useful in framing investigations of
orders beyond the hereditary ones.

21.2 Extremal orders

In this section, we will see how to extend an order to a superorder using the Jacobson
radical, and we will characterize those orders that are extremal with respect to this
process.

We work locally throughout this section; let R be a complete DVR with maximal
ideal p = rad(R) and residue field k = R/p, and let F = Frac R. Let B be a finite-
dimensional separable F-algebra and let O C B be an R-order.
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21.2.1. Our motivation comes from the following: we canonically associate a super-
order as follows. Let J := rad O and O’ := O_(J). Then O’ 2 O. By Corollary
20.5.5,J" € pO C pO’ for some r > 0, and then J C rad O’.

Definition 21.2.2. An R-order O’ C B radically covers O if O’ 2 O and rad O’ 2
rad O. We say O is extremal if whenever O’ radically covers O then O’ = O.

We can think of extremal orders as like maximal orders, but under certain inclu-
sions.

Proposition 21.2.3. An R-order O is extremal if and only if O_(rad O) = O if and
only if Or(rad O) = O.

Proof. The argument is due to Jacobinski [Jaci71, Proposition 1].

We first prove (=). Suppose O is extremal, and let J = rad O and O’ = O (J).
By Corollary 20.5.5, J is topologically nilpotent as a O-ideal, so the same is true as a
O’ ideal, and J C rad O’ and O’ radically covers O. Since O is extremal, we conclude
O’ = O. The same argument works on the right.

Next we prove (<). Let J = rad O, suppose O = O (J); let O’ radically cover O,
and let J = rad O’. As lattices, we have p*O’ C J for some s > 0; by Theorem 20.5.1,
(J)" € pO’ forsomer > 0, so putting these together we have (J’)* C J forsomet > 0.
Suppose ¢ > 1. Since O’ radically covers, we have J C J'; thus J(J')'~! c (J))! € J
and (J*)'~! € Og(J) = O. But then since ((J')"~")! € (J’)* C J, by Corollary 20.5.5,
(J))'~! € J. Continuing in this way, we obtain t = 1 and J’ C J. Therefore J = J’
and O = O (J) = O (J’) = O/, thus O is extremal. O

Lemma 21.2.4. Let O be an R-order and let O’ C B be an R-order containing O. Let
J’ :=rad O’. Then O +J’ is an R-order that radically covers O. If further J' C O,
then J' C J.

Proof. See Exercise 21.6. m}

21.2.5. Inview of Lemma 21.2.4, an extremal order is determined by its homomorphic
image in a nice k-algebra as follows.

Let O be an extremal R-order and let O’ C B be a maximal R-order containing O.
Let J’ :=rad O’. By Lemma 21.2.4, O + J’ is an R-order that radically covers O, so
O+J’ = O. Therefore J' C O. By the second part of Lemma 21.2.4, we immediately
conclude J’ € J :=rad O. In sum,

J' =radO’ ¢ J=radO C O. (21.2.6)

Consider now the reduction map p: O’ — O’/J’. Since J' C O, if A = p(O)
then O = p~'(A). But since pO’ C J’ and O’ is a maximal R-order, the codomain is
a nice, finite dimensional k-algebra, something we will get our hands on in the next
section.

Paragraph 21.2.5 has the following consequence.
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Lemma 21.2.7. Suppose that B is a division algebra over F and let O C B be extremal.
Then O is maximal.

Proof. Recall 13.3.7. The valuation ring O’ 2 O has the unique maximal two-sided
ideal J/ =rad O’ = O’ \ (O")*, so O’/J’ is a field. We have (21.2.6) J’ C J, but then
J/J'={0} € O’/J thus J = J’. Thus O’ radically covers O, and since O is extremal,
0=0" O

Remark 21.2.8. We stop short in our explicit description of local extremal orders in
section 21.2: we gave a construction in 21.3.1 only for B =~ M,,(F). The results extend
to B ~ M, (D) where D is a division algebra over F by considering lattices in a free
left D-module: see Reiner [Rei2003, Theorem 39.14].

21.3 = Explicit description of extremal orders

We now turn to an explicit description of extremal orders. In Lemma 10.5.4, we saw
that maximal orders in a matrix algebra B = Endg (V) are endomorphism algebras of
lattices. In this section, we extend this to encompass orders that arise from endomor-
phism algebras of a chain of lattices: these orders are “block upper triangular”, and
can be characterized in a number of ways.

21.3.1. Let V be a finite-dimensional F-vector space and let B = Endg (V); then V is
a simple B-module. Let M C V be an R-lattice. By Lemma 10.5.4, A := Endgr(M) is
a maximal R-order; we have rad A = pA.
Choosing a basis for M, we get A ~ M,,(R) € M,,(F) ~ B, and rad A = M,,(p).
Now let Z := M Qg k = M /pM. Then Z is a finite-dimensional vector space over
k. Let

EA{0}=20CZiC---CZi1 CZs=Z
be a (partial) flag, a strictly increasing sequence of k-vector spaces. We define
O (&) ={aeAN:aZ;CZ :i=0,...,s}.

Equivalently, let M; be the inverse image of Z; under the projection M — Z; then we
have a chain

PM=MyCM S CM;_1 CM;=M (21.3.2)

and
OE)={aeA:aM; CM; :i=0,...,s}.

Lemma 21.3.3. O, (&) C A is an R-order with
radO (&) ={aeA:aZ; CZi1}={a e A:aM; C M;_1}.

Proof. That O (&) is an order follows in the same way as the proof of Lemma 10.2.7.
For the statement on the radical: let J = {&@ € A : @Z; € Z;_1}. ThenJ C O (&)



21.3. s EXPLICIT DESCRIPTION OF EXTREMAL ORDERS 337

is a two-sided ideal. We have J* C pA pushing along the flag, so J C rad O, (&) by
Corollary 20.5.5. Conversely,

0L(&)/J ~ D Endy(Zi/Zi-1):
i=1

each factor is simple, so the sum is (Jacobson) semisimple; therefore J C rad O (&)
and equality holds. |

Example 21.3.4. If we take the trivial flag O (&) : {0} = Zy € Z; = Z, then
OL (&) = A, so this recovers the construction of maximal orders.

Example 21.3.5. Let & be the complete flag of length s = n+ 1 = dimg V, where
each quotient has dimy (Z;11/Z;) = 1. Then there exists a basis zy,...,2, of Z so
that Z; has basis z, . . ., z,—;; We lift this to basis to xy, ..., x, of M (by Nakayama’s
lemma), and in this basis, we have

xR ™

R
R
R

BB X

R

R

Ou(&) = P
p »p p ... R

consisting of matrices which are upper triangular modulo p, and

p R R ... R

> b R R 01 ... 0
radO (&) =P P P ... R =oL(a)(i) (1) B 1 (21.3.6)
N N . . . T 0 0
P PP ...0P

where the latter is taken to be a block matrix with lower left entry 7 and top right entry
the (n — 1) X (n — 1) identity matrix.

Other choices of flag give an order which lie between O, (&) and A: we might
think of them as being block upper triangular orders.

Now for the punch line of this section.

Proposition 21.3.7. Let O C B be an R-order. Then O is extremal if and only if
O =0.(8) for aflag &.

Proof. Let O = O_(&E). Let J = rad O; we seek to apply Proposition 21.2.3, so we
show that O = O_(J). By Lemma 21.3.3, we have JM; = M;_; so O.(J)M;_ =
O.(N)IJM; = JM; = M;_y fori = 1,...,s. Since My = pM ~ M, we conclude
OL(J) = OL(E) = O by definition.

Conversely, suppose O is extremal with / = rad O. Let s be minimal so that
J* = p0O. We may embed O C A for some A, and we take the flag

EA{0y=Uzcr'zc---cJzZcZ.
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Then O € O(&) and rad O(&E) 2 J by construction, so since O is extremal, we have
0=0(8). O

21.4 Hereditary orders

We now link the orders in the previous two sections to another important type of order.
The theory of extremal and hereditary orders was developed by Brumer [Brumo63a,
Brum63b], Drozd—Kirichenko [DK68], Harada [Har63a, Har63b, Har63c], Jacobinski
[Jaci71], and Hijikata—Nishida [HN94]. An overview of the local and global theory of
hereditary orders is given by Reiner [Rei2003, §§2f, 39—40], and Drozd—Kirichenko—
Roiter [DKR67] and Hijikata—Nishida [HN94] extend some results from hereditary
orders to Bass orders.

Let R be a noetherian domain with F = Frac R, and let B be a separable F-algebra,
and let O C B be an R-order.

Definition 21.4.1. We say O is left hereditary if every left O-ideal / C O is projective
as a left O-module.

21.4.2. We could similarly define right hereditary, but since an order O is left and
right noetherian, it follows that O is left hereditary if and only if O is right hereditary:
see Exercise 21.8. When B is a quaternion algebra, the standard involution inter-
changes and left and right, so the two notions are immediately seen to be equivalent.
Accordingly, we say hereditary for either sided notion.

Example 21.4.3. In the generic case F' = R and O = B, we note that every semisimple
algebra B over a field F is hereditary: by Lemma 7.3.5, every B-module is semisimple
hence the direct sum of simple B-modules equivalently maximal left ideals, by Lemma
7.2.7.

21.4.4. By 20.2.6, being hereditary is a local property.

The following lemma motivates the name hereditary: projectivity is inherited
by submodules. (Note that since R is noetherian, a finitely generated O-module is
noetherian, so every submodule is finitely generated.)

Lemma 21.4.5. Let O be hereditary, and let P be a finitely generated projective left
O-module. Then every submodule M C P is isomorphic as a left O-module to a finite
direct sum of finitely generated left O-ideals; in particular, M is projective.

Proof. We may suppose without loss of generality that P ~ O". We proceed by
induction on r; the case r = 1 holds by definition. Decompose O" = E & O where
E ~ O"~!'. From the exact sequence

O—-ker¢g > M >MNE —0

and projectivity, we find that M ~ (M N E) @ ker ¢ where ker ¢ C O is a left ideal of
O. By induction, M N E is projective, so the same is true of M. O
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Corollary 21.4.6. O is hereditary if and only if every submodule of a projective
O-module is projective.

Proof. The implication (=) is Lemma 21.4.5; for the implication (<), O is projective
(free!) as aleft O-module and every leftideal is a O-submodule I C O, so by hypothesis
I is projective. o

Remark 21.4.7. O is hereditary if and only if every R-lattice I € B with O € O (1)
is projective as a left O-module, after rescaling.

However, a bit of a warning is due. If / C B is an R-lattice that is projective as a
left O-module, then we have shown that / is projective as a left O, (/)-module (Lemma
20.3.1), whence left invertible (Theorem 20.3.3) as a lattice. But the converse need
not be true; so it is important that in the definition of hereditary we do not require
that every left O-fractional ideal / is invertible as a left fractional O-ideal (Definition
16.5.17): the latter carries the extra assumption that / is sated. See also Remark 20.3.8.

Lemma 21.4.8. Let O C B be a hereditary R-order and let O’ 2 O be an R-
superorder. Then O’ is hereditary.

Proof. Let I’ C O’ be a left O’-ideal. Scaling we may take I’ C O, and it is a left
O-ideal. Since O is hereditary, I’ is projective as a left O-module; by Lemma 20.3.1,
I’ is projective as a left O’-module. O

One of the desirable aspects of hereditary orders is that many of the results from
chapter 18 on the structure of two-sided ideals extend from maximal orders to heredi-
tary orders. Indeed, section 18.2 made no maximality hypothesis (we held out as long
as we could!).

Theorem 21.4.9. Let R be a Dedekind domain and let O be a hereditary R-order in a
simple F-algebra B. Then the set of two-sided invertible fractional O-ideals of B forms
an abelian group under multiplication, generated by the invertible prime O-ideals.

Proof. Proven in the same manner as in Theorem 18.3.4; a self-contained proof is
requested in Exercise 21.4. O

Remark 21.4.10. Theorem 21.4.9 is proven by Vignéras [Vig80a, Théoréme 1.4.5],
but there is a glitch in the proof. Let R be a Dedekind domain, let B be a quaternion
algebra over F = FracR, and let O C B be an R-order. Vignéras claims that the
two-sided ideals of O form a group that is freely generated by the prime ideals, and the
proof uses that if / is a two-sided ideal then [ is invertible. This is false for a general
order O (see Example 16.5.12).

If one restricts to the group of invertible two-sided ideals, the logic of the proof
is still flawed. The proof does not use anything about quaternion algebras, and works
verbatim for the case where R = Z C F = Q and B is replaced by K = Q(+/dk) and
O is replaced by an order of discriminant d = dk f? that is not maximal, of conductor
f € Z-1, as in section 16.1. Then the ideal f = fZ+ VdZ is not invertible, but f 2 (f)
and (f) is invertible but not maximal, so the group of invertible ideals is not generated
by primes.
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However, if one supposes that every two-sided ideal is invertible (as a lattice),
then the argument can proceed: this is the class of hereditary orders, and is treated in
Theorem 21.4.9.

Remark 21.4.11. The module theory for hereditary noetherian prime rings, generaliz-
ing hereditary orders, has been worked out by Levy—Robson [LR2011].

21.5 =« Classification of local hereditary orders

We now come to the main theorem of this chapter, relating extremal orders, hereditary
orders, their modules and composition series in the local setting.

Theorem 21.5.1. Let R be a complete DVR and let F := Frac R. Let B be a finite-
dimensional F-algebra, and let O C B be an R-order. Let J := rad O. Then the
Jollowing are equivalent, along with the conditions ' where ‘left’ is replaced by ‘right’:

(1) O is extremal;
(ii) Every projective indecomposable left O-submodule P C B is the minimum
O-supermodule of JP;
(iii) Every projective indecomposable left O-module P has a unique composition
series;
(iv) Every projective indecomposable left O-module P has a unique composition
series consisting of projectives;
(v) O is hereditary;
(vi) J is projective as a left O-module;
(vii) If P is a projective indecomposable left O-module, then JP is also projective
indecomposable; and
(viii) J is invertible as a (sated) two-sided O-ideal.

Proof. See Hijikata—Nishida [HN94, §1]. m]
Corollary 21.5.2. A maximal order is hereditary.

Proof. We proved this in Theorem 18.1.2, but here is another proof using Theorem
21.5.1: the property of being maximal is local, and a maximal order is extremal. O

To conclude, we classify the lattices of a local hereditary order.

21.5.3. Suppose R is a complete DVR and that B ~ M,,(F). Suppose O C Bis a
hereditary R-order; then by Theorem 21.5.1, O = O, (&) is extremal, arising from a
chain 21.3.2 which by Lemma 21.3.3 is of the form

PM=My=IMcJ'Mc---CM_ 1 =JMCM;=M,

with each quotient M; /M;,; ~ M /JM simple.

We claim that the set M,JM,...,JS'M form a complete set of isomorphism
classes of indecomposable left O-modules. Indeed, these modules are all mutually
nonisomorphic, because an isomorphism ¢: J'M =5 J/ M of left O-modules extends
to an isomorphism ¢ € Endg(B) =~ F so is given by (right) multiplication by a power
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of 7, impossible unless i = j (mod s). And if N is an indecomposable left O-module,
then FN ~ F™ is ‘the’ simple B-module, so N is isomorphic to a lattice in V. Since J
is invertible, we may replace N by J" N withr € Z, to supposethat M 2 N 2 JM. But
M/JM =~ O/J is simple as a left O-module, so N = M. (See also Reiner [Rei2003,
Theorem 39.23].)

Exercises

1. Show that a Dedekind domain is hereditary (cf. Exercise 9.5).

2. Let R = Z, let B = K = Q(Vd) with d the discriminant of K, and let S C Zg be
an order. Show that S is hereditary if and only if S is maximal.

3. Let R be a DVR with maximal ideal p = 7R and F = Frac R with char F # 2.
13 .
Let B = Tﬂ and O = R(i, j) the standard order. Show directly that rad O =
Oj = jO, and conclude that O is hereditary (but not a maximal order).

» 4. Give a self-contained proof of Theorem 21.4.9 following Theorem 18.3.4.
(Where does the issue with invertibility arise?)

5. Let R be a complete DVR and let O be a hereditary R-order. Show that O is
hereditary if and only if rad O is an invertible (sated) two-sided O-ideal.

» 6. In this exercise, we prove Lemma 21.2.4 following Reiner [Rei2003, Exercise
39.2]. We adopt the notation from that section, so in particular R be a complete
DVR with maximal ideal p = rad(R). Let O be an R-order and let O’ C B be
an R-order containing O. Let J' =rad O’.

(a) Show that O + J’ is an R-order.

(b) Show that O + J’ radically covers O. [Hint: let J = rad O, and claim that
J+J" C rad(O+J’). Forr large, show J" C pOso (J+J')" C pO’+J’ and
(J")" € pO’, and then making r even larger show (J + J')r3 C p(O+J).
Conclude using Corollary 20.5.5.]

(¢) If further J* € O, show that J' C J.

7. Let R be a Dedekind domain with F' = Frac(R), let B be finite-dimensional
F-algebra, and let O C B be a hereditary order. Let P be a finitely generated
projective O-module. Show that P is indecomposable if and only if V := P®g F
is simple as a B-module.

» 8. Let R be a Dedekind domain, and let O C B be an R-order in a finite-dimensional
F-algebra. Show that O is left hereditary (every left O-ideal is projective) if
and only if it is right hereditary (every right O-ideal is projective). [See Reiner
[Rei2003, Theorem 40.1].]

9. Consider the ring
a 0
A._{(b C).an,b,ceQ}.

Show that every submodule of a projective left A-module is projective, but the
same is not true on the right.



342 CHAPTER 21. HEREDITARY AND EXTREMAL ORDERS

10. Let R be a Dedekind domain. Let B be a separable F-algebra, and let B =~
By X --- % B, be its decomposition into simple components, with B; = Be; for
central idempotents e¢;. Let K; be the center of B;, and let S; be the integral
closure of R in K;.

a) Let O C B be a hereditary R-order. Show that O ~ O X --- X O, where
O; = Oe;, and each O; is a hereditary R-order in B;.
b) Conversely, if O; C B; is a hereditary R-order, then O; X --- X O, is a
hereditary R-order in B.
[Hint: use the fact that hereditary orders are extremal. |

11. For the following exercise, we consider integral group rings. Let G be a finite
group of order n = #G and let R be a Dedekind domain with F = FracR.
Suppose that char F' { n. Then B := F[G] is a separable F-algebra by Exercise
7.15. Let O = R[G].

a) Let O’ 2 O be an R-superorder of O in B. Show that
OcoO' cn'O.
[Hint: forell @ = 3.4 agg € O" with ag € F, show that
Trp|r(eg) = nag € R.

Conclude that O’ C n='0.]

b) Show that O is maximal if and only if O is hereditary if and only if
n € R*. [Hint: if O is hereditary, then O contains the central idempotent
n! 2geG 8 by Exercise 21.10.]

¢) We define the left conductor of O’ into O to be the colon ideal

(O":0).={aeB:a0 CO}.

(and similarly on right). Prove that
Son
(O :0) = Z p» codiff (7).

i=1
12. Give an explicit description like Example 21.3.5 for O (&) whendimp V = 3,4.

13. Let R be a Dedekind domain, and let O C B be an R-order in a finite-dimensional
simple F-algebra. Show that O is maximal if and only if O is hereditary and
rad O C O is a maximal two-sided ideal.



Chapter 22

Quaternion orders and ternary
quadratic forms

In this chapter, we classify orders over a Dedekind domain in terms of ternary quadratic
forms; this is the integral analogue to what we did over fields in Chapter 5.

22.1 »> Quaternion orders and ternary quadratic forms

We begin our project by returning to the classification over fields: in Chapter 5 and 6
(see Main Theorem 5.2.5 and Theorem 6.4.7), we saw that quaternion algebras over
a field F are classified by similarity classes of nondegenerate ternary quadratic forms
over F. We will soon see that, suitably interpreted, quaternion orders are classified by
similarity classes of integral ternary quadratic forms.

Let R be a PID with field of fractions F' := Frac R. We recall that the similarity
class of a ternary quadratic form Q: R3 — R is determined by the natural change of
variable by GL3(R) on the domain and by rescaling by R* on the codomain, and that
Q is nondegenerate if and only if disc(Q) # 0.

Main Theorem 22.1.1. Let R be a PID. Then there is a (reduced) discriminant-
preserving bijection

Nondegenerate ternary quadratic o Quaternion orders over R

forms Q over R up to similarity up to isomorphism

One beautiful feature of the bijection in Main Theorem 22.1.1 is that it can be given
explicitly. Let Q: R®> — R be a ternary quadratic form with nonzero discriminant,
and let e, s, e3 be the standard basis for R3. Then the extension to F given by
Qr: F? — F is a ternary quadratic space whose even Clifford algebra (section 5.3) is
a quaternion algebra B. Moreover, the R-lattice O with basis

1, i:=ezes, Jji=esze;, k:i=ee;
is closed under multiplication and so defines an R-order in B. Explicitly, if the
quadratic form Q is given by

0(x,y,z) = ax®> + by* + cz* + uyz + vxz + wxy € R[x, y, z]

343
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with (half-)discriminant
N := 4abc +uvw — au® — bv? — cw? # 0,

then we associate the quaternion R-order O C B with basis 1, i, j, k and multiplication

laws

i = ui — be jk=ai=a(u-i

j>=vj-ac ki=bj=b(-j) (22.1.2)
k* = wk —ab ij =ck=c(w-k).

The other multiplication rules are determined by the skew commutativity relations
(4.2.16) coming from the standard involution; one beautiful consequence is the equality

ijk =jki=kij=abc.

The R-order O defined by (22.1.2) is called the even Clifford algebra CIf°(Q) of
Q—its algebra structure is obtained by restriction from the even Clifford algebra of
Qr—and the reduced discriminant of O is discrd(O) = (N). At least one of the
minors

u? — 4bc, 2 — dac, w2 — dab

of the Gram matrix of Q in the standard basis is nonzero since Q is nondegenerate, so
for example if w? — 4ab # 0 and char F # 2, completing the square we find

2_4 _
OCB:(M)

F

It is straightforward to show that the isomorphism class of O is determined by the
similarity class of O (using the even Clifford algebra construction). Therefore, the
proof of Main Theorem 22.1.1 amounts to verifying that every quaternion order arises
this way up to isomorphism, and that isomorphic quaternion algebras yield similar
ternary quadratic forms.

To this end, we define an inverse to the even Clifford algebra construction. Let
O c B be a quaternion order over R with reduced discriminant discrd(O) generated
by N € R nonzero. Recalling 15.6, let

(0" = {@ € O* : trd(a) = 0}

be the trace zero elements in the dual of O with respect to the reduced trace pairing.
Then we associate the ternary quadratic form

Nord*(0): (0M° > R

(22.1.3)
a — Nnrd(a);

explicitly, we have

Ni* = jk—kj, Nj* = ki—ik, Nk¥ =ij — ji
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where 1,1, j, k is an R-basis of O, so
1
Nnrdﬁ(O)(x,y, 7) = v nrd(x(jk —kj)+y(ki—ik)+z(ij - ji)). (22.1.4)

It is then a bit of beautiful algebra to verify that N nrdﬁ(O) has discriminant N and
that (22.1.3) furnishes an inverse to the even Clifford map.

Just as in the case of fields, the translation from quaternion orders to ternary
quadratic forms makes the classification problem easier: we replace the potentially
complicated notion of finding a lattice closed under multiplication in a quaternion
algebra with the simpler notion of choosing coefficients of a quadratic form.

To conclude this introduction, we state a more general bijective result stated in
terms of lattices. Let R be a Dedekind domain with F = FracR, let Qp:V — F
be a nondegenerate ternary quadratic form. If M C V is an R-lattice, and [ C F is
a fractional ideal of R such that Q(M) C I, then we have an induced quadratic form
Q: M — [; we call such a form a quadratic module in V. Given a fractional ideal
a C F, the twist by a of the quadratic module Q: M — lin V is the quadratic module
aM — a’l. A twisted similarity between quadratic modules Q, Q” in V is a similarity
between Q and a twist of Q’. From these notions in hand, we have the following
theorem (a special case of Main Theorem 22.5.7).

Theorem 22.1.5. Let R be a Dedekind domain, and let Qr: V — F be a nondegen-
erate ternary quadratic form. Let B := CIf®V. Then the even Clifford map yields a
discriminant-preserving bijection

Quadratic modules in V o Quaternion orders in B
up to twisted similarity up to isomorphism

that is functorial with respect to R.

By functorial with respect to R, we mean the same thing as in Corollary 5.2.6, but
with respect to any homomorphism R — S of Dedekind domains. In particular, the bi-
jection in Theorem 22.1.5 is compatible with the bijections obtained over localizations
of R, including the bijection over F between quaternion algebras and nondegener-
ate ternary quadratic forms previously obtained. In the language of quadratic forms
(Definition 9.7.13), after some additional work (nailing down the difference between
similarity and isometry), we conclude: if the ternary quadratic module Q corresponds
to the quaternion order O, then there is a bijection

ClQ & Typ O, (22.1.6)

i.e. the type number of a quaternion order is the same as the class number of the
corresponding ternary quadratic form.

Remark 22.1.7. If we restrict the correspondence to primitive modules Q: M — [(i.e.,
Q(M) = 1), then we need only remember the underlying lattice M, and on the right-
hand side we obtain precisely the Gorenstein orders; these orders will be introduced
in 24.1.1 and this correspondence is proven in section 24.2.
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22.2 Even Clifford algebras

In this section, we construct the even Clifford algebra associated to a quadratic module:
see Remark 22.2.14 below for further references. The reader who wants to skip over
technicalities at first is encouraged to skip this section and accept 22.3.2 as a definition.

Let R be a noetherian domain with F = Frac R. Let Q: M — L be a quadratic
module over R (see section 9.7), so that M is a projective R-module of finite rank
and L is an invertible R-module (rank 1). Write L := Homg(L, R) and M®° = R.
(For further reference on tensor algebra, see Matsumura [Mat89, Appendix C] or
Curtis—Reiner [CR81, §12].)

22.2.1. Let

Ten®(M; L) = @(M ®M® L)%,
d=0

Now Ten’(M; L) has a natural tensor multiplication law (rearranging tensors), so
Ten(M; L) is a graded R-algebra. Let I°(Q) be the two-sided ideal of Ten®(M; L)
defined by

1°00) =(x®x®g-g(0(x)) :xeM,ge L")y C Ten®(M; L); (22.2.2)

note that Q(x) € L so g(Q(x)) € R. We define the even Clifford algebra of Q to be
the quotient
CIf°(Q) = Ten®(M; L) /1°(Q). (22.2.3)

Remark 22.2.4. We might try to define

(o8]

Ten(M:L) = (P M @ (LV)®1) =Re Mo MoMe L") o...;
d=0

unfortunately, Ten(M; L) does not have a natural tensor multiplication law, because
there is no natural map M ® M — M ® M ® LY. But see 22.2.16 below for the odd
part.

Example 22.2.5. Under the inclusion R < F, we have a natural identification
CIf°(Q) & F = CIf*(QF). (22.2.6)

We conclude that the R-lattice in CIf’(QF) defined by the image of R is closed under
multiplication—something that may also be verified directly—and so CIf°(Q) is an
R-order in CIf°(Qp).

22.2.7. Asin5.3.7,forall x,y € M and g € L, the calculation
x®y®g+y®x®g=g(T(x,y)) €R (22.2.8)

holds in CIf°(Q), where T'(x, y) = Q(x +y) - Q(x) - Q(y) € L.
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22.2.9. If M ~ R" is free with basis e1, ..., e, and LY = Rg is free, then leO(Q) is
a free R-module with basis

®d/2

e, ® Qe Qg 1<e, <---<ey,; <n, deven,

as a consequence of 22.2.8, just as in the case over fields 5.3.9. In particular, by
localizing, if M has rank n as an R-module, then CIf°(Q) is projective of rank 2"~ as
an R-module. We write elements of C1f°(Q) without tensors, for brevity.

22.2.10. The reversal map defined on simple tensors

rev : CIf°(Q) — CIf°(0Q)
X1 ®---®xd®(g1”'gd/z)de‘@"'@xl ®(g1"'gd/2)

forx; € M and g; € LV, and extended R-linearly, is an R-linear involution.

Theorem 22.2.11. The association Q — CIf°(Q) is a functor from the category of
quadratic R-modules under similarities to the category of projective R-algebras with

involution under isomorphism. Moreover, this association is functorial with respect to
R.

We call the association Q +— CIf°(Q) in Theorem 22.2.11 the even Clifford
functor.

22.2.12. The statement “functorial with respect to R” means the following: given
a ring homomorphism R — S, there is a natural transformation between the even
Clifford functors over R and S. Explicitly, given a ring homomorphism R — § and a
quadratic module Q: M — L, we have a quadratic module Os: M g S — L ®r S,
and CIf°(Q) ®g S = CIf°(Qs) in a way compatible with morphisms in each category.
In particular, this recovers the identification in Example 22.2.5 arising from R <— F.

Remark 22.2.13. The association Q +— CIf(Q) of the full Clifford algebra is a functor
from the category of quadratic R-modules under isometries to the category of R-
algebras with involution under isomorphism that is also functorial with respect to R.
See Bischel-Knus [BK94].

Proof of Theorem 22.2.11. The construction in 22.2.1 yields an R-algebra that is pro-
jective as an R-module; we need to define an association on the level of morphisms.
Let Q’: M’ — L’ be a quadratic module and (f, &) be a similarity with f: M = M’
and h : L 5 L’ satisfying Q' (f(x)) = h(Q(x)). We mimic the proof of Lemma
5.3.21. We define a map via

Ten®(M; L) — Ten®(M’; L")
x@y®gr f)®f(y) k) (g
forx,y € M and g € LY and extending multiplicatively, where

(h"')(g):=goh™ : L' >R
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is the pullback under 2~!. Then

x®x®g—-g(0x) = f(x)® f(x)® (h™)*(g) - g(Q(x))

and since
g(0(x) =g(h™M Q' (f(x))) = (") ()(Q'(f(x))).

we conclude that 1°(Q) is mapped to I°(Q’). Repeating with the inverse similarity
(', h7"), and composing to get the identity, we conclude that the induced map
CIf°(Q) — CIf°(Q’) is an R-algebra isomorphism.

Functoriality in the sense of 22.2.12 then follows directly. O

Remark 22.2.14. In his thesis, Bichsel [Bic85] constructed an even Clifford algebra of
a line bundle-valued quadratic form on an affine scheme using faithfully flat descent.
A related and more general construction was given by Bischel-Knus [BK94]. Several
other constructions are available: see Auel [Auel2011, §1.8] and the references therein.

The direct tensorial construction given above is given for ternary quadratic modules
by Voight [V0i201 1a, (1.10)] and in general by Auel [Auel2011, §1.8] and with further
detail in Auel [Auel2015, §1.2]; for a comparison of this direct construction with
others, see Auel-Bernardara—Bolognesi [ABB2014, §1.5, Appendix A].

Remark 22.2.15. Allowing the quadratic forms to take values in a invertible module
is essential for what follows and for many other purposes: for an overview, see the
introduction to Auel [Auel2011].

22.2.16. Let

Ten' (M: L) = (P M o (L) = Mo (MeMoMeL )6 . ...
doda
Then Ten! (M; L) is a graded Ten’(M; L)-bimodule under the natural tensor multi-
plication. Let I'(Q) be the R-submodule of Ten' (M; L) generated by the image of

multiplication of I°(Q) by M on the left and right: then I'(Q) is the Ten®(M; L)-
bisubmodule generated by the set of elements of the form

x@x®@y®g—g(Qx)y and y®x®x®g-g(Q(x))y

withx,y € Mandg € L".
We define the odd Clifford bimodule as

CIf' (Q) := Ten' (M; L)/1'(Q).
Visibly, CIf! (Q) is a bimodule for the even Clifford algebra CIf°(Q).

22.2.17. When L = R, we can combine the construction of the even Clifford algebra
and its odd Clifford bimodule to construct a full Clifford algebra, just as in section
5.3 over a field: see Exercise 22.7. This direct tensorial construction does not extend
in an obvious way when L # R, as we would need to define a multiplication map
MM ->MeM®L.
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22.2.18. We will employ exterior calculus in what follows: this is a convenient method
for keeping track of our module maps in a general setting. Let M be an R-module and
let r > 1. The rth exterior power of M (over R) is

N'M :=M®|E,
where E, is the R-module
E=(x1® --®X:X1,...,X € M and x; = x; for some i # j).

We let A°M = R (and A\'M = M). The image of x; ® ---® x, € M® in \"M is
written x; A - -+ A x,.. If M is projective of rank n over R, then /\” M is projective of
rank (7).

22.3 Even Clifford algebra of a ternary quadratic module

Now suppose that Q: M — L is a ternary quadratic module, which is to say M has
rank 3; in this section, we examine its even Clifford algebra CIf°(Q). Recall that an
R-order is projective if it is projective as an R-module. The main result of this section
is as follows.

Theorem 22.3.1. Let R be a noetherian domain. Then the association Q — CIf°(Q)
gives a functor from the category of

nondegenerate ternary quadratic modules over R,
under similarities

to the category of
projective quaternion orders over R, under isomorphisms.

In the previous section, we defined the even Clifford functor, whose codomain was
the category of projective R-algebras; in this section, we show that the restriction to
nondegenerate ternary quadratic modules lands in projective quaternion orders.

We begin with some explicit descriptions.

22.3.2. By 22.2.9, the even Clifford algebra CIf’(Q) is an R-algebra that is projective
of rank 4 as an R-module. Explicitly, as an R-module we have

ReMeM®LY)
1°(Q)

where 1°(Q) is the R-submodule generated by elements of the form

CIf°(Q) =

(22.3.3)

x@x®g—-g(Q)
forxe Mandg € LV.

We now explicitly give the even Clifford algebra of a ternary quadratic module in
the free case; this could also be taken as the definition when R is a PID and M = R3.
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22.3.4. Let M = R? with standard basis e, e, e3 be equipped with the quadratic form

Q: M — R defined by

0(x,y,2) = Q(xe| +yer + ze3) = ax® + by2 +et + Uyz + vxz + wxy,

with a, b,c,u,v,w € R. Then
N :=disc(Q) = 4abc + uvw — au® — bv? — cw? € R/R*.
By 22.2.9, we have
CIf°(Q)=R® Ri ® Rj ® Rk

where
i:=ejes, Jj:i=ese;, k:i=eje;.

The reversal involution acts by
i=e3er=T(er,€3) —i=u—1i
and similarly j = v — j and k = w — k by (22.2.8).
We then compute directly the multiplication table:

i = ui - be jk =ai
jr=vj—ac ki=bj
k* = wk —ab ij=ck

For example,

i? = (eze3)(e2e3) = ea(ezen)es = ea(u — eres)es = ueses — e3e3 = ui —

and
Jk = (ezer)(e1e2) = aezes = ai.

(22.3.5)

(22.3.6)

(22.3.7)

bc

The remaining multiplication laws can be computed in the same way, or by using the

reversal involution and (22.3.7): we compute
ai=jk=kj=(w—-k)(v—j)=vw—-wj—vk+kj
so kj =-vw+ai+wj+vk. By symmetry, we find:

kj=-vw+ai+wj+vk
ik =—uw+wi+bj+uk

Ji=—-uv+vi+uj+ck
We note also the formulas

ijk = jki=kij =abc.

(22.3.8)

(22.3.9)
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Example 22.3.10. It is clarifying to work out the diagonal case. Let B = (a,b | F)
with a, b € R, and let
O=R{,j)=R+Ri+Rj+RijCB
be the R-order generated by the standard generators, and let k = ij. Then:
i’=a jk =bi = —bi
=0 ki=aj=-aj (22.3.11)
k* = —ab ij=—k=k.
Example 22.3.12. Consider

Q(x,y,2) =xy - 2*

so (a,b,c,u,v,w) = (0,0,-1,0,0,1); then disc(Q) = —cw? = 1. Then the even
Clifford algebra CIf°(Q) = R + Ri + Rj + Rk has multiplication table

=0  jk=0
=0 ki=0 (22.3.13)
k> =k ij=—-k=4k-1.

We find an isomorphism of R-algebras

CIf°(Q) = Ma(R)
(o 1y (o o) oo (22.3.14)
LR o \-1 o) o 1)

22.3.15. Returning to the free quadratic form 22.3.4, the group GL3(R) acts naturally
on M by change of basis, and this induces an action on CIf°(Q) by R-algebra auto-
morphism by functoriality. Explicitly, for p € GL3(R), the action on the basis i, j, k
is by the adjugate adj(p) of p, the 3 X 3 matrix whose entries are the 2 X 2 minors of
p. The verification is requested in Exercise 22.2.

22.3.16. Let F' = Frac R. By base extension, we have a quadratic form Qp:V — F
where V = M ®g F, and by functoriality 22.2.12 with respect to the inclusion R <— F,
we have an inclusion CIf°(Q) — CIf°(QF) realizing CIf°(Q) as an R-order in the
F-algebra CIf°(QF).

Lemma 22.3.17. The reversal involution is a standard involution on Clf°(QF).

Proof. To check that the involution is standard, we could appeal to Exercise 3.19, but
we find it more illustrative to exhibit the involution on a universal element, yielding a
rather beautiful formula. We choose a basis for V and work with the presentation for
Clf°(Qp) as in 22.3.4.
Leta=t+xi+yj+zijwitht,x,y,z € F. Thena = 2¢ + ux + vy + wz — @, and
we find that
- (e+@)a+aa=a’-t(@)a+v(@)=0
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where
T(@) =2t +ux +vy + wz
v(@) = 12 + utx + viy + wiz
5 (22.3.18)
+bex”™ + (uv — ew)xy + (uw — bv)xz
+acy® + (vw — au)yz + abz?
so that the reversal map @ — (@) — a defines a standard involution. O

Lemma 22.3.19. We have
discrd(CIf°(Q)) = disc(Q)R.

Proof. The construction of the even Clifford algebra is functorial with respect to
localization, and the statement itself is local, so we may suppose that M = R3 L=R
are free with the presentation for O = CIf’(Q) as in 22.3.4.

We refer to section 15.4 and Lemma 15.4.7: we compute

m(i, j. k) = wd((i] - ji)k)
= trd(=2abc + au® + cw? — aui + (bv — uw)j — cwk) (22.3.20)

2

= —4abc + au® + cw? — uvw + bv? = —disc(Q)

and discrd(O) = m(i, j, k)R as claimed.
Alternatively, we compute directly that

2 u v w
.. u u?-2bc cw bv
(1,0, j, k) = v cw v2 = 2ac au (22.3.21)
w bv au w? = 2ab
= —(4abc + uvw — au® — bv* — ew?)? = —disc(Q)?

so disc(O) = disc(Q)?R, and the result follows by taking square roots (as ideals). O

Corollary 22.3.22. IfQ is nondegenerate, then CIf°(Q) is an R-order in the quaternion
algebra B = CIf°(QF).

Proof. The standard involution has discriminant disc(nrd) = disc(O)? = disc(QF) #
0; the result then follows from the characterization of algebras with nondegenerate
standard involution (Main Theorem 4.4.1 and Theorem 6.4.1). ]

Remark 22.3.23. Corollary 22.3.22 gives a characteristic independent proof of the
fact that the even Clifford algebra of a nondegenerate ternary quadratic form over F
is a quaternion algebra over F: we proved this in 5.3.23 and Exercise 6.10 (when
char F = 2).

Intermediate between the general abstract definition and the explicit description in
the free case is the situation where the modules are completely decomposable, and we
can work with a pseudobasis.
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Example 22.3.24. Let R be a Dedekind domain. Then we can write

M=aqae; ®be;dces and L=1
for fractional ideals a,b,¢,I. Let V = M ®@g F =~ F? with basis e}, e2, e3, so then
M — V is a ternary R-lattice. Then we may take Qr: V — F to have the form

22.3.5,and CIf°(Qr) = B is a quaternion algebra with O := CIf’(Q) C B an R-order.
Extending the description in 22.3.4, we find that

O=Robd'i®ad!j®abl 'k (22.3.25)

where i, j, k satisfy the multiplication table (22.3.7). We can verify directly that O is
closed under multiplication: for example, if @ € bel™! so @i € O, then

(@i)? = uai — a’*bc € O
since Q(bes) = b2Q(ez) C Iso b = Q(e3) € 1672 and therefore
a’bc € (bl ™) (I672)(Ic?) = R.

Example 22.3.26. Let F = Q(V10) and R = Z = Z[V10] be the ring of integers.
Then p = (3,4 + V10) is a prime ideal over 3 that is not principal.
Let O: M = R? — p be the quadratic module

0(x,y,2) =32 +3y> + (4 + \/E)zz.
We have p = Q(R?). The even Clifford algebra is then
O=Clf’(Q)=Repliep'jeop'k
with the multiplication law

2 =-3(4+V10)  jk=3i
j? = =3(4+V10) ki =3j (22.3.27)
k*=-9 ij = (4+V10)k.
We have
discrd(0) = 4(9)(4 + V10)p~> = (2, V10)°(3,2 + V10)?
and in particular p ¢ discrd(O), and

-3(4+10), -3(4 + V10)
F

OcB=

with disc B = (2+V10)R, so Ram B = {(2, V10), (3,2+V10), 0o, 005} where 0oy, 00,
are the two real places of F.
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22.4 Over a PID

In the previous two sections, we observed that the construction of the even Clifford
algebra gives a functorial association from nondegenerate ternary quadratic modules
to quaternion orders. In this section, we show that this functor gives a bijection on
classes over a PID, following Gross—Lucianovic [GrLu2009, §4].

Main Theorem 22.4.1. Suppose that R is a PID. Then the association Q — CIf°(Q)
induces a discriminant-preserving bijection

{ Nondegenerate ternary quadratic } o {Quaternion orders over R

forms over R up to similarity up to isomorphism } (224.2)

that is functorial with respect to R.

Remark 22.4.3. The bijection can also be rephrased in terms of the orbits of a group
(following Gross—Lucianovic [GrLL.u2009]). The group GL3(R) has a natural twisted
action on quadratic forms by (gQ)(x,y,z) = (detg)(Q(g~'(x,y,2)t)), i.e., the usual
action with an extra scaling factor of detg € R*. This is the natural action on the
R-module Sym?((R*)¥) ® A3R3, or equivalently on the set of quadratic modules
Q: R> — A3R3. Main Theorem 22.1.1 states that the nondegenerate orbits of this
action are in functorial bijection with the set of isomorphism classes of quaternion
orders over R.

We prove this theorem in a few steps. Throughout this section, let R be a PID.

First, we prove that the map (22.4.2) is surjective, or equivalently that the even
Clifford functor is essentially surjective from the category of nondegenerate ternary
quadratic forms to the category of quaternion orders.

Proposition 22.4.4. Every quaternion R-order is isomorphic to the even Clifford
algebra of a nondegenerate ternary quadratic form.

Proof. We work explicitly with the multiplication table, hoping to make it look like
(22.3.7).

Let O be a quaternion R-order. Since R is a PID, O is free as an R-module. We
need a slight upgrade from this, a technical result supplied by Exercise 22.1: in fact,
O has an R-basis containing 1.

So let 1,4, j, k be an R-basis for O. Since every element of O is integral over R,
satisfying its reduced characteristic polynomial of degree 2 over R, we have

2= ui+l
j2=vj+m
K =wk+n

for some [, m,n,u,v,w € R. The product jk =r — ai + qj + ak can be written as an
R-linear combination of 1,i, j, k, with ¢, r,a, @ € R. Letting k' := k — g, we have

Jk'=jk—q)=r—ai+ak=(r+aq)—ai+ak’.
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So changing the basis, we may suppose jk is an R-linear combination of 1,7, k (no j
term). By symmetry, in the product ki we may suppose that the coefficient of k is zero
and in ij the coeflicient of i is zero. Therefore:

jk=r—ai+ak
ki=s—-bj+pi
ij=t—ck+vyj

As before, the other products can be calculated using the standard involution: for
example, we have

ik + ki = —trd(ki) + trd (k)i + trd (i) k
= —trd(k(u —i)) + wi + uk
= (—uw +2s — bv + Bu) + wi + uk

)
ik=(s+Bu—-bv—uw)+(w—-B)i+bj+uk. (22.4.5)

But now from these multiplication laws, we compute that the trace of left multiplication
iis Tr(f) = 0+ u+vy+u = 2u+7y. Butin a quaternion algebra, we have Tr(i) =
2trd(i) = 2u, so we must have y = 0. By symmetry, we find that @ = 8 = 0. Finally,
associativity implies relations on the structure constants in the multiplication table:
we have _ _
J(kk) = (jk)k
—nj=(r—ai)(w—-k)=rw—awi —rk +aik (22.4.6)
-nj = (rw+as—abv—auw)+abj+ (au —r)k

using (22.4.5) with 8 = 0; so equality of coefficients of j, k implies r = au and
n = —ab. By symmetry, we find s = bv,f = cw and m = —ac,n = —ab, so we have
the following multiplication table:

i? = ui - be jk =ai

j2=vj—ac ki=bj
k* = wk —ab ij:cz

This matches precisely the multiplication table (22.3.7) for the even Clifford algebra
of the quadratic form Q (x, y, z) = ax? + by? + ¢z + uyz + vxz + wxy. o

22.4.7. More generally, if R is a domain and O is a quaternion R-order such that O
is free as an R-module with basis 1,7, j, k, then the proof of Proposition 22.4.4 shows
O has a basis 1,4, j, k satisfying the multiplication laws (22.3.7) of an even Clifford
algebra; we call such a basis a good basis for O. Moreover, we have seen that given
abasis 1,1, j, k, there exist unique 77(i),n(j),n(k) € R (in fact, certain coefficients of
the multiplication table) such that

Li-n@@), j-n(j), k-nk)

is a good basis.
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To conclude, we need to show that if two quaternion R-orders are isomorphic, then
they correspond to similar ternary quadratic forms. To this end, we define an inverse.

22.4.8. Let O C B be a quaternion R-order with R-basis 1,7, j, k. Let N € R be such
that (N) = discrd(O); then N # 0 and is well-defined up to multiplication by R*. Let
18, iﬁ,jﬂ, k% be the dual basis (see 15.6.3); then trd(iﬂ) = trd(1 - iﬁ) = 0 and similarly
for jﬁ, kﬂ, SO

(0" = {@ € OF : rd(a) = 0} = Ri* + Rj* + Rk*.
We define a candidate quadratic form
Nord*(0)(x, y, z) = Nnrd(xi* + yj# + zk¥), (22.4.9)

well-defined up to similarity (along the way, we chose a basis and a generator for
discrd(O)).

Example 22.4.10. We return to Example 22.3.10. The R-order O has reduced dis-
criminant N = 4ab. The (rescaled) dual basis is

Ni* =2bi, Nj*=2aj, Nk¥=-2k

and i*, j#, k¥ is a basis for (O#)°; thus
1
N nrd(xi¥ + yjﬁ +2k%) = N(—4ab2x2 —4aby* + 4abz?) = —bx* — ay* + 2.

Example 22.4.11. We return to Example 22.3.12. We have

4 4.4 (0 0 (0 =1\ (-1 0O
l’f’k‘(l o)’(o ol'lo 1
and N =1 so

Nnrd(xiﬂ + yjli + zkﬁ) = det (_xZ _zy) =xy— 7%
Proposition 22.4.12. If Q: R? — R is a nondegenerate ternary quadratic form with
discQ = N, then Nnrdu(leO(Q)) is similar to Q. If O is a quaternion R-order with
discrd(O) = (N), then N nrd*(O): R? = R has CIf’(N nrd*(O)) ~ O.

Proof. Proposition 22.4.4 shows that the even Clifford functor induces a surjective
map from similarity classes of nondegenerate ternary quadratic forms over R to iso-
morphism classes of quaternion R-orders. If we prove the first statement, then the
second follows from set theory (and can be verified in a similar way).

We start with the quadratic form (22.3.5) with O satisfying the multiplication laws
(22.3.7). Let N :=disc(Q). We claim that

Ninzjk—ka(au+vw)—2ai—wj—vk
Nj* = ki—ik = (bv +uw) — wi —2bj — uk (22.4.13)
Nkﬁzij—jiz(cw+uv)—vi—uj—2ck.
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We see that trd(Ni%) = 0 and the same with j#, k#. We recall the alternating trilinear
form m (defined in 15.4.2). By (22.3.20) we have

m(i, j, k) = =N = ted(i(jk — kj)) = —trd(i(jk — kj)) = trd(i(Ni*))

and :
m(j, j, k) =0=tud(G(jk - kj)) = —ted(j (Ni*))

and similarly trd(k (Ni%)) = 0. The other equalities follow similarly, and this verifies
the dual basis (22.4.13). In particular, we have trd(Ni*) = trd(Nj*) = trd(Nk¥) = 0.
We then compute the quadratic form on this basis and claim that

nrd(N(xiﬁ + y]"i + zkﬁ)) = N(ax> + by? + ¢z + uyz + vxz + wxy)

(22.4.14)
= NQ(X’ Y, Z)'

Indeed,
2nrd(Ni*) = ed((Nif) (Ni#)) = — ted((Ni*)?) = —(=2a)N = 2aN
since only the term trd(N i*i) = N is nonzero; and
trd(N#N j#) = —trd(Ni# N j#) = —wN.

The other equalities follow by symmetry. Then the claim (22.4.14) implies that
N nrd(xi* + yj# + zk%) = Q(x, y, 2), as desired. O

Corollary 22.4.15. Let O be a quaternion R-order. Then
O = R +discrd(0) (0%)°(0%)° = R + discrd(0)O*OF.

Proof. If we take the identifications in the proof of Proposition 22.4.12 working within
B 2 O, we see that CIf(N nrdﬂ(O)) is spanned over R by the elements

1,Ni*j# NP NERE

where discrd(O) = (N). In order to see that the other factors belong to this ring, we
compute

(Ni*)? = —aN
(NjH? = -bN (22.4.16)
(Nk%)? = —¢N.

and _
(NjH(Ni*) = -Nk

(NK*)(Nj*) = =Ni (22.4.17)
(Ni*)(NK*) = =N7.
If we want to throw in the factors with 1# as well, then we check:
N1* = 2N —ii* — j ¥ — kk?
=N —2(abc +uvw) + (au + vw)i + (bv +uw)j + (cw + uv)k.
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satisfies
(N192 = N(N1%) + N(abc + uvw) =0 (22.4.18)

and

(N1%)(Ni*) = =N(au + vw — ai — vk) = (Ni*)(N1%) + N(wj — vk)
(NTHY(N*) = =N(bv + wu — wi — bj) = (N (N1#) + N(=wi + uk)
(N1H)(NK¥) = =N (ew +uv — uj — ck) = (NKH)(N1#) + N(vi — uj).

The result follows. O
Finally, we officially combine our work to prove the main theorem of this section.
Proof of Main Theorem 22.4.1. Combine Propositions 22.4.4 and 22.4.12. O

Remark 22.4.19. Just as in section 5.5, we may ask about embeddings of a quadratic
ring in an order. However, moving from the rational to the integral is a bit tricky, and
the issue of embeddings is a theme that will return with gusto in Chapter 30. In that
context, it will be more natural to look at a different ternary quadratic form to measure
embeddings; just as in the case of trace zero, it is related to but not the same as the one
obtained in the above bijection.

22.5 Twisting and final bijection

In this final section, we conclude with the final bijection. We must keep track of the
extra data of an ideal class, and along the way allow coefficient ideals. Throughout,
let R be a Dedekind domain.

We first need the following slightly revised notion of similarity (one that ‘glues
together’ local similarities) allowing scaling by fractional ideals.

Definition 22.5.1. Let O: M — [ be a quadratic module with [ a fractional R-ideal.
The twist of Q by a fractional R-ideal u is the quadratic formu® Q: u® M — u’l
defined by (1 ® Q)(u ® x) = u*>Q(x).

A twisted similarity between quadratic modules Q and Q’ is a similarity between
Q and a twist u ® Q' for some fractional R-ideal u.

Example 22.5.2. If u = uR is a principal fractional ideal, then twisted similarities
between Q and aQ’ = uQ’ are precisely those obtained from a similarity between Q
and Q’, multiplied by u. In particular, if R is a PID, then the notions of similarity and
twisted similarity coincide.

Example 22.5.3. Two quadratic modules Q, Q’: M, M’ — 1 with the same codomain
are twisted similar if and only if they are similar. Indeed, if u?I = I, then u = R.

22.5.4. Second, we extend the definition of the inverse in 22.4.8 using the reduced
norm to the noetherian domain R as follows. Let O C B be a quaternion R-order.
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Since R is a Dedekind domain, the reduced discriminant discrd(O) € R of O is an
invertible R-ideal. Define the map

d*(0): (0" - F
nrd*(0): (0" = (22.5.5)
a — nrd(a).
Lemma 22.5.6. For a quaternion order O, the map nrd*(0) defines a ternary
quadratic module with values in discrd(O)~!.

Proof. The reduced norm defines a quadratic map, so we only need to verify that the
codomain is valid. To this end, we may check locally since reduced norm and reduced
discriminant commute with localization. Reducing to the local case, suppose R is now
a local Dedekind domain hence a PID. Choosing a basis, we verified in (22.4.14) that
N nrd*(O) C R, where discrd(O) = (N); the result follows. O

Main Theorem 22.5.7. Let R be a Dedekind domain. Then the associations

modules over R over R up to
up to twisted similarity isomorphism

0 — CIf°(Q)
nrd*(0) <1 O

{ Nondegenerate ternary quadratic } { Quaternion orders }
Ud

(22.5.8)

are mutually inverse, discriminant-preserving bijections that are also functorial with
respect to R.

Proof. We proved a version of this statement when R is a PID in Theorem 22.4.1.
More generally, we work now with a pseudobasis instead of a basis, explaining the
presence of the twisted similarity.

The surjectivity of the even Clifford map follows by generalizing the argument in
Proposition 22.4.4 and 22.4.7 to show that O has a good pseudobasis: see Exercise
22.5.

Let Q: M — 1be a quadratic module with O := CIf°(Q). Returning to Example
22.3.24, we may write

M = ae; @ ber & ce3

for fractional ideals a, b, ¢, and with QF (x,y,z) := Q(xe; + yes + ze3) in the usual
form provided by (22.3.5). Let N := disc(QF). Then

O=Rabd'i®ad'jeabl k.
Consider now nrdﬂ(O) : (0" — discrd(O)~!: as in 22.4.8 we have
(OH° = 1(60)~"i* @ I(ac) ' j* @ 1(ab) ' kH. (22.5.9)
To prepare our twisted similarity, let

pr=abedl ' = A\PM LY. (22.5.10)
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Then
20N = ai* @ bj* @ ek (22.5.11)

We claim that the reduced norm on d(O*)® has values in N~'T and is similar to Q. The
claim follows from the same calculation in the proof of Proposition 22.4.12, namely
that nrd(xz"i + y]"i +zk%) = N'Qp(x, v,z)! We conclude that nrdﬂ(O) is twisted
similar to Q. O

We conclude with the following application to quadratic forms.

Corollary 22.5.12. Let Q: M — 1be a ternary quadratic module and O := CIf°(Q).
Then the even Clifford map induces a bijection C1Q < Typ O.

Proof. We first claim that the even Clifford map induces an injection Gen Q — Gen O,
giving an injection C1Q — Typ O. Indeed, let 9’ € Gen Q, so Q’: M’ — I’ is locally
isometric to Q. Let O’ := CIf°(Q’). Since Q’, Q are locally isometric, they are locally
similar, so O’, O are locally isomorphic by Main Theorem 22.4.1, so O’ € GenO.
And if Q' ~ Q are isometric, again they are (twisted) similar, so by Main Theorem
22.5.7 we have O” =~ O.

To finish, we need to show that the even Clifford map is surjective. We pass from
similarity classes to isometry classes in the same way as in the proof of Corollary
5.2.6. To this end, let O’ € Gen(O). Let Q' := hnrdﬂ(O’) as in (22.5.11). By the
same rescaling argument given in Corollary 5.2.6, applying a similarity to Q” we may
further suppose that disc Q). = discQr € F*/F*2. By surjectivity in Main Theorem
22.5.7, for every prime p of R, there exists a twisted similarity from sz) to O (p) over
R(p—and since each Ry is a PID, by Example 22.5.2, these are in fact similarities.
Taking such a similarity and considering it as a similarity over F, again repeating the
same argument as at the end of Corollary 5.2.6, we conclude that Q’ and Q are locally
isometric, so @’ € Gen Q. Finally, if O’ ~ O, repeating these arguments one more
time over R (first to go from twisted similar to similar, then to note the similarity gives
rise to an isometry) we conclude that Q" ~ Q. ]

Remark 22.5.13. The correspondence between ternary quadratic forms and quaternion
orders has a particularly rich history. Perhaps the earliest prototype is due to Hermite
[Herm1854], who examined the product of automorphs of ternary quadratic forms.
Early versions of the correspondence were given by Latimer [Lat37, Theorem 3], Pall
[Pall46, Theorems 4-5], and Brandt [Bra43, §3ff] over Z by use of explicit formulas.

Various attempts were made to generalize the correspondence to Dedekind do-
mains, with the thorny issue being how to deal with a nontrivial class group. Eichler
[Eic53, §14, p. 96] gave such an extension. Peters [Pet69, §4] noted that Eichler’s cor-
respondence was not onto due to class group issues, and he gave a rescaled version that
gives a bijection for Gorenstein orders. Eichler’s correspondence was further tweaked
by Nipp [Nip74, §3], who opted for a different scaling factor that is not restricted to a
class of orders, but his correspondence fails to be onto [Nip74, p.536].

These correspondences were developed further by Brzezinski [Brz80, §3], [Brz85,
§3], where he connected the structure of orders to relatively minimal models of the cor-
responding integral conic; see also Remark 24.3.11. He revisited the correspondence



22.5. TWISTING AND FINAL BIJECTION 361

again in the context of Gorenstein orders [Brz82, §3] and Bass orders [Brz83b, §2].
Lemurell [Lem2011, Theorem 4.3] gives a concise account of the correspondence of
Brzezinski over a PID (the guts of which are contained in [Brz82, (3.2)]).

More recently, Gross—Lucianovic [GrLu2009, §4] revisited the correspondence
over a PID or local ring, and they extended it to include quadratic forms of nonzero
discriminant and without restricting to Gorenstein orders; this extension is impor-
tant for automorphic reasons, connected to Fourier coefficients of modular forms
on PGSp(6), as developed by Lucianovic in his thesis [Luc2003]. Balaji [Bal2007,
Theorem 3.1] studied degenerations of ternary quadratic modules in the context of
orthogonal groups and Witt invariants and showed that the even Clifford functor is
bijective over a general scheme. Finally, Voight [Voi2011a, Theorem B] gave a gen-
eral and functorial correspondence without any of the above restrictive hypotheses,
including the functorial inverse to the even Clifford functor provided above.

Remark 22.5.14. In the most general formulation of the correspondence, allowing arbi-
trary ternary quadratic modules discriminant over all sorts of rings, Voight [Voi201 1a,
Theorem A] characterizes the image of the even Clifford functor, as follows. Let B
be an R-algebra that is (faithfully) projective of rank 4 as an R-module. Then B is
a quaternion ring if B ~ CIf°(Q) for a ternary quadratic module Q. Then B is a
quaternion ring if and only if B has a standard involution and for all x € B, the trace
of left (or right) multiplication by x on B is equal to 2 trd(x).

For example, if we take the quadratic form Q: R?® — R defined by Q(x,y,2) =0
identically, the multiplication table on CIf°(Q) gives the commutative ring

CIf°(Q) = R[i, j, k1/ (i, j. k).

One can see this as a kind of deformation of a quaternion algebra (in an algebro-
geometric sense), letting a, b — 0.

Exercises

» 1. Let R be a PID or local noetherian domain. Let A be an R-algebra that is free
of finite rank as an R-module. Show that A has an R-basis including 1. [Hint:
show that the quotient A/R is torsion-free, hence free; since free modules are
projective, the sequence ) - R — A — A/R — 0 splits, giving A ~ R®A/R.]

» 2. For a free quadratic ternary form (as in 22.3.4), show that a change of basis
p € GL3(R) acts on i, j, k € CIf°(Q) by the adjugate matrix adj(p) € GL3(R)
(where the entries of adj(p) are the 2 X 2-cofactors of p and p adj(p) = det(p)).

3. Let R be adomain and let Pic R be the group of isomorphism classes of invertible
R-modules (equivalently, classes of fractional R-ideals in F). Show that up to
twisted similarity, the target of a quadratic module only depends on its class in
Pic R/2Pic R. [See Example 9.7.5.]

4. Finish the direct verification in Example 22.3.24 that O is closed under multi-
plication.

» 5. Let R be a Dedekind domain, and let O be a quaternion R-order. Show that
there exist i, j, k € O and a, b, ¢ C F fractional R-ideals such that O = R+ ai +
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bj + ¢k and such that 1,7, j, k satisfy the multiplication rules (22.3.7) for some
a,b,c,u,v,w € F—called a good pseudobasis for O. [Hint: revisit what goes
into 22.4.7; a simple observation will suffice!|

6. Let Q: R® — R be a ternary quadratic form and let O := CIf°(Q). Show that
discnrd |o = (disc Q)>.

[Hint: see (22.3.18).]

7. Let Q: M — R be a quadratic form over R. Construct a Clifford algebra with a
universal property analogous to Proposition 5.3.1, and recover the even Clifford
algebra and odd Clifford bimodule.

8. Let OQ: M — R be a quadratic form such that there exists x € M such that
O(x) € R*.
(a) Show that the odd Clifford bimodule CIf' (Q) is free of rank 1 as a C1f(Q).
(b) Generalize this result to case where Q: M — L is a quadratic module.

9. LetQ: M — R be a quadratic form over R with M of odd rank as an R-module
and let F = FracR. Let S := Z(CIf Q) <— K := Z(CIf Q) be the center of the
Clifford algebra of Q. Show that S is an R-order in K.

» 10. Show that nrd(O%) = nrd((O*)°). [Hint: use (22.4.18).]

11. Let R be a Dedekind domain with F = Frac R, let B be a quaternion algebra
over I, and let O C B be an R-order. Let S € O be an R-order.

(a) Suppose S € O is integrally closed. Prove that O is projective of rank 2
as a left S-module.

(b) If S is not integrally closed, then show that (a) need not hold by the
following example. Let R=Z and F = Q, let B = (-1,-1 | Q), let

O=Z+Zpi+7Zj+7Zij

for an odd prime p (that is pi, not xr!). Let S = Z[pi] € O. Show that O
is not projective as a left S-module.

(c) Show that the property that O is projective as an S-module is a local
property (over primes of R).

(d) Inlightof (c), suppose that R is a PID, and write O in a good basis (22.3.7).
Suppose that § = R[] with i> = ui — bc. Show that O is projective as an
S-module if and only if the quadratic form bx? + uxy + cy” represents a
unit.

(e) Using (d), conclude in general that if S has conductor coprime to discrd O,
show that O is projective as an S-module.

12. Let R be a global ring with F := Frac R, let B, B’ be quaternion algebras over
F,and let O C B and O’ C B’ be R-orders. Consider the quaternary quadratic
forms Q :=nrd |p: O — R and similarly O’ on O’.

(a) Show that Q is isometric to Q’, then there is an isomorphism of F-algebras
B = B’
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(b) In light of (a), suppose O, 0" € B = B’. Show that O, O’ are isomorphic
as R-orders if and only if Q, Q’ are isometric as (quaternary) quadratic
modules. [Hint: if Q is isometric to Q’, then show that there is a similarity
on the trace zero elements of the duals, thereby giving an isomorphism
0> 0]

13. Let 0: M — L be a quadratic module. Show that the even Clifford algebra
CIf°(Q) with its map ¢ : M @ M ® LY — CIf°(Q) has the following universal
property: if A is an R-algebraand ¢4 : M ® M ® L — A is an R-module
homomorphism such that

(1) ta(x®x® f) = f(Q(x)) forallx € M and f € LY, and
1) ta(x®y® Nia(y®z0g) = fF(O())ia(x®z®g) forallx,y,z € M and
f.geLY,
then there exists a unique R-algebra homomorphism ¢ : leO(Q) — A such that
the diagram
M®M®L' ——- CIf(Q)
I
\ \;‘15

A

commutes. Conclude that the pair (CIf°(Q), ) is unique up to unique isomor-
phism.






Chapter 23

Quaternion orders

In the previous chapter, we gave a rather general classification of quaternion orders in
terms of ternary quadratic modules. In this chapter, we take a guided tour of the most
important animals in the zoo of quaternion orders, identifying those with good local
properties. We continue in the next chapter with a second visit to the zoo.

23.1 »~ Highlights of quaternion orders

We begin in this section by providing some highlights of this tour. Let B be a quaternion
algebra over Q of discriminant D := disc B and let O C B be an order with reduced
discriminant N := discrd(O). Then N = DM with M € Zs1, and O is maximal if and
onlyif N =D.

23.1.1 (Maximal orders). The nicest orders are undoubtedly the maximal orders, those
not properly contained in another order. An order is maximal if and only if it is locally
maximal (Lemma 10.4.3), i.e. p-maximal for all primes p; globally, an order O is
maximal if and only if N = D (i.e., M = 1).

We have either B ~ M>(Q),) or B is a division algebra over Q, (unique up
to isomorphism). If B is split, then a maximal order is isomorphic (conjugate) to
M»(Z,), and the corresponding ternary quadratic form is the determinant xy — 22
(see Example 22.3.12). If instead B is division, then the unique maximal order is the
valuation ring, with corresponding anisotropic form x> — ey? + pz? for p # 2, where
e € Z is a quadratic nonresidue modulo p (and for p = 2, the associated form is
X2 +xy +y2 +27%).

Maximal orders have modules with good structural properties: all lattices I C B
with left or right order equal to a maximal order O are invertible (Theorem 18.1.2).

There is a combinatorial structure, called the Bruhat-Tits tree, that classifies
maximal orders in M>(Q,,) (as endomorphism rings of lattices, up to scaling): the
Bruhat-Tits tree is a p + 1-regular tree (see section 23.5).

Examining orders beyond maximal orders is important for the development of
the theory: already the Lipschitz order—an order which arises when considering if a

365
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positive integer is the sum of four squares—is properly contained inside the Hurwitz
order (Chapter 11).

23.1.2 (Hereditary orders). More generally, we say that O is hereditary if every left
or right fractional O-ideal (i.e., lattice / € B with left or right order containing O) is
invertible. Maximal orders are hereditary, and being hereditary is a local property. A
hereditary Z,-order O,, C B, is either maximal or

(Zp Zp\_|[a b). -
O, ~ (pr Z,,) = {(pc d) ta,b,c,d e Zp} CMy(Qp) =B,

with associated ternary quadratic form xy — pz2. Thus O C B is hereditary if and only
if discrd(O) = DM is squarefree, so in particular gcd(D, M) = 1.

Hereditary orders share the nice structural property of maximal orders: all lattices
I c B with hereditary left or right order are invertible. The different ideal diff O, is
generated by any element u € O, such that u* e PZp.

23.1.3 (Eichler orders). More generally, we can consider orders that are “upper trian-
gular modulo M” with ged(D, M) = 1 (i.e., avoiding primes that ramify in B). The
order . .
(peép Zi) g MQ(ZP)

is called the standard Eichler order of level p¢ in M>(Q,). A Zp-order O, C
M,(Q)) is an Eichler order if O, is isomorphic to a standard Eichler order. The
ternary quadratic form associated to an Eichler order of level p¢ is xy — p€z2.

Globally, we say O c B is a Eichler order of level M if discrd(O) = N = DM
with gcd(D, M) = 1 and O, is an Eichler order of level p¢ for all p¢ || M. In
particular, O, is maximal at all primes p | D. Every hereditary order is Eichler, and
an Eichler order is hereditary if and only if its level M (or reduced discriminant N) is
squarefree. A maximal Z,-order O,, € Mx(Z),) is an Eichler order of level 1 = p°.
Eichler orders play a crucial role in the context of modular forms, as we will see in the
final part of this monograph.

This local description of Eichler orders also admits a global description. The
standard Eichler order O, can be written

_(Zr Zp|_ Zp PLp) _ -1
Op = (pezp Zp) = MQ(ZP) N (pezp Zp = Mz(Zp) Nw Mz(Zp)w

as the intersection of a (unique) pair of maximal orders, with

0 1
w = (pe 0) S NGL2(Qp)(OP) (23.1.4)

a generator of the group Ngr,(q,)(0,)/Q;0% = Z/2Z, and @? = p°. The different
diff O, is the two-sided ideal generated by @.

From the local-global dictionary, it follows that O C B is Eichler if and only if O
is the intersection of two (not necessarily distinct) maximal orders.
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23.2 Maximal orders

Throughout this chapter, we impose the following notation: let R be a Dedekind
domain with field of fractions F = Frac R, let B be a quaternion algebra over F, and
let O C B an R-order.

23.2.1. We make the following convention. When we say “R is local”, we mean that
R is a complete DVR, and in this setting we let p = mR be its maximal ideal, and
k = R/p the residue field. When we want to return to the general context, we will say
“R is Dedekind”.

Recall that an R-order is maximal if it is not properly contained in another order. We
begin in this section by summarizing the properties of maximal orders for convenience.

23.2.2. Being maximal is a local property (Lemma 10.4.3), so the following are
equivalent:

(i) O is a maximal R-order;
(ii) O(y) is a maximal R p)-order for all p C R; and
(iii) O, is a maximal Ry-order for all p C R.

We recall (Theorem 15.5.5) that an order over a global ring R is maximal if and
only if discrd(O) = discg (B). Local maximal R-orders have the following nice local
description.

23.2.3. Suppose R is local and that B ~ M (F) is split. Then by Corollary 10.5.5,
every maximal R-order in My (F) is conjugate to M, (R) by an element of GL;(R),
ie. O =~ M,(R). We have discrd(O) = R. All two-sided ideals of O are powers of
rad(O) = pO, and

O/rad(O) = M (k).

The associated ternary quadratic form is similar to Q(x, y,z) = xy — z2, by Example
22.3.12 and the classification theorem (Main Theorem 22.1.1). Finally,

Npx(0) = Ngr,(r)(M2(R)) = F*O*. (23.2.4)

23.2.5. Suppose R is local but now that B is a division algebra. Then the valuation
ring O C B is the unique maximal R-order by Proposition 13.3.4.

Suppose further that the residue field k is finite (equivalently, that F is a local
field). Then Theorem 13.3.11 applies, and we have

K,
~  C | ——
(@) SGBS]_(F)

where K 2 F is the unique quadratic unramified extension of F' and S its valuation
ring. We computed in 15.2.12 that discrd(O) = p. All two-sided ideals of O are
powers of the unique maximal ideal rad(O) = P = OjO, and ¢ := O/rad(O) is a
quadratic field extension of k. By Exercise 13.8, we have P = [O, O] equal to the
commutator. We also have P = diff O; this can be computed directly, or it follows
from the condition that nrd(diff O) = discrd O = p.
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Write S = R[{] with iZ2=ui—b,and u, b € R. Then 1,i,, k where k = —ij is an
R-basis for O. We have

k> =i(ji)j =i(ij)j = nrd(i)n,
sotrd(k) = 0, and k = —k = ij. This gives multiplication table

i>=ui—b jk =-ni
ji=n ki=bj (23.2.6)
k* = bn ij=k

realizing the basis as a good basis in the sense of 22.4.7; the associated ternary
quadratic form is

nrd*(0)(x, y, z) = —ax? + by> + uyz + 2> = —mx* + Nmg | (z + yi). (23.2.7)

Finally, since the valuation ring is the unique maximal order and conjugation
respects integrality, we have
Npx(0) = B*. (23.2.8)

Finally, lattices over maximal orders are necessarily invertibility, as follows.

23.2.9. All lattices I c B with left or right order equal to a maximal order O are
invertible, by Theorem 18.1.2, proven in Proposition 18.3.2. (We also gave a different
proof of this fact in Proposition 16.6.15(b).)

The classification of two-sided ideals and their classes follows from that of hered-
itary orders: see 23.3.19.

23.3 Hereditary orders

Hereditary orders were investigated in section 21.4 in general; here, we provide a
quick development specific to quaternion algebras. As mentioned before, a good
general reference for (maximal and) hereditary orders is Reiner [Rei2003, Chapters
3-6, 9].

We recall that O is hereditary if every left (or right) ideal / € O is projective
as a left (or right) O-module. Being hereditary is a local property 21.4.4 because
projectivity is.

23.3.1. Suppose R is local. By Main Theorem 21.1.4 and Corollary 21.1.5, the
following are equivalent:

(i) O is hereditary;
(i1) rad O is projective as a left (or right) O-module;
(iii) Oy (rad O) = Og(rad O) = O;
(iv) rad O is invertible as a (sated) two-sided O-ideal; and



23.3. HEREDITARY ORDERS 369

(v) either O is maximal or
R R
O:(p R)QMz(F)ZB.

We now spend some time investigating ‘the’ local hereditary order that is not
maximal. So until further notice, suppose R is local and let

R R
ouw = (5 f) < Mach
To avoid clutter, we will just write O = Oy (p). We have
discrd(O) = [M3(R) : O]g disc(Mz(R)) = p. (23.3.2)

23.3.3. A multiplication table for O is obtained from the one for M, (R) in Example
22.3.12, scaling j by = in (22.3.14), which gives the same multiplication laws as

(22.3.13) except now ij = —mk and c is scaled by n. Therefore, the similarity class of
ternary quadratic forms associated to O is represented by
0(x,y,z) = xy — 1z (23.3.4)
23.3.5. Let J :=rad(O). Then
J= (p R) (233.6)
p oy
by (21.3.6), and we find
kK 0
O/J ~ (O k) >~k Xk (23.3.7)
as k-algebras. Now let
0 1
w = (7r O) . (23.3.8)
Then a direct calculation yields
J=0w = w0 (23.3.9)

in agreement with 23.3.1(ii)—23.3.1(iii), and J is an invertible O-ideal. Since @’ = 7,

we have
J? = 0. (23.3.10)

In particular, J~' = 7717, and the powers of J give a filtration
0O2J2p027°2.... (23.3.11)
23.3.12. We compute that

_ R p»'R
wMg(R)wl:(p pR )

and hence
O=My(R) NwMy(R)w™!

is the intersection of two maximal orders.
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Lemma 23.3.13. The group 1d1(O) = PIdI(O) is generated by J = rad O, with
J? = pO.

Proof. We have Id1(O) = PIdI(O) since R is local: invertible is equivalent to principal
(Main Theorem 16.6.1).

Let 7 C O be an invertible two-sided O-ideal. Then by (23.3.11), we can replace
I by a power of J~! and suppose that O ¢ I C J. Invertible means locally principal,
so I = Oa = a0 and

[O: Ig =nrd(1)? = nrd(@)?R | [O : J]g = °.

Thus [O : I]g = p>, so [I : J]g = R and I = J. (This also follows directly from
Proposition 16.4.3.)

Here is a second computational proof. The image I/J € O/J ~ k X k (23.3.7) is
a two-sided ideal, therefore

I:Rporlzpp.
P P p R

R p\(0 1} (0 R ¢ R »p\.
p »/\0 0/ 10 »p p v
we get a contradiction with the other possibility by multiplying instead on the left. A

third “pure matrix multiplication” proof is also requested in Exercise 23.1.
The second statement was already proven in (23.3.10). O

But

Corollary 23.3.14. We have Ngx(O)/(F*O*) ~ Z/27Z generated by @, and

nrd(Np(O)) = FX2R§, if e is even;
F*, if e is odd.
Proof. By (18.5.4), we have an isomorphism

Np=(0)/(F*O*) = PIdI(O)/PIdI(R);

by Lemma 23.3.13, the latter is generated by J = @O with J? = 7O. The computation
of reduced norms is immediate. O

23.3.15. Lemma 23.3.13 also implies the description
J=10,0] (23.3.16)

as the commutator. Since O/J is commutative, we know [O, O] € J; but [O, O] ¢
J? = pO since O/pO is noncommutative. We also have J = diff O for the same
reason, since nrd(diff O) = discrd O = p. (A matrix proof of these facts are requested
in Exercise 23.8.)
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23.3.17. We now classify the left O-lattices, up to isomorphism. Each such O-lattice
is projective, since O is hereditary.

By the Krull-Schmidt theorem (Theorem 20.6.2), every O-lattice can be written as
the direct sum of indecomposables, so it is enough to classify the indecomposables;

~ F? the simple B =

and we did just this in 21.5.3. Explicitly, we have V = (}1::)

M, (F)-module, and we take the O-lattice M = ( R

R) c V. We have JM = (I;) and

p

J’M = =M, and M, JM give a complete set of indecomposable left O-modules.

As expected, O = JM & M is a decomposition of O into projective indecomposable
left O-modules.

The preceding local results combine to determine global structure. Now let R be
a global ring.

Lemma 23.3.18. O is hereditary if and only if discrd(O) is squarefree.

Proof. We argue locally; and then we use the characterization (iv), the computation
of the reduced discriminant (23.3.2), and the same argument as in Theorem 15.5.5 to
finish. =

23.3.19. Let O be a hereditary (possibly maximal) R-order. By Theorem 21.4.9, we
know that the group IdI(O) is an abelian group generated by the prime (equivalently,
maximal) invertible two-sided ideals. We claim that the map

{Prime two-sided invertible O-ideals} <> {Prime ideals of R}

(23.3.20)
P PNR

is a bijection, generalizing Theorem 18.3.6. If p + It then we have P = pO; and
if p | D then we have a prime two-sided ideal P = O N rad(O,) with P? = pO.
Otherwise, p | 9 but p ¥ D, so Oy is hereditary but not maximal; from the local
description in Lemma 23.3.13, we get a prime ideal P = O N rad(O,) with P? = pO
as in the ramified case. This proves (23.3.20), and that the sequence

0 — IdI(R) — IdI(O) — HZ/ZZ -0 (23.3.21)
pIN
is exact.
Taking the quotient by PIdI(R), we obtain the exact sequence
0 — CIR — Picg(0O) — ]—[ 7./2Z — 0. (23.3.22)
pIR

In particular, if © = (1), then Picg(O) =~ Cl1 R. Finally, the group of two-sided ideals
modulo principal two-sided ideals is related to the Picard group by the exact sequence
(18.5.5):
0 — Npx(O)/(F*O*) — Picg(0O) — 1d1(0)/PId1(O) — 0
aF*0* — [aO] = [Oa]
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(This exact sequence is sensitive to O even within its genus: see Remark 18.5.9.)

23.4 Eichler orders

We now consider a more general class of orders inspired by the hereditary orders.

Definition 23.4.1. An Eichler order O C B is the intersection of two (not necessarily
distinct) maximal orders.

23.4.2. By the local-global dictionary for lattices (and orders), the property of being
an Eichler order is local. Moreover, from 23.3.12, it follows that a hereditary order is
Eichler.

Proposition 23.4.3. Suppose R is local and O C B = My(F). Then the following are
equivalent:

(1) O is Eichler;

. R R
(ii)) O = (pe R)’.
. R . R 0
(iii) O contains an R-subalgebra that is B*-conjugate to 0o RrR) and

(iv) O is the intersection of a uniquely determined pair of maximal orders (not
necessarily distinct).

Proof. We follow Hijikata [Hij74, 2.2(i)]. Apologies in advance for all of the explicit
matrix multiplication!

We prove (i) = (ii) & (iii) and then (ii)) = (iv) = (i). The implications (ii) =
(>iii) and (iv) = (i) are immediate.

So first (i) = (ii). Suppose O = O1NO;. All maximal orders in B are B*-conjugate
to My(R), so there exist aj,ay € B* such that O; = ai‘l My (R)a; for i = 1,2.
Conjugating by a1, we may suppose ) = 1 and we write @ = a; ! for convenience, so
O ~ M,(R) N aM;(R)a™". Scaling by 7, we may suppose @ € My(R) \ 7 M, (R).
By row and column operations (Smith normal form, proven as part of the structure
theorem for finitely generated modules over a PID), there exist 8,y € GL,(R) such

that
1 0
Bay = (0 ﬂe)

is in standard invariant form with e > 0. Then
O =~ BOB™' = M,(R) N Ba My (R)a~ ! g7} (23.4.4)

since B € GL,(R), and

ﬁaMz(R)a—‘ﬁ—1=((1) f) (2 2) ((1) ﬂ?e)z(fe pl;) (23.4.5)

(R R\ (R v\ _(R R
o= (8 Sa(® %)-(2 8 240

SO
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To show (iii) = (ii), we may suppose O 2 = Req1 + Rey with e =

R 0
0 R

1 0 0 0 F 0 ..
(O 0) ,€) = (O 1). Then Oeq; C (F 0). Let 7;; be the projection onto the

ij-coordinate. Then

R O
m11(Oe1y) = trd(Oeyy)er; € R = ( )

0 0

and so equality holds. Therefore

02 721(0) = (poa 8)

for some a € Z. Arguing again with the other matrix unit e;; we conclude that

b
0= ( ;ﬁ ‘;) (23.4.7)

with a, b € Z. Multiplying
R pb R pb B R+ pu+b pb
pa R pa R~ pa R+ pa+b
we conclude that e = a + b > 0. Such an order is maximal if and only if @ + b = 0: if

b —a
a > 0, then (;i d ) - (R P )and similarly if @ < 0. The element a = (721 l)

R P4 R 0
has .
- 0 Iy(R p°\(0 =@ R R
10, — -
a Oa = (,Ta 0) (p" R) (1 0 ) = (pe R) (23.4.8)
(and normalizes the given subalgebra) so the result is proven.
To conclude, we show (i) = (iv). Let O’ 2 O = (;i 2) be a maximal R-

order. Since (Ig 2) € O’, the argument of the previous paragraph applies, and

—C
O = (fe pR ) with ¢ € Z satisfying 0 < ¢ < e. The intersection of another such

a

P ) where a = max(c, d)

. . . R
maximal orders with the parameter d is the order (pb R

and b = —min(c, d) so is equal to (fe 2) if and only if ¢ = @ = max(c,d) and
0 = b = min(c, d), which uniquely determine c, d up to swapping. O

Remark 23.4.9. There is a further important equivalent characterization of Eichler
orders as being maximal or residually split: see Lemma 24.3.6.

Corollary 23.4.10. Every superorder of an Eichler order is Eichler.
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Proof. The corollary is local, so we may apply Proposition 23.4.3(iii) to every super-
order. O

Definition 23.4.11. Suppose R is local. The standard Eichler order of level p¢ in
M, (F) is the order
R R
ey .__
OO(p ) = (pe R) .
By Proposition 23.4.3, if R is local then an order O C M;(F) is Eichler if and only
if O is conjugate to a standard Eichler order.

Suppose until further notice that R is local, and let O = Oy (p¢) be the standard
Eichler order of level p¢ with e > 0.

23.4.12. First two basic facts about the Eichler order O of level p¢: We have
discrd(O) = [Mz(R) : O]g = p°
and its associated ternary quadratic form Q(x, y,z) = xy — n°z* as in 23.3.3.

23.4.13. Let

Then
O=My(R)Nw 'My(R)w

as in (23.4.6); by Proposition 23.4.3 these two orders are the uniquely determined pair
of maximal orders containing O. We have @w? = 7¢, and so @ € Ngx(O). It follows
(and can be checked directly) that I = Ow = @O is a two-sided O-ideal. If e = 0, we
have I = O.

Proposition 23.4.14. Suppose that e > 1. Then we have Ngx(O)/(F*O*) = (w) =~
Z[27Z. Moreover, the group 1d1(O) = PId1(O) is abelian, generated by I and pO with
the single relation I* = p¢O.

Proof. Let @ € Npx(O). Then by uniqueness of the intersection in 23.4.13, conjuga-
tion by @ permutes these two orders, so we have a homomorphism Ngx(O) to a cyclic
group of order 2. This homomorphism is surjective, since @ transposes the orders. If
«a is in the kernel, then @ € Ngx(M3(R)) = F* GL,(R) and unconjugating the second
factor we similarly get waw~! € F* GL,(R), so

@ € FX(GLy(R) N @™ GLy(R)w) = F*O*.

Again since R is local, we have IdI(O) = PIdI(O), and by (18.5.4), we have an
isomorphism
Npx(0)/(F*O*) = PIdI(O) /PIdI(R)

so IdI(O) is generated by I and the generator p for PIdI(R). O
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23.4.15. It is helpful to consider the Jacobson radical of an Eichler order, to compare
to the hereditary case.

P R
J= .
(pe p)
We claim that J = rad O. We verify directly that J C O is a two-sided ideal and
(¥ p
Jo= petl pf] S pO, (23.4.16)

where f = min(e,2), so by Corollary 20.5.5, J C rad O; on the other hand, the
quotient
O/J =kxk (23.4.17)

is semisimple, so rad O C J by Corollary 20.4.11(a).
However, the radical is not an invertible (sated) two-sided O-ideal unless O is
hereditary (e = 1), by 23.3.1. Indeed, we verify that

R p’!

O.(J) = (pe_1 R ) = Oxr(J) (23.4.18)

(Exercise 23.6); this recovers O if and only if ¢ = 1, and if e > 2 then it is an Eichler

order of level p°~2 (conjugating as in (23.4.8)). By (23.4.16), if e > 2 then J? = pJ,
and so we certainly could not have J invertible!

We now repackage these local efforts into a global characterization.

23.4.19. Suppose that R is a global ring. Let discg B = D and let O be an Eichler
order with discrdO = N. If p | D, then By has a unique maximal order, so (as an
‘intersection’) Oy is necessarily the maximal order. If p D, and ordy R = e > 0,
then O,, is isomorphic to the standard Eichler order of level p°.

We have 9t = DI with W C R and we just showed that M is coprime to D. We
call 9t the level of the Eichler order O. The pair D, M (or D, N) determines a unique
genus of Eichler R-orders, i.e., this data uniquely determines the isomorphism class
of Oy, for each p.

Putting together Proposition 23.4.14 together with 23.3.19 for the remaining primes
where the order is maximal, we have an exact sequence

0 — IdI(R) — IdI(O) — HZ/ZZ -0 (23.4.20)
pIN

and we may take the quotient by PIdl R to get

0 — CIR — Picg(0) — HZ/ZZ -0 (23.4.21)
pIN

Remark 23.4.22. Eichler [Eic56a] developed his orders in detail for prime level, and
employed them in the study of modular correspondences [Eic56c] and the trace formula
[Eic73] in the case of squarefree level. (As mentioned in Remark 24.1.5, Eichler’s
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earlier work [Eic36, §6] over Q included some more general investigations, but his later
work seemed mostly confined to the hereditary orders.) Hijikata [Hij74, §2.2] later
studied these orders in the attempt to generalize Eichler’s result beyond the squarefree
case; calling the orders split (like our name, residually split). Pizer [Piz73, p. 77] may
be the first who explicitly called them Eichler orders.

Remark 23.4.23. An R-order O C M, (F) that contains a GL,,(F)-conjugate of the
diagonal matrices diag(R, . . ., R) (equivalently, containing n orthogonal idempotents)
is said to be tiled. By 23.4.3, an order O C M;(F) is tiled if and only if it is
Eichler. Tiled orders also go by other names (including graduated orders) and they
arise naturally in many contexts, including representation theory [P183] and modular
forms.

23.5 Bruhat-Tits tree

In the previous section, we examined Eichler orders as the intersection of two maximal
orders. There is a beautiful and useful combinatorial construction—a tree—which
keeps track of the containments among maximal orders in aggregate, as follows. For
further reading, see Serre [Ser2003, §II.1].

Let F be anonarchimedean local field with valuation ring R, maximal ideal p = 7R,
and residue field k := R/p, and let g := #k. Let B := My(F), and let V := F? as
column vectors, so that B := Endg (V) acts on the left.

Recalling again section 10.5, every maximal order O C B has O = Endgr(M)
where M C V is an R-lattice. So to understand maximal orders, it is equivalent to
understand lattices (and their containments) and the positioning of one lattice inside
another.

Lemma 23.5.1. Let L, M C V be R-lattices. Then there exists an R-basis x1,x» of L
such that n¥ix;, n”x, is an R-basis of M with fi, f» € Zand fi < f>.

Proof. Exercise 23.7. O

Lemma 23.5.2. We have Endg (L) = Endg (M) if and only if there exists a € F* such
that M = alL.

Proof. If M = aL for a € F*, then Endgr(L) = Endgr(M). Conversely, suppose
that Endg (L) = Endg(M). Replacing M by aM with a € F*, we may suppose
without loss of generality that L C M. By Lemma 23.5.1, we may identify L = R?
with the standard basis and M = nfie; ® 7e, with f1, fo € Zxp; rescaling again,
and interchanging the basis elements if necessary, we may suppose f; = 0. Then
Endg (M) = Endg(L) ~ M, (R) implies f, =0and L = M. O

With this lemma in mind, we make the following definition (recalling this definition
made earlier in the context of algebras).

Definition 23.5.3. Two R-lattices L, L’ c V are homothetic if there exists a € F*
such that L’ = aL.



23.5. BRUHAT-TITS TREE 377

The relation of homothety is an equivalence relation on the set of R-lattices in V,
and we write [L] for the homothety class of L.

23.5.4. Let L C V be an R-lattice. In a homothety class of lattices, there is a unique
lattice L’ C L in this homothety class satisfying any of the following equivalent
conditions:

(i) L’ C L is maximal,
(i) L’ ¢ nL; and
(iii) L/L’is cyclic as an R-module (has one generator).

These equivalences follow from Lemma 23.5.1: they are equivalent to f; = 0, and
correspond to a maximal scaling of L” by a power of & within L. For such an L', we
have L/L’ ~ R/n/ R for a unique f > 0.

Definition 23.5.5. Let 7 be the graph whose vertices are homothety classes of R-
lattices in V and where an undirected edge joins two vertices (exactly) when there exist
representative lattices L, L’ for these vertices such that

L c L ¢L. (23.5.6)

Equivalently, by Lemma 23.5.2, the vertices of 7 are in bijection with maximal
orders in B = M,(F) by [L] +— Endg(L) for every choice of L € [L].

23.5.7. The adjacency relation (23.5.6) implies L’ € 7L € L’, soitis sensible to have
undirected edges.
A class [L’] has an edge to L if and only if the representative L’ in 23.5.4 has

f=1

Proposition 23.5.8. The graph T is a connected tree such that each vertex has degree
qg+1

Proof. We have L/nL =~ k?, and so the lattices L’ satisfying (23.5.6) are in bijection
with k-subspaces of dimension 1 in L/7L; such a subspace is given by a choice of
generator up to scaling, so there are exactly (¢> — 1)/(g — 1) = g + 1 such, and each
vertex has g + 1 adjacent vertices. The graph is connected: given two vertices, we may
choose representative lattices L, L’ such that L’ C L as in 23.5.4. The quotient L/L’
is cyclic, so by induction the lattices L; = n'L + L’ fori = 0, ..., f have L; adjacent
to Liy1,and Lo = L and Ly = L’, giving a path from [L] to [L'].

The following argument comes from Dasgupta—Teitelbaum [DT2008, Proposition
1.3.2]. Suppose there is a nontrivial cycle in 7~

nL=L;CLi1 C---CL CLy=L (23.5.9)

so that v > 1. We may suppose this cycle is minimal, meaning that no intermediate
lattices are equivalent. The quotient L/Ls = L/n"L ~ (R/p")? is not cyclic; let i be
the largest index such that L/L; is cyclicbut L/ L,y isnot. Thus L/L;;; =~ R/p'®R/p,
and so 7' annihilates L/L;,; and n'L C L;,;. Since L/L; is cyclic, just as in the
previous paragraph, we conclude L; | = n'~'L + L;. Putting these together, we find
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that 7L, = n'L + nL; C L;,;, the latter by definition of the adjacency between L;
and L;;. By adjacency, L; € mL;—; € L;;+1. And again by adjacency, L, is maximal
inside L;, so mL;—1 = L;4+1. This contradicts the minimality of the cycle; we conclude
that 7~ has no cycles. O

We call 7 the Bruhat-Tits tree for GL,(F). The Bruhat-Tits tree for F = Q; is
sketched in Figure 23.5.10. We write Ver(7") and Edg(7") for the set of vertices and
edges of 7.

Figure 23.5.10: Bruhat-Tits tree for GL,(Q;y)

23.5.11. We define a transitive action of GL,(F) on 7 as follows.

Let L C V be a lattice. Choose a R-basis for L and put the vectors in the columns
of a matrix B € M;(F). Since these columns span V over F, we have 8 € GL,(F),
and the matrix g is well-defined up to a change of basis over R; therefore the coset
BGL,(R) € GLy(F)/GLy(R) is well-defined. (Check that the action of change of
basis on columns is given by matrix multiplication the right.) Therefore a homothety
class [L] gives a well-defined element of GL,(F)/(F* GL,(R)). Conversely, given
such a class we can consider the R-lattice spanned by its columns, and its homothety
class is well-defined. We have shown there is a bijection

Ver(7) < GLy(F)/(F* GLy(R)). (23.5.12)

The group GL,(F) acts transitively on the left on the cosets GLy(F)/(F* GL,(R))
and we transport via the bijection (23.5.12) to an action on Ver(7").

We claim this action preserves the adjacency relation on 7: if L 2 L’ are adjacent,
then by invariant factors we can choose a basis xy, x, for L such that x|, 7x; is a basis
for L', i.e.,

B =B ((1) 0) : (23.5.13)
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If @ € GL,(F), then multiplying (23.5.13) on the left by @ shows that aL, oL’ are
adjacent.

23.5.14. The tree 7 has a natural notion of distance d between two vertices, given
by the length of the shortest path between them, giving each edge of 7~ length 1.
Consequently, we have a notion of distance d(O, O’) between every two maximal
orders O, O’ C B.

Lemma 23.5.15. Ler L, L' be lattices with bases x1, xy and nf x1, 7€ x5, respectively.

Then in the basis x1,x2, we have O = Endg(L) ~ M(R) and O’ = Endg(L’) =~
R p° " —

(pe R ), and d(0O,0’) =e.

Proof. The statement on endomorphism rings comes from Example 10.5.2; we may

suppose up to homothety that L has basis x1, 7°x,; the maximal lattices as in 23.5.4 are
given by L; = Rx| + p'Rx, withi = 0, ..., e, so the distance is d([L], [L’]) =e. O

23.5.16. Importantly, now, we turn to Eichler orders: they are the intersection of two
unique maximal orders, and so correspond to a pair of vertices in 7, or equivalently a
path. By Lemma 23.5.15, the standard Eichler order of level p¢ corresponds to a path
of length e, and by transitivity the same is true of every Eichler order. The normalizer
@ of an Eichler order 23.4.13 acts by swapping the two vertices. Each vertex of the
path corresponds to the e + 1 possible maximal superorders.

In this way, the Bruhat-Tits tree provides a visual way to keep track of many
calculations with Eichler orders.

Remark 23.5.17. The theory of Bruhat-Tits trees beautifully generalizes to become
the theory of buildings, pioneered by Tits; see the survey by Tits [Tit79], as well as
introductions by Abramenko—Brown [AB2008].

Exercises

Unless otherwise specified, let R be a Dedekind domain with F = Frac R and let
O C B be an R-order in a quaternion algebra B.

1. Let R be a DVR with maximal ideal p = (r), 