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Abstract. We provide algorithms to count and enumerate representatives of

the (right) ideal classes of an Eichler order in a quaternion algebra defined
over a number field. We analyze the run time of these algorithms and consider

several related problems, including the computation of two-sided ideal classes,

isomorphism classes of orders, connecting ideals for orders, and ideal princi-
palization. We conclude by giving the complete list of definite Eichler orders

with class number at most 2.

Since the very first calculations of Gauss for imaginary quadratic fields, the prob-
lem of computing the class group of a number field F has seen broad interest. Due
to the evident close association between the class number and regulator (embodied
in the Dirichlet class number formula), one often computes the class group and unit
group in tandem as follows.

Problem (ClassUnitGroup(ZF )). Given the ring of integers ZF of a number field
F , compute the class group ClZF and unit group Z∗F .

This problem appears in general to be quite difficult. The best known (proba-
bilistic) algorithm is due to Buchmann [7]: for a field F of degree n and absolute

discriminant dF , it runs in time d
1/2
F (log dF )O(n) without any hypothesis [32], and

assuming the Generalized Riemann Hypothesis (GRH), it runs in expected time
exp
(
O
(
(log dF )1/2(log log dF )1/2

))
, where the implied O-constant depends on n.

According to the Brauer-Siegel theorem, already the case of imaginary quadratic

fields shows that the class group is often roughly as large as d
1/2
F (log dF )O(1). Sim-

ilarly, for the case of real quadratic fields, a fundamental unit is conjectured to

have height often as large as d
1/2
F (log dF )O(1), so even to write down the output in

a näıve way requires exponential time (but see Remark 1.2). The problem of sim-
ply computing the class number h(F ) = # ClZF , or for that matter determining
whether or not a given ideal of ZF is principal, appears in general to be no easier
than solving Problem (ClassUnitGroup).

In this article, we consider a noncommutative generalization of the above prob-
lem. We refer to §1 for precise definitions and specification of the input and output.

Problem (ClassNumber(O)). Given an Eichler order O in a quaternion algebra
over a number field F , compute the class number h(O).

Problem (ClassSet(O)). Given an Eichler order O in a quaternion algebra over
a number field F , compute a set of representatives for the set of invertible right
O-ideal classes ClO.

The main results of this article are embodied in the following two theorems,
which provide algorithms to solve these two problems depending on whether the
order is definite or indefinite.
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Theorem A.

(a) If O is indefinite, Problem (ClassNumber(O)) is deterministic polynomial-
time reducible to Problem (ClassUnitGroup(ZF )).

(b) If O is definite, then Problem (ClassNumber(O)) is reducible in probabilistic
time

O
(
d
3/2
F log4 dF + log2 N d

)
to the factorization of the discriminant d of O and O(2n) instances of Prob-

lem (ClassUnitGroup) with fields having discriminant of size O(d
5/2
F ).

Here and throughout the paper, unless otherwise noted the implied O-constants
are absolute.

Corollary. There exists a probabilistic polynomial-time algorithm to solve
Problem (ClassNumber) over a fixed field F for indefinite orders and definite orders
with factored discriminant.

Theorem B. There exists an algorithm to solve Problem (ClassSet) for orders
over a fixed field F . This algorithm runs in probabilistic polynomial time in the size
of the output for indefinite orders and for definite orders with factored discriminant.

It is important to note in Theorem B that we do not claim to be able to solve
Problem (ClassSet) in probabilistic polynomial time in the size of the input, since
the output is of exponential size and so even to write ideal representatives (in the
usual way) requires exponential time.

The algorithmic results embodied in Theorems A and B have many applications.
Quaternion algebras are the noncommutative analogues of quadratic field extensions
and so present an interesting and rewarding class to analyze. For example, the
norm form on a quaternion order gives rise to quadratic modules of rank 3 and
4 over ZF and computing ideal classes amounts to finding all isometry classes of
forms in the same genus (see e.g. Alsina-Bayer [1, Chapter 3] for the case F =
Q). Ideal classes in quaternion orders are also intimately related to automorphic
forms. In the simplest case where F = Q, the ideal classes of a maximal order in a
quaternion algebra of discriminant p are in bijection with the set of supersingular
elliptic curves in characteristic p. This correspondence has been exploited by Pizer
[39], Kohel [29], and others to explicitly compute spaces of modular forms over Q.
By extension, one can compute with Hilbert modular forms over a totally real field
F of even degree using these methods via the Jacquet-Langlands correspondence
[14], and the algorithms described below have already been used for this purpose
[15]. Finally, this work allows explicit computations with Shimura curves, including
the computation of CM points [47].

The outline of this article is as follows. In Section 1, we review background
material from the theory of Eichler orders of quaternion algebras and their ideals. In
Section 2, we introduce the algorithmic problems we will consider and discuss some
of their interrelationships. In Section 3, we treat the problem of computing the set
of two-sided ideal classes and connecting ideals for Eichler orders. In Section 4, we
enumerate ideal classes in indefinite orders; we deduce Theorem A and its corollary
in this case from Eichler’s theorem of norms. In Section 5, we introduce the Eichler
mass formula which gives rise to an algorithm to count ideal classes in a definite
quaternion order, completing the proof of Theorem A. In Section 6, we discuss ideal
principalization in definite orders, rigorously analyzing the lattice search employed
to find a generator, if it exists. In Section 7, we show how to enumerate ideal
classes in definite orders, and use the Ramanujan property of the p-neighbors graph
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to prove Theorem B. Finally, in Section 8, we use our implementation of these
algorithms in Magma [4] to compute the complete list of definite quaternion orders
(over an arbitrary totally real field F ) with class number at most 2 (Tables 8.2–
8.3): counted up to a natural notion of equivalence, there are exactly 74 equivalence
classes of definite Eichler orders with class number 1 and 172 with class number 2.

We conclude this introduction by indicating two other results of significance
found in the paper. In Section 5, we give a rigorous complexity analysis for com-
puting the value ζF (−1) of the Dedekind zeta function of a totally real field F . We
then prove a complexity result (Proposition 5.8) which serves as a partial converse
to Theorem B: the problem of factoring integers a with O(log log a) prime factors
is probabilistic polynomial time reducible to Problem (ClassNumber) over Q. In
particular, if one can compute the class number of a definite rational quaternion
order efficiently, then one can factor RSA moduli a = pq efficiently.

The authors would like to thank the Magma group at the University of Sydney
for their support, especially the assistance and advice of Steve Donnelly, as well as
the reviewers for their very helpful comments and suggestions. The authors would
also like to thank Daniel Smertnig whose questions led to the discovery of an error
in the proof of Theorem B (corrected here). The second author would like to thank
Reinier Bröker, Johannes Buchmann, Pete Clark, Henri Cohen, Tim Dokchitser,
Claus Fieker, Eyal Goren, David Kohel, and Damien Stehlé for their valuable input.

1. Quaternion algebras, orders, and ideals

In this section, we introduce quaternion algebras and orders, and describe some
of their basic properties; for further reading, see Reiner [41], Vignéras [44], and
Brezeziński [5]. Throughout, let F be a number field of degree [F : Q] = n and
absolute discriminant dF , and let ZF be its ring of integers.

Number rings. We follow the usual algorithmic conventions for number fields
and finitely generated abelian groups (see Cohen [11], Lenstra [32]). In particular,
following Lenstra [32, 2.5], to compute a finitely generated abelian group G means

to specify a finite sequence di ∈ Z≥0 and an isomorphism
⊕

i Z/diZ
∼−→ G, in

turn specified by the images of the standard generators. Moreover, we represent
a finitely generated torsion-free ZF -module I by a pseudobasis over ZF , writing
I =

⊕
i aiγi with ai fractional ideals of ZF and γi ∈ I. See Cohen [12, Chapter 1]

for methods of computing with finitely generated modules over Dedekind domains
using pseudobases.

As in the introduction, we have the following basic problem.

Problem 1.1 (ClassUnitGroup(ZF )). Given ZF , compute the class group ClZF and
unit group Z∗F .

Remark 1.2. The representation of the output of Problem (ClassUnitGroup) is
not unique, and therefore different algorithms may produce correct output but
conceivably of arbitrarily large size. Indeed, we do not require that the outputted
generators of the unit group Z∗F to be represented in the usual way as a Z-linear
combination of an integral basis for ZF , since in general these elements can be
of exponential size (as in the case of real quadratic fields). Instead, we allow the
units to be represented as a straight-line program involving elements of ZF written
in the usual way, for example as a (finite) product

∏
uc(u) of elements u ∈ F ∗
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with c(u) ∈ Z. In this way, one may be able to write down a set of generators of
subexponential size.

Proposition 1.3. There exists an algorithm to solve Problem (ClassUnitGroup)

which runs in time d
1/2
F (log dF )O(n); assuming the generalized Riemann hypothesis

(GRH) and a “smoothness condition”, this algorithm runs in time

exp
(
O((log dF )1/2(log log dF )1/2)

)
,

where the implied constant depends on n.

The algorithm underlying Proposition 1.3 is due to Buchmann [7] (see therein
for the “smoothness condition”, which is known to hold for quadratic fields). See
Lenstra [32, Theorem 5.5], Cohen-Diaz y Diaz-Olivier [13], and Cohen [11, Algo-
rithm 6.5.9] for further detail, and also Schoof [42] for a detailed analysis from the
perspective of Arakelov geometry.

Remark 1.4. A deterministic variant of the algorithm in Proposition 1.3 runs in

time d
3/4
F (log dF )O(n), due to the need to factor polynomials over finite fields. We

allow probabilistic algorithms in what follows.

Further, there exists an algorithm which, given the internal calculations involved
in the class group computation of Proposition 1.3, determines whether or not an
ideal a ⊂ ZF is principal and, if so, outputs a generator (see Cohen [11, Algorithm
6.5.10]). No estimates on the running time of this algorithm have been proven, but
it is reasonable to expect that they are no worse than the time for the class group
computation itself. (See also Remark 6.2 below for an alternative approach, which
gives a principalization algorithm which runs in deterministic polynomial time over
a fixed totally real field F .)

Quaternion algebras. A quaternion algebra B over F is a central simple algebra
of dimension 4 over F , or equivalently an F -algebra with generators α, β ∈ B such
that

(1.1) α2 = a, β2 = b, αβ = −βα

with a, b ∈ F ∗. Such an algebra is denoted B =

(
a, b

F

)
and is specified in bits by

the elements a, b ∈ F ∗, and an element γ = x+ yα+ zβ +wαβ ∈ B is specified by
the elements x, y, z, w ∈ F .

Let B be a quaternion algebra over F . Then B has a unique (anti-)involution
: B → B called conjugation such that γ + γ, γγ ∈ F for all γ ∈ B. We define

the reduced trace and reduced norm of γ to be trd(γ) = γ + γ and nrd(γ) = γγ,

respectively. For B =

(
a, b

F

)
as in (1.1) we have

(1.2) γ = x− (yα+ zβ +wαβ), trd(γ) = 2x, nrd(γ) = x2 − ay2 − bz2 + abw2.

Let K be a field containing F . Then BK = B⊗F K is a quaternion algebra over
K, and we say K splits B if BK ∼= M2(K). If [K : F ] = 2, then K splits B if and
only if there exists an F -embedding K ↪→ B.

Now let v be a place of F , and let Fv denote the completion of F at v. We say
B is split at v if Fv splits B, and otherwise we say that B is ramified at v. The
set of ramified places of B is of even (finite) cardinality and uniquely characterizes
B up to F -algebra isomorphism. We define the discriminant D = disc(B) of B to
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be the ideal of ZF given by the product of all finite ramified places of B. One can
compute the discriminant of B in probabilistic polynomial time given an algorithm
for integer factorization [51].

We say that B is totally definite if F is totally real and every real infinite place
of F is ramified in B; otherwise, we say that B is indefinite or that B satisfies the
Eichler condition.

Quaternion orders. A ZF -lattice I ⊂ B is a finitely generated ZF -submodule of
B with IF = B. An order O ⊂ B is a ZF -lattice which is also a subring of B (hence
1 ∈ O), and an order is maximal if it is not properly contained in another order.
We represent a ZF -lattice by a pseudobasis, as above. The problem of computing a
maximal order O is probabilistic polynomial-time equivalent to integer factorization
[46].

We will use the general principle throughout that ZF -lattices are determined by
their localizations. For every prime ideal p of ZF , let ZF,p denote the completion
of ZF at p. For a ZF -lattice I, we abbreviate Ip = I ⊗ZF

ZF,p. Then for two
ZF -lattices I, J ⊂ B, we have I = J if and only if Ip = Jp for all primes p.

For γ1, . . . , γ4 ∈ B, we let disc(γ1, . . . , γ4) = det(trd(γiγj))i,j=1,...,4. For an order
O ⊂ B, the ideal of ZF generated by the set

{disc(γ1, . . . , γ4) : γi ∈ O}

is a square, and we define the (reduced) discriminant d = disc(O) of O to be the
square root of this ideal. If O =

⊕
i aiγi then we compute the discriminant as

d2 = (a1 · · · a4)
2

disc(γ1, . . . , γ4).

An order O is maximal if and only if d = D.
An Eichler order is the intersection of two maximal orders, and it is this class

of orders which we will study throughout. The level of an Eichler order O is the
ideal N ⊂ ZF satisfying d = DN; the level N is coprime to the discriminant D of
B. Alternatively, given a maximal order O ⊂ B, an ideal N coprime to D and an
embedding ιN : O ↪→ M2(ZF,N) where ZF,N denotes the completion of ZF at N,
an Eichler order of level N is given by

(1.3) O0(N) = {γ ∈ O : ιN(γ) is upper triangular modulo N} ,

and all Eichler orders arise in this way up to conjugation. In particular [41, Theorem
39.14], an order O is hereditary (all one-sided ideals of O are projective) if and only
if O is an Eichler order with squarefree level.

We can compute an explicit pseudobasis for an Eichler order O0(N) from the
description (1.3) as follows. First, we compute a maximal order O ⊂ B as above.
Next, for each prime power pe ‖ N, we compute an embedding ιp : O ↪→M2(ZF,p);
this can be accomplished in probabilistic polynomial time [51]. From ιp, one easily
computes O0(pe) using linear algebra. Then O0(N) =

⋂
pe‖N O0(pe), and this

intersection can be computed as ZF -lattices.
Two orders O,O′ are conjugate (also isomorphic or of the same type) if there

exists ν ∈ B∗ such that O′ = ν−1Oν, and we write O ∼= O′.

Proposition 1.5 ([44, Corollaire III.5.5]). The number of isomorphism classes of
Eichler orders O ⊂ B of level N is finite.
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Quaternion ideals. We define the reduced norm nrd(I) of a ZF -lattice I to be
the fractional ideal of ZF generated by the set {nrd(γ) : γ ∈ I}.

Let I, J be ZF -lattices in B. We define the product IJ to be the ZF -submodule
of B generated by the set {αβ : α ∈ I, β ∈ J}; we have nrd(IJ) ⊃ nrd(I) nrd(J).
We define the left colon

(I : J)L = {γ ∈ B : γJ ⊂ I}

and similarly the right colon

(I : J)R = {γ ∈ B : Jγ ⊂ I}.

The colons (I : J)L, (I : J)R and the product IJ are ZF -lattices. If I = J , then
(I : I)L = OL(I) (resp. (I : I)R = OR(I)) also has the structure of a ring, called the
left (resp. right) order of the ZF -lattice I. One can compute the left and right colon
in deterministic polynomial time using the Hermite normal form for ZF -lattices (see
Friedrichs [22, §2.3]).

Let O ⊂ B be an order. A right fractional O-ideal is a ZF -lattice I such that
OR(I) = O. In a similar fashion, we may define left fractional ideals; however,
conjugation

I 7→ I = {γ : γ ∈ I}
gives a bijection between the sets of right and left fractional O-ideals, so when
dealing with one-sided fractional ideals it suffices to work with right fractional
ideals. If I (resp. J) is a right fractional O-ideal then OR((I : J)R) ⊂ O (resp.
OL((I : J)R) ⊂ O). Note that any ZF -lattice I is by definition a right fractional
OR(I)-ideal (and left fractional OL(I)-ideal).

A ZF -lattice I is integral if I ⊂ OR(I), or equivalently if I is a right ideal of
OR(I) in the usual sense; for any ZF -lattice I, there exists a nonzero d ∈ ZF such
that dI is integral.

A ZF -lattice I is a left fractional OL(I)-ideal and a right fractional OR(I)-ideal,
and we say that I is a fractional OL(I),OR(I)-ideal; if OL(I) = OR(I) = O we say
that I is a two-sided O-ideal.

A right fractional O-ideal is left invertible if there exists a left fractional O-ideal
I−1 such that I−1I = O. If I is left invertible, then necessarily

I−1 = (O : I)L = I/ nrd(I).

Equivalently, I is left invertible if and only if I is locally principal, i.e., for each
(finite) prime ideal p of ZF , the ideal Ip is a principal right Op-ideal. It follows
that if I is an O′,O-ideal then I is left invertible if and only if I is right invertible
(analogously defined), and so we simply say I is invertible, and then II−1 = O′ and
I−1 = (O′ : I)R. If I is an invertible right fractional O-ideal and J is an invertible
left fractional O-ideal then (IJ)−1 = J−1I−1 and nrd(IJ) = nrd(I) nrd(J), and
moreover

OL(IJ) = OL(I) and OR(IJ) = OR(J).

We note that for an order O, every right fractional O-ideal I is invertible if and
only if O is hereditary.

Let I, J be invertible right fractional ideals. Then (I : J)R is a fractional
OR(J),OR(I)-ideal and similarly (I : J)L is a fractional OL(I),OL(J)-ideal, and
so we will also call (I : J)L (resp. (I : J)R) the left (resp. right) colon fractional
ideal.
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Let I, J be invertible right fractional O-ideals. We say that I and J are in the
same right ideal class, and write I ∼ J , if there exists an α ∈ B∗ such that I = αJ .
We have I ∼ J if and only if I and J are isomorphic as right O-modules, and so
in this case we also say that I and J are isomorphic. It is clear that ∼ defines
an equivalence relation on the set of right fractional ideals of O; we write [I] for
the ideal class of I. Since B is noncommutative, the ideal class [IJ ] of two right
fractional O-ideals I, J is in general not determined by the ideal classes [I] and
[J ], so the set of right ideal classes may not form a group. We denote the set of
invertible right O-ideal classes by ClO.

The set of invertible two-sided fractional O-ideals forms a group under multi-
plication, and the quotient of this group by the (normal) subgroup of principal
two-sided fractional O-ideals is called the two-sided ideal class group of O; two
invertible two-sided fractional O-ideals I, J are in the same ideal class if they are
equal in the two-sided ideal class group of O, or equivalently if IJ−1 is a principal
two-sided fractional O-ideal.

An order O is connected to an order O′ if there exists an invertible fractional
O,O′-ideal I, the connecting ideal. The relation of being connected is an equivalence
relation, and two Eichler orders O,O′ are connected if and only if they have the
same level N.

Proposition 1.6 ([44, Théorème III.5.4], [41, §26]). The set ClO is finite and
# ClO is independent of the choice of Eichler order O of a given level.

We let h(O) = # ClO denote the class number of the Eichler order O.

2. Algorithmic problems

In the remainder of this article, we will be concerned with a constellation of
interrelated algorithmic problems which we now introduce.

Problem 2.1 (ClassNumber(O)). Given an Eichler order O, compute the class
number h(O).

Problem 2.2 (ClassSet(O)). Given an Eichler order O, compute a set of repre-
sentatives for the set of invertible right O-ideal classes ClO.

Obviously, a solution to Problem 2.2 (ClassSet) gives a solution to Problem 2.1
(ClassNumber), but as we will see, this reduction is not the most efficient approach.

Given a set of representatives for ClO and a right fractional ideal I of O, we
may also like to determine its class [I] ∈ ClO and so we are led to the following
problems.

Problem 2.3 (IsIsomorphic(I, J)). Given two invertible right fractional ideals I, J
of an Eichler order O, determine if I ∼ J ; and, if so, compute ξ ∈ B∗ such that
I = ξJ .

Problem 2.4 (IsPrincipal(I)). Given an invertible right fractional ideal I of an
Eichler order O, determine if I is principal; and, if so, compute a generator ξ of I.

In fact, these two problems are computationally equivalent.

Lemma 2.5. Problem (IsIsomorphic) is equivalent to Problem (IsPrincipal).
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Proof. Let I, J be invertible right fractional O-ideals. Then I = ξJ for ξ ∈ B∗

if and only if the left colon ideal (I : J)L is generated by ξ as a right fractional
OL(J)-ideal. Therefore, I ∼ J if and only if (I : J)L is a principal fractional right
OL(J)-ideal. �

We also have the corresponding problem for two-sided ideals.

Problem 2.6 (TwoSidedClassSet(O)). Given an Eichler order O, compute a set of
representatives for the two-sided invertible ideal classes of O.

Finally, we consider algorithmic problems for orders.

Problem 2.7 (IsConjugate(O,O′)). Given two Eichler orders O,O′ of B, deter-
mine if O ∼= O′; and, if so, compute ν ∈ B∗ such that νOν−1 = O′.

Problem 2.8 (ConjClassSet(O)). Given an Eichler order O of level N, compute a
set of representatives for the conjugacy classes of Eichler orders of level N.

Problem 2.9 (ConnectingIdeal(O,O′)). Given Eichler orders O,O′, compute a
connecting ideal I with OR(I) = O and OL(I) = O′.

We conclude by relating Problem 2.2 (ClassSet) to Problem 2.8 (ConjClassSet).

Proposition 2.10. Let Oi be representatives of the isomorphism classes of Eichler
orders of level N. For each i, let Ii be a connecting fractional Oi,O-ideal and let
Ji,j be representatives of the two-sided invertible fractional Oi-ideal classes.

Then the set {Ji,jIi}i,j is a complete set of representatives of ClO.

Proof. Let I be an invertible right fractional O-ideal. Then OL(I) ∼= Oi for a
uniquely determined i, so OL(I) = ν−1Oiν for some ν ∈ B∗. But then Ii = νKI
where K = ν−1IiI

−1 is a two-sided invertible fractional OL(I)-ideal, and so I ∼
KIi ∼ Ji,jIi for some j, again uniquely determined. �

It follows from Proposition 2.10 that if one can solve Problem 2.8 (ConjClassSet)
then one can solve Problem 2.2 (ClassSet), given algorithms to solve Problem 2.9
(ConnectingIdeal) and Problem 2.6 (TwoSidedClassSet). We will discuss this further
in §§3–4.

Conversely, if one can solve Problem 2.2 (ClassSet) then one can solve Problem
2.8 (ConjClassSet) given an algorithm to solve Problem 2.7 (IsConjugate): indeed,
by Proposition 2.10, one obtains a set of representatives for the conjugacy classes
of orders by computing OL(I) for [I] ∈ ClO. The difficulty of solving Problem 2.7
(IsConjugate) is discussed in §4 and §6.

3. Two-sided ideal classes and connecting ideals

In this section, we discuss Problem 2.6 (TwoSidedClassSet) and Problem 2.9
(ConnectingIdeal).

Two-sided ideal classes. Let O ⊂ B be an Eichler order of discriminant d and
level N. The two-sided ideals of O admit a local description, as follows. Let Fp

denote the completion of F at p, let ZF,p denote its ring of integers, and let π be a
uniformizer for ZF,p.
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First, suppose that Bp = B⊗F Fp is a division ring. Then the discrete valuation
v of ZF,p extends to Bp, and Op is the unique maximal order of Bp. The fractional
right Op-ideals form a cyclic group generated by the principal ideal

rad(Op) = {γ ∈ Op : v(γ) > 0};

in particular, they are all two-sided [41, Theorem 13.2] and invertible. We have
rad(Op) = [Op,Op], where [Op,Op] denotes the two-sided Op-ideal generated by
the set {γδ − δγ : γ, δ ∈ Op} (see Reiner [41, Theorem 14.5]).

Next, suppose that Bp
∼= M2(Fp) and that

(3.1) Op
∼=
(

ZF,p ZF,p
peZF,p ZF,p

)
⊂M2(ZF,p),

so that pe ‖ N. Then the principal (equivalently, invertible) two-sided fractional
ideals of Op form an abelian group generated by πOp and(

0 1
πe 0

)
Op = [Op,Op]

(see the proof given by Eichler [18, Satz 5] for e = 1, which applies mutatis mutandis
for all e). Since [Op,Op]2 = πeOp, this group is cyclic if and only if e is odd or
e = 0.

In particular, it follows from the preceding discussion that [O,O] is an invertible
two-sided O-ideal, and we have the following description of the group of two-sided
ideals.

Lemma 3.1. The set of invertible fractional two-sided O-ideals forms an abelian
group generated by the set

{pO : p ⊂ ZF } ∪ {[O,O] + peO : pe ‖ d}.

Proof. The group of invertible two-sided fractional O-ideals is abelian since it is so
locally by the above.

Let I be an invertible two-sided fractional O-ideal. Clearing denominators,
we may assume I is integral. Let M be an invertible maximal two-sided O-
ideal containing I. Then by maximality, there exists a unique prime ideal p
of ZF such that Mq = Oq for all q 6= p. Thus by the preceding discussion,
M = pO or M = [O,O] + peO with pe ‖ d. Now IM−1 is again integral and
nrd(IM−1) = nrd(I)/nrd(M) | nrd(I), so the result follows by induction. �

For an alternative proof of Lemma 3.1 when O is hereditary, see Vigneras [44,
Théorème I.4.5].

Proposition 3.2. The group of invertible, two-sided fractional ideal classes of O
is a finite abelian group generated by the classes of

{aO : [a] ∈ Cl(ZF )} ∪ {[O,O] + peO : pe ‖ d}.

If B is indefinite, one can omit all generators [O,O] + peO for which e is even.

Proof. Since the principal two-sided fractional O-ideals form a subgroup, the first
statement follows from the preceding lemma. For the second statement, we skip
ahead and apply Proposition 4.1: if e is even, the ideals pe/2O and [O,O]+peO have
the same reduced norm pe, so they are in the same ideal class if B is indefinite. �
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Corollary 3.3. Problem (TwoSidedClassSet(O)) for an Eichler order O with fac-
tored discriminant d is polynomial-time reducible to Problem (ClassUnitGroup)(ZF )
and O(h(ZF )2 N d2) instances of Problem (IsIsomorphic).

Proof. Since ([O,O] + peO)2 = peO (as this is true locally), there are at most
2ω(d)h(ZF ) two-sided ideal classes, where ω(d) denotes the number of prime factors
of d. We have trivially 2ω(d) ≤ N d, and the result follows. �

Eichler orders and connecting ideals. We now exhibit an algorithm to test if
an order is an Eichler order.

Algorithm 3.4. Let O ⊂ B be an order of discriminant d = DN with N prime to
the discriminant D of B, and let ιN : O ↪→M2(FN). This algorithm determines if
O is an Eichler order, and if so, returns an element ν ∈ B such that ιN(ν−1Oν) =
O0(N) (as in (1.3)).

(1) Compute µ ∈ B such that ιN(µ−1Oµ) ⊂M2(ZFN
). Let ι′N = µιNµ

−1.
(2) Factor the ideal N, and for each prime power pe ‖ N:

a. From the restriction ι′p : O ↪→ M2(Fp) of ι′N, use linear algebra over

ZF,p to test if there is a common eigenvector (xp, zp) ∈ (ZF /pe)2 for
the elements of a ZF,p-module basis of Op. If not, return false.

b. Compute yp, wp such that Np =

(
xp yp
zp wp

)
∈ GL2(ZF /pe).

(3) By the Chinese remainder theorem, compute ν ∈ B such that ιp(νp) ≡ Np

(mod pe). Return true and µν.

Proof of correctness. We refer to work of the second author [51] for more on Step
1.

For the rest of the algorithm, we note that the property of being an Eichler order
is local: in particular, we see that a local order Op = O⊗ZF

ZF,p with disc(Op) = pe

is Eichler if and only if there exists such a common eigenvector modulo pe of all
γ ∈ Op. Conjugation by the matrix Np as in Step 2b then shows that (1, 0) is an
eigenvector modulo all such pe, as desired. �

Now let O,O′ be two Eichler orders in B having the same level N. We consider
Problem 2.9 (ConnectingIdeal) and compute an invertible O′,O-ideal I.

For any prime p - N, by maximality the ZF,p-lattice (O′O)p is a O′p,Op-ideal.
So suppose p | N. Since any two Eichler orders of the same level are locally
conjugate, there exists νp ∈ Bp such that O′p = νpOpν

−1
p . The map I 7→ νpI

gives an equivalence between the category of fractional two-sided Op-ideals and the
category of fractional O′p,Op-ideals.

From this analysis, we arrive at the following algorithm.

Algorithm 3.5. Let O,O′ ⊂ B be Eichler orders of level N. This algorithm
computes an invertible fractional O′,O-ideal.

(1) Let ν, ν′ be the output of Algorithm 3.4 for the orders O,O′ and a common
choice of splitting ιN.

(2) Compute a nonzero d ∈ ZF such that µ := dν−1ν′ ∈ O′ as follows: write
ν−1ν′ in terms of a ZF -pseudobasis for O′, and compute a nonzero d as the
least common multiple of the denominators of the coefficients of ν−1ν′.

(3) Compute nrd(µ)ZF = na with a prime to N, and return the ZF -lattice
I := µO + nO′O.
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Proof of correctness. In Step 1, we obtain from Algorithm 3.4 that for all p | N we
have Op = νpO0(N)pν

−1
p and Op = ν′pO0(N)pν

′−1
p . It is clear that Step 2 gives the

correct output, and hence O′p = µpOpµ
−1
p for all such p.

To conclude, we need to show that OL(I) = O′ and OR(I) = O. It suffices to
check this locally. For any prime p - N, we have µp ∈ O′p = npO′p, so Ip = (O′O)p,
which is a fractional O′p,Op-ideal by the above. For p | N, we have

npO′p = O′pnp = O′pµpµp ⊂ O′pµp = µpOp

since µp ∈ O′p. Hence Ip = µpOp and the result follows by the equivalence above,
since Op is a two-sided Op-ideal so Ip is a fractional O′p,Op-ideal. �

Corollary 3.6. Problem (IsConjugate) for two Eichler orders with factored discrim-
inant d is probabilistic polynomial-time reducible to Problems (TwoSidedClassSet)
and (IsIsomorphic).

Proof. By Proposition 2.10, if I is an invertible right O-ideal, then OL(I) is con-
jugate to O if and only if I is equivalent to an invertible two-sided O-ideal J : in
fact, if J = νI then O = νO′ν−1. Thus, to check whether two given Eichler or-
ders O,O′ (of the same level) are conjugate, it suffices to construct a connecting
ideal I as in Algorithm 3.5—which can be done in probabilistic polynomial time—
and one can accordingly check for an isomorphism given a solution to Problem
(TwoSidedClassSet) and (IsIsomorphic). �

4. Ideal classes in indefinite orders

In this section, we discuss the difficulty of solving Problems 2.1 (ClassNumber)
and 2.2 (ClassSet) in the indefinite case.

Let B be an indefinite quaternion algebra and let O ⊂ B be an Eichler order.
Let S∞ denote the set of ramified (real) infinite places of B and let ClS∞ ZF denote
the ray class group of ZF with modulus S∞. The quotient group ClS∞ ZF /ClZF
is an elementary 2-group isomorphic to Z∗F,S∞/Z

∗2
F where

Z∗F,S∞ = {u ∈ Z∗F : v(u) > 0 for all v ∈ S∞}.

Proposition 4.1 (Eichler’s theorem). If B is indefinite and O ⊂ B is an Eichler
order, then the reduced norm map

nrd : ClO → ClS∞ ZF
is a bijection (of sets).

For a proof of this proposition, see Reiner [41, Corollary 34.21] or Vignéras
[44, Théorème III.5.7]. We have the following immediate corollary, which proves
Theorem A in the indefinite case; we restate it here for convenience.

Corollary 4.2. If B is indefinite, then Problem (ClassNumber(O)) is reducible in
deterministic polynomial time to Problem (ClassUnitGroup(ZF )).

In other words, there exists an algorithm to solve Problem (ClassNumber) which,
given an algorithm to solve Problem (ClassUnitGroup), runs in deterministic poly-
nomial time in its output size. (See Remark 1.2.)

Proof. We compute h(O) = #(Z∗F,S∞/Z
∗2
F )h(ZF ). Given the class group ClZF ,

its order h(ZF ) = # ClZF can be computed in polynomial time. Similarly, given
generators for the unit group Z∗F , one can compute in deterministic polynomial
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time (in the size of their representation) their signs for each real place v, and using
linear algebra over F2 determine the 2-rank of the group Z∗F,S∞/Z

∗2
F . �

It follows immediately from Corollary 4.2 that for Eichler orders over a fixed
number field F , Problem 2.1 (ClassNumber) can be solved in time O(1), which
proves the corollary to Theorem A.

Next, we discuss Theorem B in the indefinite case. First, we exhibit an auxiliary
algorithm for computing ideals with given norm, which works for both definite and
indefinite quaternion orders.

Algorithm 4.3. Let O be an Eichler order and let a ⊂ ZF be an ideal which
is coprime to D. This algorithm returns an invertible right O-ideal I such that
nrd(I) = a.

(1) Factor a into prime ideals.
(2) For each pe ‖ a, find a zero of the quadratic form nrd(αp) ≡ 0 (mod p),

and choose a random lift of αp modulo p2 so that nrd(αp) is a uniformizer
at p. Let βp = αep.

(3) Use the Chinese remainder theorem to find β ∈ ZF such that β ≡ βp
(mod pe) for all pe ‖ a. Return the right O-ideal βO + aO.

From Eichler’s theorem (Proposition 4.1), we then have the following straight-
forward algorithm.

Algorithm 4.4. Let O be an indefinite Eichler order. This algorithm solves Prob-
lem 2.2 (ClassSet).

(1) For each a in a set of representatives for ClS∞ ZF /2 ClS∞ ZF , compute using
Algorithm 4.3 an ideal Ia of norm a.

(2) Return the set {cIa}a,c, with c2 in a set of representatives of 2 ClS∞ ZF .

Proposition 4.5. Problem 2.2 (ClassSet) for indefinite orders over a fixed field F
can be solved in probabilistic polynomial time.

Proof. One can solve Problem (ClassUnitGroup) for the field F in constant time
and one can further factor the generating ideals a which are given as output. The
statement follows by noting that Step 2 of Algorithm 4.3 can be performed in
probabilistic polynomial time [51] by extracting square roots modulo p. �

Proposition 4.5 thus proves the indefinite case of Theorem B.

Remark 4.6. In practice, in Algorithm 4.4 one may wish to find representatives
of ClO with the smallest norm possible; one can then simply find small represen-
tatives a for each ideal class of ClS∞ ZF (using the LLL algorithm [33], part of
the algorithms used in the algorithm described in Proposition 1.3) and then repeat
Step 1 for each such ideal a.

To solve Problem 2.8 (ConjClassSet) for Eichler orders, we amend Algorithm 4.4
as follows.

Algorithm 4.7. Let O ⊂ B be an indefinite Eichler order of discriminant d. This
algorithm solves Problem 2.8 (ConjClassSet).

(1) Let H be the subgroup of ClS∞ ZF generated by 2 ClZF and [pe] for all
pe ‖ d with e odd.
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(2) For each a in a set of representatives for ClS∞ ZF /H, let α ∈ O be such
that nrd(α) is a uniformizer of a and let Ia := αO + aO.

(3) Return the set {OL(Ia)}a.

Proof of correctness. By Proposition 3.2, the image of the reduced norm of the set
of two-sided ideal classes maps is exactly H. It then follows from Proposition 2.10
that one recovers all conjugacy classes of Eichler orders of level N as OL(Ia) for the
right O-ideals Ia with a as in Step 2. �

Finally, we are left with Problem 2.4 (IsPrincipal). Let I be a right fractional
O-ideal. Again, by Eichler’s theorem (Proposition 4.1), we see that I is principal
if and only if nrd(I) ⊂ ZF is trivial in ClS∞ ZF , and the latter can be tested as in
§2. In other words, simply testing if a right O-ideal is principal is no harder than
testing if an ideal is principal in ZF .

To then actually exhibit a generator for a principal ideal, we rely upon the
following standard lemma (see Pizer [39, Proposition 1.18]).

Lemma 4.8. Let I be a right invertible fractional O-ideal. Then γ ∈ I generates
I if and only if nrd(γ)ZF = nrd(I).

By Lemma 4.8, the right ideal I is principal if and only if there exists γ ∈ I
such nrd(γ) = nrd(I) = cZF (with v(c) > 0 for all v ∈ S∞). Unfortunately, since
B is indefinite, the norm form Tr nrd : B → Q is not positive definite, hence it
does not induce the structure of a (definite) lattice on I (in the definite case it
will, see §§6–7). One option is to use a form of indefinite lattice reduction (as in
Ivanyos-Szántó [24]). We instead find a substitute quadratic form which will still
allow us to find “small” elements. When F is totally real and B has a unique split
real place, such a form has been found [50], and inspired by this result we make the
following definitions.

Let B =

(
a, b

F

)
. For an infinite place v of F and γ = x+ yα+ zβ+wαβ, define

(4.1) Qv(γ) = |v(x)|2 + |v(a)||v(y)|2 + |v(b)||v(z)|2 + |v(ab)||v(w)|2.

We then define the absolute reduced norm by

Q : B → R
γ 7→

∑
vQv(γ);

by construction, the form Q is positive definite and gives I the structure of a definite
Z-lattice of rank 4[F : Q].

Remark 4.9. The form Q is clearly only one of many choices for such a positive
definite form, and so one may reasonably try to understand what the cone of such
forms corresponds to.

When F is totally real and B has a unique split real place, the choice of the
positive definite quadratic form corresponds to the choice of a center p for a Dirichlet
fundamental domain in the upper half-plane H and at the split place measures the
inverse radius of the corresponding isometric circle [50]. The same is true for a
quaternion algebra of arbitrary signature as follows. If B has g split real places and
s (split) complex places, then the group O∗1 of units of O of reduced norm 1 embeds
in SL2(R)g×SL2(C)s and acts on Hg×(H3)s discretely, where H (resp. H3) denotes
the upper half-plane (resp. hyperbolic 3-space) (see e.g. Beardon [3] and Elstrodt,
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et al. [20]). In this case, the choice of a positive definite quadratic form corresponds
again to the choice of a center p for a Dirichlet domain and at each place measures
an inverse radius, either of an isometric circle or sphere. The above choice of form
Q corresponds to a (normalized) choice of center p = (i, . . . , i, j, . . . , j).

Because of the connection with the classical theory of positive definite quadratic
forms on a real quadratic field, which can be understood more generally from the
perspective of Arakelov theory [42], we view these observations as the beginning
of a form of noncommutative Arakelov theory and leave it as a subject for further
investigation.

We then have the following algorithm.

Algorithm 4.10. Let I ⊂ O be a right fractional O-ideal. This algorithm solves
Problem 2.4 (IsPrincipal).

(1) Compute nrd(I) ⊂ ZF and test if nrd(I) is principal; if not, then return
false. Otherwise, let nrd(I) = cZF .

(2) Determine if there exists a unit u ∈ Z∗F such that v(uc) > 0 for all ramified
(real) places v; if not, then return false. Otherwise, let c := uc and initialize
α := 1.

(3) If c ∈ Z∗F , return α. Otherwise, view I as a Z-lattice equipped with the
quadratic form Q. Reduce I using the LLL algorithm [33]. By enumerating
short elements in I, find γ ∈ I such that nrd(γ) = cd with N(d) < N(c).
Let α := γα/d, let I := dγ−1I, and let c := d, and return to Step 2.

Proof. In Step 2, we have nrd(dγ−1I) = d2/(cd) nrd(I) = dZF , and so the algorithm
terminates since in each step N nrd(I) ∈ Z>0 decreases. The algorithm gives correct
output since dγ−1I = αO if and only if I = (γα/d)O. �

In practice, Algorithm 4.10 runs quite efficiently and substantially improves upon
a more näıve enumeration. However, we are unable to prove any rigorous time
bounds for Algorithm 4.10. Already the first step of the algorithm requires the
computation of the class group ClZF ; and even if we suppose that the class group
has been precomputed, there do not appear to be rigorous time bounds for the
principal ideal testing algorithm [11, Algorithm 6.5.10] (see §1). With that proviso,
given the generator c as in Step 1, we can measure the value of the LLL-step as
follows.

Lemma 4.11. There exists C(O) ∈ R>0, depending on O, such that for every
principal fractional ideal I of O, the first basis element γ in the LLL-reduced basis
of Algorithm 4.10 satisfies

|N(nrd(γ))| ≤ C(O) N(nrd(I)).

Proof. Suppose that I = ξO. The F -endomorphism of B given by left multi-
plication by ξ has determinant nrd(ξ)2, and it follows that the corresponding Q-
endomorphism of L⊗Z Q has determinant N(nrd(ξ))2. Hence

det(I) = det(ξO) = N(nrd(ξ))4 det(O).

Now, for any γ = x+ yα+ zβ + wαβ, from (4.1) we have

|v(nrd(γ))| ≤ Qv(γ) ≤ Q(γ)
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for all places v. Thus, the output of the LLL algorithm [33, Proposition 1.9] yields
γ ∈ I which satisfies

|v(nrd(γ))| ≤ Q(γ) ≤ 2(4n−1)/4 det(I)1/(4n) = 2(4n−1)/4 det(O)1/(4n) N(nrd(I))1/n.

We conclude that

|N(nrd(γ))| =
∏
v

|v(nrd(γ))| ≤ 2(4n
2−n)/4 det(O)1/4 N(nrd(I))

as claimed. �

From Lemma 4.8, we conclude that the algorithm produces elements which are
close to being generators.

5. Computing the class number for definite orders

In this section, we discuss the difficulty of solving Problem 2.1 (ClassNumber) in
the definite case. Throughout this section, let B denote a totally definite quaternion
algebra of discriminant D. Here, the class number is governed by the Eichler mass
formula.

Given an ideal N (coprime to D), the mass is defined to be the function

(5.1) M(D,N) = 21−n|ζF (−1)|h(ZF )Φ(D)Ψ(N)

where

(5.2) Φ(D) =
∏
p|D

(N(p)− 1) and Ψ(N) = N(N)
∏
p|N

(
1 +

1

N(p)

)
.

The mass of an Eichler order O ⊂ B of level N is defined to be M(O) = M(D,N).
The class number of an Eichler order differs from its mass by a correction factor

coming from torsion, as follows. An embedded elliptic subgroup in B is an embedding
µq ↪→ O∗/Z∗F , where q ∈ Z≥2 and O is an Eichler order, such that the image is
a maximal (cyclic) subgroup of O∗/Z∗F ; the level of the embedding is the level of
O. An elliptic cycle is a B∗-conjugacy class of embedded elliptic subgroups. Let
eq(D,N) denote the number of elliptic cycles of B∗ of order q and level N.

Proposition 5.1 (Eichler mass formula [44, Corollaire V.2.5]). Let O ⊂ B be an
Eichler order of level N. Then

h(O) = M(D,N) +
∑
q

eq(D,N)

(
1− 1

q

)
.

Remark 5.2. A variant of the Eichler mass formula [44, Corollaire V.2.3] which
is also useful for algorithmic purposes (see Remark 7.5) reads

M(D,N) =
∑

[I]∈ClO

1

[OL(I)∗ : Z∗F ]
.

We first characterize the embedding numbers eq(D,N). Given an embedded
elliptic subgroup µq ↪→ O∗/Z∗F of level N, the image of µq generates a quadratic
subring R ⊂ O; such an embedding R ↪→ O with RF ∩ O = R is said to be an
optimal embedding. Conversely, to every optimal embedding ι : R ↪→ O, where R
is a quadratic ZF -order with [R∗ : Z∗F ] = q and O is an Eichler order of level N, we
have the embedded elliptic subgroup R∗tors/Z∗F ∼= µq ↪→ O∗. This yields a bijection
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{Elliptic cycles of B∗ of order q and level N}
l{

B∗-conjugacy classes of optimal embeddings ι : R ↪→ O
with [R∗ : Z∗F ] = q and O an Eichler order of level N

}
.

The quadratic ZF -orders R with [R∗ : Z∗F ] = q come in two types. Either we
have R∗tors

∼= µ2q and we say R is fully elliptic, or [R∗ : Z∗FR∗tors] = 2 and we say R
is half elliptic. We see that if R is half elliptic then in particular R ⊂ ZF [

√
−ε] for

ε a totally positive unit of ZF .
The (global) embedding numbers eq(D,N) can then be computed by comparison

to the local embedding numbers

m(Rp,Op) = #{O∗p-conjugacy classes of optimal embeddings ι : Rp ↪→ Op}

where Op is a p-local Eichler order of level N.

Lemma 5.3 ([44, p. 143]). We have

eq(D,N) =
1

2

∑
[R∗:Z∗F ]=q

h(R)
∏
p

m(Rp,Op).

There are formulas [49, §2] for the number of local embeddings m(Rp,Op), for
example:

(5.3) m(Rp,Op) =


1, if p - DN;

1−
(
Kq

p

)
, if p | D and p - f(R);

1 +

(
Kq

p

)
, if p ‖ N;

here, we let Kq = F (ζ2q) and f(R) denotes the conductor of R (in ZKq ). In
particular, we have by Equation (5.3) that m(Rp,Op) = 1 for almost all p.

We now discuss the computability of the terms in the formula of Proposition 5.1.
To compute the mass, we will use the following proposition.

Proposition 5.4. The value ζF (−1) ∈ Q can be computed using O
(
d
3/2
F log4 dF

)
bit operations.

Proof. From the functional equation for the Dedekind zeta function, we have

(5.4) ζF (−1) =

(
−1

2π2

)n
d
3/2
F ζF (2).

From (5.1) and Proposition 5.1, we have ζF (−1) ∈ Q, in fact, ζF (−1) has de-
nominator bounded by Q, the least common multiple of all q ∈ Z≥2 such that
[F (ζ2q) : F ] = 2.

We compute an approximation to ζF (−1) from the Euler product expansion for
ζF (2), as follows (see also Buchmann-Williams [8, §2], or Dokchitser [17] for a more
general approach). For P ∈ Z≥2, let

ζF,≤P (s) =
∏

N p≤P

(
1− 1

N ps

)−1
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denote the truncated Euler product for ζF (s), where we take the product over all
primes p of ZF for which N p ≤ P . Note that for s > 1 real we have

ζF,≤P (s) ≤ ζF (s) =
∏
p

(
1− 1

N ps

)−1
≤
∏
p

(
1− 1

ps

)−n
= ζ(s)n.

Now we estimate

0 <
ζF (2)

ζF,≤P (2)
− 1 =

∏
N p>P

(
1− 1

N p2

)−1
− 1

=
∑

N p>P

1

Np2
+

∑
N p≥N q>P

1

N(pq)2
+ . . .

≤
∑
p>P

n

p2
+
∑
p,q>P

n2

(pq)2
+ · · · ≤

∑
x>P

n

x2
+
∑
x>P 2

n2

x2
+ . . .

≤ n

P
+
n2

P 2
+ · · · = 1

(P/n)− 1
.

It follows that ζF (2) − ζF,≤P (2) < ε whenever P > n(1 + ζF,≤P (2)/ε) which is
satisfied when

P > n

(
1 +

ζ(2)n

ε

)
= n

(
1 +

(π2/6)n

ε

)
.

To obtain the value ζF (−1) within an interval of length smaller than 1/(2Q), from
(5.4) it suffices to take

ε =
1

2Q

(2π2)n

d
3/2
F

.

To estimate Q, we note that if [F (ζ2q) : F ] = 2 then in particular F contains the
totally real subfield Q(ζ2q)

+ of Q(ζ2q), hence φ(q)/2 | n. Since the fields Q(ζ2q)
+

are linearly disjoint for q a power of a prime, we have Q = O(n). (We note this
bound is best possible in terms of n, since after all we may take F = Q(ζ2q)

+.)
Putting these together, we need to evaluate the truncated Euler product with

P = O

(
n

(
π2

6

)n
1

ε

)
= O

(
n2

12n
d
3/2
F

)
.

Evaluating ζF,≤P (2) amounts to factoring a degree n polynomial over Fp for all
primes p ≤ P ; each such factorization can be performed using a repeated squaring
operation, requiring O(n3 log p) operations in Fp (see e.g. the survey by von zur

Gathen and Panario [23]) so time O(n3 log3 p), hence altogether time O(n3P log2 P )
by the prime number theorem, so the computation requires

O

(
n5

12n
d
3/2
F log3 dF

)
= O(d

3/2
F log3 dF )

operations with real numbers of precision O(1/ε) = O(d
3/2
F ), requiring therefore

O(d
3/2
F log4 dF ) bit operations. �

Remark 5.5. If F is an abelian field, then ζF (−1) can be computed much more
efficiently in terms of Bernoulli numbers [52].

Putting these pieces together, we now prove the following theorem.
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Theorem 5.6. There exists a probabilistic algorithm which, given an Eichler order
O in a definite quaternion algebra B with factored discriminant d, solves Problem
(ClassNumber) in time

O
(
d
3/2
F log4 dF + log2 N d

)
and the time to solve O(2n) instances of Problem (ClassUnitGroup) with fields of

discriminant of size O(d
5/2
F ).

Proof. First, we compute the factored discriminant D of B and level N of O by
computing Hilbert symbols [51]: given the factorization of the discriminant d of
O, for each p | d one can determine whether p | D or p | N in deterministic time
O(log2 N p).

We compute h(O) from the Eichler mass formula (Proposition 5.1), with the
mass M(D,N) given as in Equation (5.1). Given the factorization of D and N, we
can compute Φ(D) and Ψ(N) in time O(log2 N(DN)). One recovers h(ZF ) from
the given algorithm to solve Problem (ClassUnitGroup). By Proposition 5.4, we can

compute |ζF (−1)| in time O(d
3/2
F log4 dF ).

We now estimate the time to compute the correction term
∑
q eq(D,N)(1−1/q)

in Lemma 5.3, up to further instances of Problem (ClassUnitGroup).
As in the proof of Proposition 5.4, if eq(D,N) 6= 0 then q = O(n). Thus, by

factoring n (which can be done in negligible time using trial division) we obtain
a finite set of O(n) possible values of q. For each such q, we can factor the qth
cyclotomic polynomial over F in deterministic time (qn log dF )O(1) (see Lenstra
[31]) and determine if each of its irreducible factors has degree 2. (In practice, one
might further restrict the set of possible q by verifying that q | dF if q ≥ 5 and that
for sufficiently many small prime ideals p of ZF coprime to qdF that q | (Np2 − 1),
but this makes no difference in the analysis of the runtime.) Since q = O(n) and
n = O(log dF ) by the Odlyzko bounds [38], this becomes simply (log dF )O(1).

We pause to compute an estimate of discriminants. Let q ∈ Z≥2 be such that
K = F (ζ2q) is quadratic over F . We estimate the discriminant dK = d2F NF/Q dK/F .

Let λ2q = ζ2q + 1/ζ2q; then we have Q(ζ2q)
+ = Q(λ2q) and ζ22q − λ2qζ2q + 1 = 0, so

dK/F | (λ22q − 4)ZF . Therefore

NQ(ζ2q)+/Q(λ22q − 4) = NQ(ζ2q)+/Q(ζ2q − 1/ζ2q)
2 = NQ(ζ2q)/Q(ζq − 1)

=


p, if q = pr is an odd prime power;

4, if q = 2r;

1, otherwise.

So dK = d2F NF/Q dK/F ≤ d2F NF/Q(λ22q − 4) = d2F p
2n/φ(2q) if q = pr is an odd

prime power, and similarly dK ≤ d2F 42n/φ(2q) if q = 2r and dK = d2F if q is not
a power of a prime. For q a power of a prime p, by the conductor-discriminant

formula [52, Theorem 3.11] we have pφ(2q)/2−1 | dQ(ζ2q)+ , so since d
2n/φ(2q)
Q(ζ2q)+

| dF
we have pn = O(dF ). Thus we have p2n/φ(2q) = O(d

2/φ(2q)
F ) = O(d

1/2
F ) when

q = 5 or q ≥ 7, and hence dK = O(d
5/2
F ); but for q ≤ 4 this also holds, since

by the Odlyzko bounds there are only finitely many (totally real) number fields
with dF ≤ 16n. When K = F (

√
−ε) for ε a totally positive unit of ZF , we have

dK = O(d2F 4n) = O(d
5/2
F ) as well. Thus in all cases, dK = O(d

5/2
F ).
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To compute eq(D,N), we need to compute h(R) for allR ⊂ K with [R∗ : Z∗F ] = q.
First, suppose that R is fully elliptic. Then ZF [ζ2q] ⊂ R ⊂ ZK . We have the bound
f(R)2 | (λ22q − 4) | p on the conductor of R as above, which implies there are at

most O(2n/φ(2q)) = O(dF ) such orders, corresponding to the possible products of
ramified primes over p in the extension F/Q(ζ2q)

+. Each can be constructed by

computing p-overorders for p2 | (λ22q − 4) | p, requiring time qO(1). Now if f = f(R),
we have

h(R) =
h(ZKq

)

[Z∗Kq
: R∗]

#(ZK/fZK)∗

#(ZF /fZF )∗

and the time required to compute these terms is negligible except for h(ZKq ), for
which we may call our hypothesized algorithm.

Next, suppose that R is half elliptic. In this case, we have ZF [
√
−ε] ⊂ R ⊂ ZK .

Here, we have the bound f(R)2 | 4, hence there are at most O(2n) = O(dF ) such
orders, and the arguments in the preceding paragraph apply.

In all, we have at most O(2n) imaginary quadratic fields K to consider, the worst
case being when F has a fundamental system of units which are totally positive.

Finally, the calculation of the local embedding number m(Rp,Op) can be ac-

complished in time O(log2(N p)) for p odd [49, Proposition 2.5] by computing a
Legendre symbol (and in time O(1) after that) and in time nO(1) = (log dF )O(1) for
p even [49, Remark 2.6].

In all, aside from the time to compute class numbers, since there are O(n) values
of q, we can compute the correction term in time

O(log2 N(DN)) + dF (log dF )O(1) + (log dF )O(1).

Combining this estimate with the time to compute the mass, the result follows. �

Corollary 5.7. For a fixed number field F , Problem 2.1 (ClassNumber) for defi-
nite orders O is probabilistic polynomial-time reducible to the factorization of the
discriminant of O.

Proof. Only the quantities Φ(D), Ψ(N), and m(Rp,Op) depend on O—the others
can be precomputed for fixed F . These quantities can be computed in probabilistic
polynomial time knowing the factorization of D and N. �

Putting together Corollary 4.2, Theorem 5.6, and Corollary 5.7, we have proven
the main Theorem A and its corollary.

We conclude this section by discussing the role of factoring the ideals D,N.
It is well known that factoring ideals in the ring ZF is probabilistic polynomial-
time equivalent to factoring integers. But already for imaginary quadratic fields,
it is also well known that an algorithm for (ClassUnitGroup) can be employed to
factor integers (two such “class group” methods are attributed to Schnorr-Lenstra-
Shanks-Pollard-Atkin-Rickert and Schnorr-Seysen-Lenstra-Lenstra-Pomerance). A
noncommutative analogue of this result, already in the simplest case where F = Q,
is the following.

Proposition 5.8. The problem of factoring integers a with ω(a) = O(log log a)
prime factors is probabilistic polynomial-time reducible to Problem (ClassNumber)
for definite quaternion algebras over Q.
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Proof. For F = Q, the class number is given simply by

h(O) =
1

12
φ(D)ψ(N) +

e2(D,N)

2
+
e3(D,N)

3
.

Let a ∈ Z>0 be an integer to be factored, which we may assume has gcd(a, 26) = 1
and is not a prime power.

We consider quaternion algebras of the form B =

(
−ac,−13b

Q

)
where b, c ∈ Z>0

are chosen as follows. We choose c ∈ {1, 2} so that (−ac/13) = −1: therefore the
algebra B is ramified at 13 so 13 | D, and it follows that e2(D,N) = e3(D,N) = 0
by (5.3), hence

h(O) = φ(D/13)ψ(N).

For simplicity, we assume c = 1; the same argument applies when c = 2.
We choose b to be a random squarefree factored positive integer modulo 4a (see

e.g. Bach [2]) with gcd(b, 26) = 1. If gcd(a, b) 6= 1 and a 6= 1, b, we have factored a.
Otherwise, with probability at least (1/2)ω(a), we have (−13b/p) = 1 for all p | a,
so then p - D for all p | a; since ω(a) = O(log log a) by assumption, after O(log a)
attempts this condition will be satisfied with probability at least 1/2.

Now compute an order O ⊂ B which is locally generated by the standard gen-
erators α, β for all primes p 6= 2 and which is maximal at 2. Then O is an order
with discriminant 13abε = DN where ε = 1 or 2. We claim that O is Eichler. Since
gcd(a, b) = 1 and b is squarefree, and further a, b are odd, it suffices to show that
O is Eichler at p | a. But for such pe ‖ a, by assumption we have (−13b/p) = 1
so B is unramified at p, and there exists t ∈ Z∗p such that t2 = −13b. Then the
embedding O ↪→ O⊗Z Zp by

α 7→
(

0 1
ac 0

)
, β 7→

(
t 0
0 −t

)
realizes O as an Eichler order of level pe.

It follows that

h(O) =
∏

p|(D/13)

(p− 1)
∏
pe‖N

pe−1(p+ 1);

if a is not squarefree then gcd(h(O), a) yields a prime factor of a, so we may assume
that a is squarefree.

We now show how to recover a prime factor of a given the values h(O). For each
prime p | b, by computing (−ac/p) we can determine if p is ramified in B or not,
accordingly contributing a factor p − 1 or p + 1 to h(O). Dividing h(O) by these
factors, we may compute the integer

g(b) =
∏
p|D′

(p− 1)
∏
p|N ′

(p+ 1)

and εa = D′N ′. We compute one such value g(b) and then many more values g(b′),
and we claim that gcd(g(b)+g(b′), a) will find a factor of a. Indeed, with probability
at least ω(a)(1/2)ω(a)+1, we will have the following:

There exists a prime q | a for which (−13b/q) = −(−13b′/q) and
(−13b/p) = (−13b′/p) for all p | εa with p 6= q.
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It follows then that g(b) ≡ −g(b′) (mod q) as claimed. Again, since by assumption
ω(a) = O(log log a), after O(log a) attempts we will factor a with probability at
least 1/2. �

6. Ideal principalization for definite orders

In this section, we discuss the totally definite case of Problem 2.4 (IsPrincipal),
which by Lemma 2.5 is equivalent to Problem 2.3 (IsIsomorphic). We exhibit an al-
gorithm (Algorithm 6.3) to solve this problem and analyze its running time (Propo-
sition 6.9). This algorithm will be used in the next section to solve Problem 2.2
(ClassSet) for definite orders. Throughout this section, let B be a totally definite
quaternion algebra over a totally real field F of discriminant D and let O ⊂ B be
an Eichler order of level N.

Our algorithm is similar to the indefinite case (Algorithm 4.10), where now we
are in the easier situation that Tr nrd : B → Q is a positive definite quadratic form
on the Q-vector space B. We prove below that we can reduce the principalization
problem to a shortest lattice vector problem (based initially on an idea due to
Dembélé and Donnelly [15, §2.2].)

First of all, if I is a principal right fractional O-ideal, then nrd I = cZF is a
principal ideal of ZF . To compute such a generator c ∈ ZF over a general number
field F , we refer to the discussion following Proposition 1.3. For F totally real as
in this section, we first show that a principal ideal has a generator of polynomial
size, with the constant depending on F . For a real place v of F , corresponding to
an embedding v : F ↪→ R, we abbreviate av = v(a) for a ∈ F .

Lemma 6.1. For a principal fractional ideal a ⊂ F , there exists a generator a for
a with |av| = O((N a)1/n) for all real places v of F , where the implied constant is
effectively computable and depends on the field F .

Proof. Consider the (Minkowksi unit) map

σ : F → Rn

u 7→ (log |uv| − (1/n) log N(u))v

where v runs over the real places of F . The image σ(F ) is contained in the hyper-
plane H :

∑
v xv = 0, and the image of the units σ(Z∗F ) forms a lattice (of full rank

n − 1) in H. But since a is principal, the image σ(a) ⊂ H is simply a translate
of this lattice. It follows that there is a generator a for a with σ(a) inside a fun-
damental parallelopiped for σ(Z∗F ). Therefore, if u1, . . . , un−1 ∈ Z∗F are a basis for
Z∗F /{±1}, then for each real place v we have∣∣∣∣log |av| −

1

n
log N(a)

∣∣∣∣ ≤ 1

2

n−1∑
i=1

| log |ui,v||.

Let Uv =
∏n−1
i=1 e

| log |ui,v||/2. Then

1

Uv
N(a)1/n ≤ |av| ≤ Uv N(a)1/n

so if U = maxUv then

1

UF
N(a)1/n ≤ |av| ≤ U N(a)1/n

for all v, as claimed. �
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Remark 6.2. Although we will not make use of it, we remark that Lemma 6.1
gives a method for testing if an ideal a is principal over ZF and, if so, exhibiting a
generator. We simply enumerate all elements a ∈ ZF with |av| ≤ U N(a)1/n for all
v, where U is as in the above proof; we can accomplish this by embedding ZF ↪→ Rn
by a 7→ (av)v as a lattice (by the Minkowski embedding) and enumerating all lattice
elements of (square) norm bounded by nU2 N(a)2/n. By the analysis of Fincke and
Pohst [21, (2.12), (3.1)] (or alternatively Elkies [19, Lemma 1]), we can enumerate
all such elements in time O(N(a)), where the implied constant depends only on F .

We now present the main algorithm in this section.

Algorithm 6.3. Let I ⊂ O be a right fractional O-ideal and let c ∈ ZF such that
nrd I = cZF . This algorithm solves Problem 2.4 (IsPrincipal).

(1) Determine if there exists a unit u ∈ Z∗F such that cvuv > 0 for all real
places v; if not, then return false.

(2) For each totally positive unit z ∈ Z∗F,+/Z∗2F :
a. Let ξ be a shortest vector of the Z-lattice I with respect to the rational

quadratic form ϕ(ucz)−1 .
b. If ϕ(ucz)−1(ξ) = [F : Q] then return true and the element ξ.

(3) Return false.

Remark 6.4. Note that if F = Q then in Step 2 we have z = u = 1. Hence the
algorithm simply amounts to find a shortest vector in the Z-lattice I (with respect
to the reduced norm form).

Proof of correctness. If I is principal, then nrd I is generated by a totally positive
element uc where u ∈ Z∗F . Then Lemma 4.8 implies that ξ ∈ I generates I if and
only if nrd ξ = ucz for some z ∈ Z∗F,+. To find such an element ξ, we only need to
search for elements of norm ucz where z runs through some arbitrary transversal
of Z∗F,+/Z∗2F .

Let n = [F : Q], z ∈ Z∗F,+, and ξ ∈ I. Then nrd ξ ∈ nrd I = (ucz)ZF , so

α = (nrd y)/(ucz) ∈ ZF . The arithmetic-geometric mean inequality implies

n ≤ n(Nα)1/n ≤ Trα = ϕ(ucz)−1(ξ).

Moreover, equality holds if and only if 1 = Nα and αv is independent of the real
place v of F , so equality holds if and only if α = 1. Hence nrd(ξ) = ucz if and only
if ξ ∈ I satisfies ϕ(ucz)−1(y) = n and is a shortest vector. �

To analyze the runtime of Algorithm 6.3, we first state and prove some prelimi-
nary results on enumeration of (short) vectors in lattices.

Lemma 6.5. There exists an algorithm which, given a lattice L with basis vec-
tors each of (square) norm at most A ∈ R>0, finds the shortest vectors in L in
deterministic time O(log3A) for fixed dimension n.

Proof. This lemma is a consequence of the celebrated LLL-algorithm of Lenstra,
Lenstra, and Lovász [33]: see e.g. Kannan [26, Section 3]. �

Remark 6.6. Using floating-point LLL, one could probably replace log3A with
log2A in the lemma above, but this will have no impact on what follows so we
neglect this possible improvement.

We pause to prove two results which will be used in the next section.
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Lemma 6.7. A uniformly random element of a lattice L with norm ≤ A can be
computed in probabilistic probabilistic time (where the implied constant depends on
the lattice L).

Proof. Choose a random vector v ∈ Zn with each component vi chosen uniformly
in the range [−

√
A,
√
A]. Using linear algebra over Q, determine if v ∈ L; if

so, output the vector, otherwise start again. This test can be performed by first
computing once (for the lattice L) the change of basis from L to the standard basis
and then multiplying the vector v by this matrix. The entries of the inverse will
be of polynomial size for fixed dimension, and so each test can be performed in
polynomial time. The probability of success in each trial depends on the density of
the lattice, given by its determinant. �

We apply this lemma to computing representatives of ideal classes, which we will
use in the proof of Lemma 7.8.

Lemma 6.8. There exists an algorithm which, given x ∈ Z>0 sufficiently large
and an ideal class [a] ∈ ClS∞(ZF ), computes a uniformly random ideal b ⊂ ZF
with [b] = [a] and N b ≤ x, which runs in probabilistic polynomial time over a fixed
totally real field F .

Proof. Let b ⊂ ZF be an ideal such that Nb ≤ x and [b] = [a]. Then ba−1 is
principal. By Lemma 6.1, there exists a generator a for ba−1 with

|av| ≤ U N(ba−1) ≤ Ux/N a = T

for all real places v of F , where U is an effectively computable constant depending
only on F . In particular, we have that

{b : N b ≤ x, [b] = [a]} ⊂ {aa−1 : a ∈ ZF , |av| ≤ T}.
Now each fractional ideal of F is naturally a lattice under the Minkowski em-

bedding σ : F → Rn by x 7→ (xv)v. Denote by SV(L) the set of shortest vectors in
a lattice L. Then the map

{a ∈ ZF : |av| ≤ T for all v and a ∈ SV(aZF )} → {b : N b ≤ x and [b] = [a]}
a 7→ b = aa−1

is a surjective map of finite sets. If we draw an element a ∈ ZF on the left-hand
side with probability 1/# SV(aZF ) and an ideal b on the right-hand side uniformly,
then this map preserves probabilities.

Therefore, we may compute a uniformly random ideal b as follows. First, we
compute a uniformly random element a ∈ a−1 such that N(a) ≤ x/N a and let
b = aa. We find such an element a by finding a uniformly random element a ∈
a−1 of (square) norm ≤ nT 2 in the Minkowski embedding, which can be done in
probabilistic polynomial time by Lemma 6.7. If N a > T , we return and compute
another random a. Given a with N a ≤ T , we compute the shortest vectors in the
lattice aZF , which can be done in deterministic polynomial time by Lemma 6.5
(since a is of polynomial size, the lattice aZF has a basis which is of polynomial
size with the constant depending on the size of a basis for ZF ). If a is not a shortest
vector, we return and compute another element a; if a is a shortest vector, then we
keep a with probability 1/# SV(aZF ) and otherwise return. �

We conclude this section by analyzing the runtime of the principalization algo-
rithm.
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Proposition 6.9. Algorithm 6.3 runs in deterministic polynomial time in the size
of the input over a fixed totally real field F .

Proof. In Step 1, we must solve Problem (ClassUnitGroup) for the field F which can
be done in constant time. In Step 2, we note that logC is of polynomial size in the
input, with the constant depending only on F . In Step 3, there are at most 2n−1

totally positive units z. For each, in Step 3(a) the Z-lattice aI has basis vectors with
norm of polynomial size in the input pseudobasis for I, with the constant depending
on F . In Step 3(b) we find the shortest vectors in this lattice, and by Lemma 6.5
this can be performed in deterministic polynomial time in fixed dimension. �

Remark 6.10. We now present an alternative approach to Corollary 3.6 which
solves Problem 2.7 (IsConjugate) for a definite algebra by constructing an isomor-
phism directly. Let

O(B) = {ϕ ∈ EndF (B) : nrd(ϕ(x)) = nrd(x) for all x ∈ B}
where EndF (B) denotes the endomorphisms of B as an F -vector space, and

SO(B) = {ϕ ∈ O(B) : det(ϕ) = 1}.
It is well known (see e.g. Dieudonné [16, Appendix IV, Proposition 3]) that

SO(B) = {φ : x 7→ νδxδ−1 : ν, δ ∈ B∗, nrd(ν) = 1}.
Since conjugation is an order-preserving anti-automorphism of determinant −1, we
have the following result: Two orders O and O′ of B are conjugate if and only if
there exists ϕ ∈ O(B) such that ϕ(O) = O′.

Therefore, such an isometry can be found using the approach described by
Plesken and Souvignier [40].

Remark 6.11. For a definite quaternion order O, we define its theta series simply
to be the theta series of the corresponding lattice under the quadratic form Tr nrd,
i.e.,

θ(O; q) =
∑
ξ∈O

qTr nrd(ξ) ∈ Z[[q]].

Isomorphic quaternion orders have the same theta series, and so given a complete
set of representatives {Oi} for the set of conjugacy classes of (definite) Eichler
orders of a given level, one can identify the conjugacy class of a given order O by
comparing the first few coefficients of their theta series. This approach is more
efficient in practice to show that two orders are not conjugate than to test for
conjugacy directly.

In this way, one can also show that two right ideals of an order O are not
isomorphic, by showing that their left orders are not conjugate, and this idea can
be used in practice to speed up the enumeration of ideal classes.

7. Computing the class set for definite orders

In this section, we discuss Problem 2.2 (ClassSet) in the totally definite case. The
key algorithm is the S-neighbors algorithm (Algorithm 7.4), but see also Algorithm
7.10, and its running time is analyzed in Proposition 7.7. The main result (the
definite case of Theorem B) appears as Theorem 7.9. As in the previous section,
let B be a totally definite quaternion algebra of discriminant D and let O ⊂ B be
an Eichler order of level N.
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One way to solve Problem (ClassSet) is to simply enumerate the right invertible
fractional O-ideals in some way, building a list of ideal classes by testing each ideal
(an instance of Problem (IsIsomorphic)) to see if it is isomorphic to any ideal in
the list, and stopping when one knows that the list is complete. Ultimately, our
methods to solve Problem (ClassSet) will be a variant of just this simple idea. We
use the mass formula (Proposition 5.1) and the accompanying solution to Problem
(ClassNumber) and stop when equality holds. (See also Remark 7.5 below for the
use of the alternate mass formula.)

Remark 7.1. In the commutative case, one bounds the norm of the ideals in a
generating set for ClZF using a Minkowski-like bound (or the Bach bound, assum-
ing the GRH). One can in a similar way use the geometry of numbers in the case
of quaternion algebras: the first author [27] has proven that if O is maximal, every
ideal class in ClO is represented by an ideal I with

nrd(I) ≤Mnd
2
F

√
ND

where Mn is a constant growing exponentially with n. Although this bound is
effective, just as in the commutative case, it would be all but useless in practice
except in the simplest cases.

To enumerate ideals, we note that the group ClZF acts on the set of isomorphism
classes of fractional right O-ideals by multiplication (on the left or right). We say
that an invertible right (integral) O-ideal I is primitive if I is not contained in any
nontrivial two-sided ideal of the form J = aO with a ⊂ ZF . We note that I ⊂ J if
and only if IJ−1 ⊂ O is integral, and if I ⊂ J then nrd(J) | nrd(I) so I is contained
in only finitely many two-sided ideals J .

Therefore, to enumerate all right O-ideals, we enumerate the products JI of
primitive right O-ideals I and two-sided ideals J = aO. To enumerate primitive
right ideals, we employ the following lemma. For a commutative ring R, we denote
by

P1(R) = {(x, y) : xR+ yR = R}/R∗

the points of the projective line over R, and denote by (x : y) the class of (x, y) in
P1(R).

Lemma 7.2. Let a be an ideal of ZF coprime to DN. Then the set of primitive
right invertible O-ideals of norm a are in bijection with P1(ZF /a). Explicitly, given
a splitting

φa : O ↪→ O⊗ZF
ZF,a ∼= M2(ZF,a)→M2(ZF /a)

the bijection is given by

P1(ZF /a)→ {I ⊂ O : nrd(I) = a}

(x : y) 7→ I(x:y) = φ−1a

(
x 0
y 0

)
O + aO.

Proof. We may refer to Vignéras [44, Chap. II, Théorème 2.3(3)]); for convenience,
we give a proof here.

It is clear that the ideal I(x:y) is a right O-ideal of norm a; it is invertible since
it is locally principal, and it is primitive since the only two-sided ideals with norm

dividing a are of the form pO with p | a, and

(
x 0
y 0

)
6∈ pM2(ZF,a) for any such p.
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To prove the lemma, it suffices to construct an inverse map. Let I be a right
invertible O-ideal of norm a. Then φa(I) is a right principal M2(ZF /a)-ideal, say,
generated by ξ ∈M2(ZF /a). We have det(ξ) = 0, so the kernel

V = {v ∈ (ZF /a)2 : vξ = 0}

of ξ acting on the right is nonzero. We claim in fact that V is a free ZF /a-module
of rank 1. Indeed, for each prime p | a, we have V/pV one-dimensional since I is
primitive and hence ξ 6≡ 0 (mod p); it follows from a Hensel lift that V/peV is also
one-dimensional, and the claim then follows by the Chinese remainder theorem.
This argument also shows that a generator v = (x, y) of V has (x : y) ∈ P1(ZF /a)
(and this element is unique), since this is true modulo p for all p | a. Thus the
association I 7→ (−y : x) is well-defined, and it is easy to see that this furnishes the
desired inverse. �

One natural way to enumerate primitive ideals I would be to order them by
N(nrd(I)), the absolute norm of their reduced norm. Alternatively, one may restrict
the set of possible reduced norms as follows.

Proposition 7.3 (Strong approximation). Let S be a nonempty set of (finite)
prime ideals of ZF coprime to D which generate ClS∞ ZF . Then there exists a set
of representatives I for ClO such that nrd(I) is supported in S.

Proof. See Vignéras [44, Theorème III.4.3] and the accompanying discussion. �

Let a be a squarefree ideal of ZF , and let I, J be right invertible O-ideals. Then
J is said to be a a-neighbor of I if I ⊃ J and nrd(J) = anrd(I), or equivalently if
[I : J ] = a2, the index taken as ZF -lattices. Following Schulze-Pillot [43], Pizer [39],
Kohel [29], and Mestre [37]), we enumerate primitive ideals by iteratively enumerate
the p-neighbors as follows.

Algorithm 7.4 (S-neighbors). Let O be an Eichler order of level N in a quaternion
algebra B of discriminant D, and let S be a nonempty finite set of prime ideals of ZF
coprime to DN that generate ClS∞ ZF . This algorithm solves Problem (ClassSet).

(1) Solve (ClassNumber) as in Theorem 5.6 and let H = # ClO.
(2) Compute ClZF and compute a set C of representatives of the set of ideals

of ZF supported at S modulo principal ideals.
(3) Initialize I := ∅, F := {O}, and Fnew := ∅.
(4) For each I ∈ F , compute the primitive p-neighbors I ′ of I using Lemma

7.2 for p ∈ S. For each such I ′, determine if I ′ is isomorphic to any ideal
in I ∪Fnew by an algorithm to solve (IsIsomorphic); if not, add JI ′ to Fnew

for all J ∈ C.
(5) Set I := I ∪ F , F := Fnew and Fnew := ∅. If #I = H, return I, otherwise

return to Step 4.

Proof of correctness. The algorithm enumerates all right invertible O-ideals with
norm supported at S by the discussion preceding Lemma 7.2 and so will find all
ideal classes by Proposition 7.3. �

Our algorithm was inspired by the implementation due to Kohel in the computer
algebra system Magma [4] for definite quaternion algebras over Q.
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Remark 7.5. In Algorithm 7.4, one can alternatively use the mass formula as in
Remark 5.2; here, one trades the difficulty of computing the class number directly
with computing the unit index [O∗ : Z∗F ] for each order O = OL(I). To compute
this unit index, we consult Vignéras [45, Theorem 6]. If all totally positive units
of ZF are squares, then the group OL(I)∗/Z∗F is just the set of shortest vectors in
OL(I), i.e., the reduced norm 1 subgroup O∗1 modulo {±1}, and this group can be
computed by lattice enumeration. Otherwise, if the norm 1 subgroup is not cyclic,
then O∗/Z∗F is at most an extension of O∗1/{±1} of index 2 and we can explicitly
write down candidates for this extension. If the norm 1 subgroup is cyclic, then we
must fall back on a lattice search in O.

To analyze the running time of Algorithm 7.4 , we now examine the distribu-
tion of ideal classes among ideals following this enumerative strategy. Let S be a
nonempty finite set of ideals of ZF coprime to DN (as in Algorithm 7.4 ). Let G(S)
be the graph with vertices [I] ∈ Cl(O) and edges as follows: for a vertex [I], choose
a representative ideal I, and for each primitive n-neighbor J with n ∈ S, draw an
edge from [I] to [J ]. By Lemma 7.2 , Γ(S) is k-regular (the out degree of each
vertex is k), where k =

∑
n∈S Φ(n) and

Φ(n) =
∏
pe‖n

Npe−1(Np + 1).

When S = {n} consists of a single ideal, we abbreviate G(S) by simply G(n).
Suppose now that the map nrd : S → ClS∞(ZF ) is surjective (i.e., that norms

of ideals in S cover all narrow ideal classes of ZF ). Then the set of vertices of the
quotient G(S) is a set of representatives for ClO by Proposition 7.3 .

The graphsG(p) are known in many cases to be Ramanujan graphs, graphs whose
eigenvalues other than ±k have absolute value at most 2

√
k − 1, and are therefore a

type of expander graphs. In the simplest case where F = Q and S = {p}, they were
first studied by Ihara, then studied in specific detail by Lubotzky, Phillips, and
Sarnak [35] and Margulis [36]: the nontrivial spectrum of G(p) can be identified
with the spectrum of the Hecke operators acting on the space of cusp forms of weight
2 on Γ0(p), and the eigenvalue bound then follows from the Ramanujan-Petersson
conjecture, a consequence of the Eichler-Shimura isomorphism and Deligne’s proof
of the Weil conjectures (though strictly speaking, one only needs the result in weight
2, so could be derived from earlier results of Eichler, Igusa, Weil, and Shimura).
Charles, Goren, and Lauter [9] have shown that the same is true for graphs G(l)
under the following set of hypotheses: F is a totally real field of narrow class number
one, B ∼= Bp⊗QF where Bp is the quaternion algebra of discriminant p over Q and
p is unramified in F , and l is a prime ideal of ZF coprime to p. We note that there
are further constructions due to Jordan and Livné [25].

Let T (S) be the adjacency matrix of G(S). We begin by discussing the inter-
pretation of T (S) as representing the action of a Hecke operator on the space of
Hilbert modular forms. We refer the reader to work of Dembélé and the second
author [53] for a computational point of view on the statements below, and the
references therein for further information.

The graph G(n), for an ideal n coprime to DN, represents the action of a Hecke
operator on a certain space of quaternionic modular forms of level N for the quater-
nion algebra B. By the Jacquet-Langlands correspondence [55] (see also e.g. work of
Hida [54]), this space as a Hecke module (finite-dimensional C-vector space equipped
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with the action of Hecke operators) is isomorphic to a subspace M2 of the space
of Hilbert modular forms of parallel weight 2 and level DN. Therefore, we may
identify eigenvectors of T (S) with Hilbert modular eigenforms.

Since the adjacency matrix T (S) of the graph G(S) is the sum of the adjacency
matrices of the graphs G(n) for n ∈ S, the matrix T (S) represents the action of the
operator

TS =
∑
n∈S

Tn.

For n coprime to DN, the operators Tn are semisimple and pairwise commute,
and so there is a set of common eigenforms for all Tn which span M2. The space
M2 = S2 ⊕ E2 breaks up accordingly into a space of Eisenstein series E2 and a
space of cusp forms S2.

We now apply eigenvalue bounds coming from geometry. We first discuss the
Eisenstein series. The space of Eisenstein series E2 corresponds, under Jacquet-
Langlands, to the standard Eisenstein series and its twists by Hilbert class charac-
ters, and is spanned by those vectors which “factor through the reduced norm”, i.e.,
vectors of the form aI [I] with aI = aJ whenever [nrd(I)] = [nrd(J)] ∈ ClS∞(ZF ).
The eigenvectors are then given concretely as follows: for every irreducible charac-
ter χ of ClS∞(ZF ), the vector vχ = (χ([nrd(I)]))[I]∈Cl(O) is an eigenvector of T (p)
with eigenvalue

χ([p])Φ(p)

and thus an eigenvector of T (S) with eigenvalue∑
n∈S

χ([n])Φ(n).

Now we turn to eigenvalue bounds for the remaining space S2 of cusp forms. (We
obtain exactly those cusp forms of level DN which are new at all primes dividing
D, but this is not relevant for our bounds.) The general result we will need is due
to Livné [34], as follows.

Theorem 7.6. Let p be a prime with p - dFDN. Then the eigenvalues of Tp acting
on the space of cusp forms S2 are bounded by 2

√
Np. In particular, the graph G(p)

is Ramanujan if p - dFDN.

Proof. See the proof of the Ramanujan-Petersson conjecture for Hilbert modular
forms by Livné [34, Theorem 0.1] and the accompanying discussion. �

Suppose from now on that n is squarefree. Since Tn =
∏

p|n Tp, it follows that

the eigenvalues of Tn acting on S2 are bounded by
∏

p|n 2
√
Np and accordingly the

eigenvalues of TS on S2 are bounded by∑
n∈S

∏
p|n

2
√
Np.

Finally, the space M2 = E2⊕S2 is equipped with a natural inner product coming
from the Jacquet-Langlands correspondence called the Petersson inner product,
under which cuspidal eigenforms are mutually orthogonal and E2 is the orthogonal
complement of S2. This inner product on the free Z-module spanned by [I] ∈ Cl(O)
is defined by

〈[I], [J ]〉 = δ[I],[J]wI/2

where wI = #OL(I)×/Z×F and δ[I],[J] = 0 or 1 according as [I] 6= [J ] or [I] = [J ].
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More is true: in fact, the matrix T (S) is normal with respect to this inner
product. Since this is a key point in our proof and the source of our original
mistake, we give a proof.

Claim. T = T (S) is normal with respect to the Petersson inner product.

Proof. Let I1, . . . , IH be representatives of the right ideal classes of O; for i =
1, . . . ,H let Oi = OL(Ii), Γi = O×i /Z

×
F and wi = #Γi. We have shown that T has

a basis of eigenvectors; we show that these eigenvectors are orthogonal with respect
to the Petersson inner product: this is true already for the ones corresponding to
cusp forms, so it is enough to show that the vectors vχ are orthogonal.

Since the eigenvalue of T (p) on vχ is χ([p])Φ(p), by the Chebotarev density
theorem we can choose primes p so that the eigenvalues of vχ are distinct for each
χ. Since there is a common basis of eigenvectors for all T (p), we conclude that
this common eigenbasis is unique (unordered). Therefore, if we show that T (p)
is normal for each prime p, so the eigenbasis is orthogonal, then this is also an
eigenbasis for T (S), so T (S) is normal.

So suppose that S = {p}. Let m be the order of [p] ∈ ClS∞(ZF ). We will show
that Tm is self-adjoint.

An inclusion J = xIi ⊂ Ij with nrd(J) = nrd(Ij)p corresponds to an element

x ∈ IjI−1i with nrd(xIiI
−1
j ) = p and x is uniquely determined by Ii and J = xIi

up to multiplication on the right by an element of O×i . Therefore by definition, the
coefficient T (S)i,j is equal to the cardinality of the set

{x ∈ IjI−1i : nrd(xIiI
−1
j ) = p}/O×i

which is
1

wi
#{x ∈ IjI−1i : nrd(xIiI

−1
j ) = p}/Z×F .

We similarly see that the coefficient wi(T
m)i,j , interpreted as the (weighted)

number of paths in G(S) of length m, is equal to

wi(T
m)i,j = #Θi,j(p

m)

= #{x ∈ IjI−1i : nrd(xIiI
−1
j ) = pm}/Z×F .

If (Tm)i,j = 0, then (Tm)j,i = 0 as well by the argument below. So suppose that

Θi,j(p
m) is nonempty. Then [nrd(IiI

−1
j )] = [pm nrd(x)−1] = 1, so there exists a

totally positive aij ∈ ZF such that aijZF = nrd(IiI
−1
j ). We define a map

Θi,j(p
m)→ Θj,i(p

m)

x 7→ aijx

where the bar indicates conjugation in B. Indeed, if x ∈ Θi,j(p
m) then x ∈ IjI−1i

so

x ∈ Ii
−1
Ij = IiI

−1
j nrd(IjI

−1
i )

so aijx ∈ IiI−1j ; and

nrd(aijxIjI
−1
i ) = nrd(x)a2ij nrd(IjI

−1
i ) = nrd(xIiI

−1
j ) = pm.

Therefore, this map is a bijection, so wi(T
m)i,j = wj(T

m)j,i, and thus Tm is self-
adjoint as claimed.
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Now, in view of our comments above, the (uniquely defined) eigenbasis for T is
an eigenbasis for Tm and so is pairwise orthogonal by the spectral theorem, thus T
is normal. �

Define the distance d(v, w) between two vertices v, w in the graph G(S) to be
the length of the shortest path between them, and define the diameter of G to be
D(G) = maxv,w d(v, w). To estimate the run time of the S-neighbors algorithm (7.4
), we bound the diameter in a special case. Recall that for coprime ideals D,N, by
Remark 5.2 we have the mass formula

M(D,N) =
∑

[I]∈Cl(O)

1

wI
.

Let wmax = max[I]∈Cl(O) wI .

Proposition 7.7. Let S be a finite set of primes p of ZF representing ClS∞(ZF )
with p - dFDN. Let p be the smallest prime in S. Let m be the smallest positive
integer which is congruent to 1 modulo the exponent of ClS∞(ZF ) which satisfies

m >
log(M(D,N)wmax/h

+(ZF ))

log
(
(Np + 1)/(2

√
Np)

) .

Then D(G(S)) ≤ m.

Proof. We follow the proof of Chung [10]. We want to find the minimum value of
m such that T (S)m has all entries nonzero.

As in the proof of the claim, let I1, . . . , IH be representatives of the right ideal
classes of O; for i = 1, . . . ,H, let wi = #(OL(Ii)/Z×F ) and pi = nrd(Ii), and let W
be the diagonal matrix with entries 1/wi. Abbreviate M = M(D,N).

Let 1 ≤ r, s ≤ H be indices. We have T (S) =
∑

p∈S T (p) so

(T (S)m)r,s ≥
∑
p∈S

(T (p)m)r,s.

For indices r, s, let pr,s be such that [pr,s] = [p−1s pr], possible since p covers
ClS∞(ZF ). Then (T (S)m)r,s ≥ (T (p)m)r,s. So without loss of generality, we may
assume S = {pr,s}. To simplify, abbreviate p = pr,s and T = T (S).

Let χ1, . . . , χh+ be the irreducible characters of ClS∞(ZF ), so h+ = h+(ZF ). For
i = 1, . . . , h+, let

ui =
1√
M

(χi([pj ]))j=1,...,H

be the eigenvector corresponding to an Eisenstein series, with eigenvalue

χi([p])(Np + 1).

Then the eigenvectors ui are orthonormal with respect to the matrix W , i.e.,
uiWu∗j = δij for i, j = 1, . . . , h+, where ∗ denotes conjugate transpose.

Complete u1, . . . , uh+ to a basis u1, . . . , uH of (row) eigenvectors for T normalized
so that uiWu∗i = 1 for all i. Then by the orthogonality relations of the Petersson
inner product, we have uiWu∗j = 0 for all i 6= j. Let U be the matrix with rows
ui. Then UWU∗ = 1, and since W is diagonal with positive diagonal entries, if
V = U

√
W (taking positive square roots), then V −1 = V ∗ is unitary.
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Now let D be the diagonal matrix whose diagonal entries are the eigenvalues

λ1, . . . , λH of u1, . . . , uH . Let T ′ =
√
W
−1
T
√
W . Then for any m ≥ 0, since W is

diagonal we have

(T ′)m =
√
W
−1
Tm
√
W =

√
W
−1
U−1DmU

√
W = V ∗DmV.

Note that (T ′)m has nonnegative real entries, and since Tm has positive entries if
and only if (T ′)m does, we may proceed using the argument in Chung’s proof.

Let vi be the rows of V . We have T ′ =
∑H
i=1 λiv

∗
i vi and so for r, s ∈ 1, . . . ,H,

the r, s-entry of (T ′)m is equal to

((T ′)m)r,s ≥
H∑
i=1

λmi (v∗i vi)r,s =

h+∑
i=1

λmi (v∗i vi)r,s +

H∑
i=h+1

λmi (v∗i vi)r,s.

Then the first term is equal to

h+∑
i=1

λmi (v∗i vi)r,s =
1

M
√
wrws

h+∑
i=1

χi([pr])χi([ps])
(
χi([p])(Np + 1)

)m
=

1

M
√
wrws

(Np + 1)m
h+∑
i=1

χi([psp
m])χi([pr]).

Now the theory of character sums says that for a finite abelian groupG and x, y ∈ G,

the sum over the set of all irreducible characters Ĝ∑
χ∈Ĝ

χ(x)χ(y) =

{
#G, if x = y;

0, if x 6= y.

Therefore the inner first sum is h if [psp
m] = [pr] and 0 otherwise.

We now suppose m ≡ 1 (mod exp(ClS∞(ZF ))) where exp denotes the exponent
of the group. Recall that we chose p so that [p] = [p−1s pr]. Therefore we have

h+∑
i=1

λi(v
∗
i vi)r,s ≥

h+

M
√
wrws

(Np + 1)m.

Let λ = 2
√
Np. Then |λi| ≤ λ for i = h + 1, . . . ,H. Continuing with the second

sum, we reason as Chung that∣∣∣∣∣∣
H∑

i=h++1

λmi (v∗i vi)r,s

∣∣∣∣∣∣ ≤ λm
1−

h+∑
i=1

|(vi)r|2
1/21−

h+∑
i=1

|(vi)s|2
1/2

= λm
(

1− h+

Mwr

)1/2(
1− h+

Mws

)1/2

≤ λm.

Let t = h+/(M
√
wrws) and k = Np + 1. Then putting these together, we have

((T ′)m)r,s ≥ tkm − λm.

Thus ((T ′)m)r,s > 0 whenever

m >
log(t)

log(λ/k)
=

log(M
√
wrws/h

+)

log(k/λ)
.
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To obtain an estimate for all indices r, s, let wmax = maxi wi, let pmin =
minp∈S Np and kmin = Npmin + 1, and λmin = 2

√
Npmin. Then for

m >
log(Mwmax/h

+)

log kmin/λmin

with m ≡ 1 (mod exp(ClS∞(ZF ))) we have that every coefficient of (T ′)m is posi-
tive. This completes the proof of the proposition. �

Before proving the definite case of Theorem B, we prove one further lemma.

Lemma 7.8. There exists an algorithm which, given an ideal class [a] ∈ ClS∞(ZF )
and a finite set T of primes of ZF , computes in probabilistic polynomial time a
prime p 6∈ T such that [p] = [a] and N p = O(log2∏

q∈T N q) for a fixed totally real
field F .

Proof. We use a (weak) version of the effective Chebotarev density theorem due to
Lagarias and Odlyzko, applied to the strict Hilbert class field of F . For an ideal
class [a] ∈ ClS∞(ZF ), define the counting function

π[a](x) = #{p ⊂ ZF prime : [p] = [a] and N p ≤ x}

for x ∈ R≥2. Then, by Lagarias and Odlyzko [30, Theorems 1.3–1.4], there exists
an effectively computable constant x0 > 0 which depends only on F such that for
all [a] ∈ ClS∞(ZF ) and all x ≥ x0, we have

(7.1)

∣∣∣∣π[a](x)− 1

h

x

log x

∣∣∣∣ ≤ 1

2h

x

log x

where h = # ClS∞ ZF . (In fact, they prove a certainly stronger bound on the error
and show that log x0 = (dFn)O(1), but this weak version suffices for our purposes.)

We begin with two precomputation steps. We first compute the constant x0,
the strict class group ClS∞ ZF , and factor the discriminant dF . Next, for each
(rational) prime p ≤ ZF with p ≤ x, we factor pZF and see if there exists a prime
p | p such that [p] = [a] and p 6∈ T . If so, we return the ideal p. If not, then for all
primes p with [p] = [a] we have p ∈ T .

Let N(T ) =
∏

q∈T N q and let x = max(x0, log2 N(T ), (4h)4). Clearly x =

O(log2 N(T )). Then

#T ≤ N(T ) ≤
√
x ≤ x

4h log x
.

By (7.1), we have

π[a](x)−#T

x
>

1

2h log x
− 1

4h log x
=

1

4h log x
.

We have that #{b ∈ [a] : N b ≤ x} ≤ cx for some constant c > 0. Therefore, by
employing the algorithm of Lemma 6.8 , we can find in probabilistic polynomial
time a prime ideal p with [p] = [a], N p ≤ x, and p 6∈ T . �

We now prove the definite case of Theorem B.

Theorem 7.9. There exists an algorithm to solve Problem (ClassSet) for definite
orders with factored discriminant over a fixed field F which runs in probabilistic
polynomial time in the output size.
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Proof. We use Algorithm 7.4 . We must, for a given order O of discriminant
d = DN, choose a set S of primes p of ZF which represents the elements of the
narrow class group ClS∞ ZF such that p - dFDN. We do this by first computing
a set of representatives for ClS∞ ZF (which runs in constant time for fixed F ) and
then using the algorithm of Lemma 7.8 with T = {p : p | dFDN}, which runs in
probabilistic polynomial time in the size of the input.

We now refer to Proposition 7.7 . We claim that we may arrange so that the
diameter D(G) of the S-neighbors graph G = G(S) is D(G) = 1. The quantity

log(M(D,N)wmax/h
+(ZF ))

log
(
(Np + 1)/(2

√
Np)

) .

has numerator of size O(logH), so by taking the smallest prime p ∈ S to be
sufficiently large and of polynomial size, we can assume this quantity is ≤ 1.

With the set S now computed, we employ Algorithm 7.4 . Step 1 can be per-
formed in probabilistic polynomial time over a fixed totally real field F and we have
already performed Step 2. We conclude from Theorem 7.7 that Step 3 requires a
number of calls to Problem (IsPrincipal) which is polynomial in the size of the output
H = # ClO, each with input of polynomial size. In solving Problems (IsIsomorphic)
and consequently (IsPrincipal), we only need to check ideals with the same reduced
norm, since S consists of primes representing each element in the narrow class
group and D(G) = 1, if [I] = [J ] then [nrd(I)] = [nrd(J)] so nrd(I) = nrd(J). By
Proposition 6.9 , each call to Algorithm 6.3 runs in deterministic polynomial time,
and the proof is complete. �

We conclude by proposing an alternative to Algorithm 7.4 which solves Problems
2.2 (ClassSet) and 2.8 (ConjClassSet) simultaneously by computing two-sided ideals
and connecting ideals, as in Proposition 2.10. This algorithm appears to perform
better than Algorithm 7.4 in practice, though we do not prove anything rigorous
along these lines.

Algorithm 7.10. Let O be an Eichler order of level N. This algorithm outputs a
set E = {Oi} of representatives of the conjugacy classes of Eichler orders of level
N, a set C = {Ci} of integral invertible right O-ideals such that OL(Ci) = Oi, and
a set I of representatives of ClO.

(1) Solve (ClassNumber) as in Theorem 5.6 and let H = # ClO.
(2) Initialize E , C := {O}. Let I be a system of representatives for the two-sided
O-ideal classes as in Proposition 3.2.

(3) Choose Oi ∈ E and p an ideal of ZF coprime to DN, and compute the set
J of primitive right Oi-ideals with norm p as in Lemma 7.2.

(4) For all I ∈ J such that OL(I) is not isomorphic to any order in E , ap-
pend OL(I) to E , and append {JICi}J to I where J ranges over a set of
representatives for the two-sided OL(I)-ideal classes.

(5) If #I = H, return E , C, I; otherwise, return to Step 3.

Proof of correctness. The completeness of I follows from Proposition 2.10 once
we show that the algorithm eventually enumerates all conjugacy classes of orders.
Indeed, let O′ be an Eichler order of level N; then there exists an integral, invertible
right O′,O-ideal I. By Strong Approximation (Proposition 7.3), we may assume
that nrd(I) is coprime to DN. As in the proof of Lemma 3.1, I factors into a
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product I = I1I2 · · · Ir where each Ij is an invertible integral ideal of prime reduced
norm with OR(Ij) = OL(Ij+1). The result now follows. �

Remark 7.11. In practice, the ability to choose prime ideals p of small norm in
Step 3 is essential to enumerate only a small number of ideals of norm p; for this
reason, we find that it is usually faster to check different orders Oi than to compute
with only one fixed order as in Algorithm 7.4. Nevertheless, the primes p in Step 3
must be chosen in a way such that they generate the narrow class group of ZF .

Moreover, if some of the orders Oi have more than one isomorphism class of
two-sided ideals, they contribute to I accordingly, which speeds up the enumera-
tion. In this case, the alternative evaluation of the mass formula (Remark 7.5) also
simplifies, since all right O-ideals with conjugate left orders have the same mass.
On the other hand, if each Oi has only the trivial two-sided ideal class, a condition
which is not obviously anticipated, then Algorithm 7.10 may take somewhat longer
than Algorithm 7.4.

8. Definite Eichler orders with class number at most two

In this section, we list all definite Eichler orders O with h(O) ≤ 2. From (5.1)
and Proposition 5.1, for such an order we have

2 ≥ h(O) ≥M(O) ≥ 21−n|ζF (−1)| ≥ 2

(4π2)n
d
3/2
F

and hence

(8.1) δF = d
1/n
F ≤ (2π)4/3 ≤ 11.594.

By the Odlyzko bounds, there are only finitely many such fields and they have
been explicitly enumerated [48]: we have 1, 39, 47, 108, 37, 40, 4, 3 fields of degrees
n = 1, 2, 3, 4, 5, 6, 7, 8, respectively, and no field satisfying the bound (8.1) with
n ≥ 9, for a total of 279 fields.

For each such field, using the methods of §5 (Proposition 5.4) we compute the
mass M(ZF ,ZF ); then for an Eichler order of level N in a quaternion algebra of
discriminant D over F , we have

M(D,N) = M(ZF ,ZF )Φ(D)Ψ(N) ≤ 2

which gives a finite list of possible ideals D,N. For each such possibility, we compute
the corresponding class number using the Eichler mass formula as in Theorem 5.6.
To check the computation, we also enumerate the ideal classes explicitly as in §6
(using Algorithm 7.10 and the alternate mass formula, Remark 5.2) and see that
in all cases they match.

We consider two Eichler orders, specified by the ideals D,N of ZF and D′,N′

of ZF ′ , to be equivalent if there is an isomorphism σ : F
∼−→ F ′ of fields such that

σ(D) = D′ and σ(N) = N′. Two equivalent Eichler orders have the same class
number by the mass formula.

Proposition 8.1. There are exactly 74 equivalence classes of definite Eichler orders
with class number 1 and 172 with class number 2.

These classes are listed in Tables 8.2–8.3. Here we list the degree n, the discrimi-
nant dF of F , and the norms D and N of the discriminant D and level N. This way
of recording orders is compact but ambiguous; nevertheless, in all cases the field F
is determined by its discriminant, and in all but a handful of cases, for any choice
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of squarefree D and coprime N an Eichler order of level N in a quaternion algebra
of discriminant D has the given class number. For the handful of exceptions, we
refer to the complete tables which are available online [28].

We note that the results in Table 8.2 for F = Q agree with those of Brzeziński
[6] (when restricted to Eichler orders).

Table 8.2: Definite Eichler orders O with class number h(O) = 1.

n dF D N n dF D N n dF D N n dF D N
1 1 2 1 2 8 1 1 3 49 7 1 4 725 1 1

2 3 1 2 8 1 1 11
2 5 1 4 13 1 1 19
2 9 1 7 29 1 1 29
2 11 1 8 43 1 1957 1 1
3 1 1 14 81 3 1 1 3
3 2 1 16 3 8 1 9
3 4 1 23 19 1 2777 1 1
5 1 14 1 37 1 1 2
5 2 18 1 148 2 1 1 4
7 1 50 1 2 5 5 24217 5 1
13 1 13 1 1 5 1

2 5 1 1 1 3 5 2
1 4 1 9 13 1
1 5 12 1 169 5 1
1 9 17 1 1 13 1
1 11 1 2 316 2 1
1 16 1 4 2 2
1 19 321 3 1
1 20
1 25
1 29
1 44
1 59
20 1
44 1
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Table 8.3: Definite Eichler orders O with class number h(O) = 2.

n dF D N n dF D N n dF D N n dF D N
1 1 2 7 2 8 1 9 3 49 7 8 4 725 1 16

2 15 1 17 7 13 1 25
2 17 1 28 7 27 1 31
2 23 1 31 8 7 1 41
3 5 1 32 13 7 1 49
3 7 1 47 13 13 1 79
3 8 14 7 27 1 1 89
3 11 34 1 41 1 1125 1 1
5 3 62 1 71 1 1 5
5 4 63 1 97 1 1 9
7 2 12 1 1 113 1 1 29
7 3 1 2 127 1 1 59
11 1 1 3 81 3 17 80 1
17 1 1 4 3 19 1600 1 1
19 1 1 6 8 1 1957 1 7
30 1 1 8 17 1 1 23
42 1 1 11 19 3 21 1
70 1 1 12 73 1 2000 20 1
78 1 1 23 148 2 17 2048 1 1

2 5 1 31 6 1 2 23 2225 1 1
1 36 6 11 5 4 2304 18 1
1 41 26 1 17 1 2525 1 1
1 45 39 1 25 1 2624 1 1
1 49 50 1 169 5 5 2777 1 8
1 55 13 1 4 8 1 1 11
1 64 1 9 229 2 1 3981 1 1
1 71 1 17 4 1 15 1
1 79 1 23 7 1 4205 1 1
1 80 9 1 257 3 1 4352 14 1
1 81 12 3 5 1 4752 12 1
1 89 39 1 7 1 6809 1 1
1 95 17 1 4 316 2 1 5 14641 11 1
1 99 1 8 2 4 23 1
20 9 4 1 321 3 1 24217 17 1
36 1 18 1 3 3 36497 3 1
45 1 26 1 7 1 38569 7 1
55 1 21 1 1 361 7 1 13 1
95 1 1 3 404 2 1 6 300125 1 1
99 1 1 5 469 4 1 371293 1 1
124 1 12 1 568 2 1 434581 1 1
155 1 20 1 485125 1 1
164 1 24 6 1 592661 1 1

15 1
28 6 1
29 1 1
33 6 1
37 1 1
41 1 1
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[6] J. Brzeziński, Definite quaternion orders of class number one, J. Théorie Nombres Bordeaux
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