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Abstract. We recognize certain special hypergeometric motives, related to and inspired
by the discoveries of Ramanujan more than a century ago, as arising from Asai L-functions
of Hilbert modular forms.

1. Introduction

Motivation. The generalized hypergeometric functions are a familiar player in arithmetic
and algebraic geometry. They come quite naturally as periods of certain algebraic varieties,
and consequently they encode important information about the invariants of these varieties.
Many authors have studied this rich interplay, including Igusa [27], Dwork [13], and Katz
[29]. More recently, authors have considered hypergeometric motives (HGMs) defined over
Q, including Cohen [8], Beukers–Cohen–Mellit [3], and Roberts–Rodriguez-Villegas–Watkins
[36]. A hypergeometric motive overQ arises from a parametric family of varieties with certain
periods (conjecturally) satisfying a hypergeometric differential equation; the construction of
this family was made explicit by Beukers–Cohen–Mellit [3] based on work of Katz [29].
Following the analogy between periods and point counts (Manin’s “unity of mathematics”
[7]), counting points on the reduction of these varieties over finite fields is accomplished
via finite field hypergeometric functions, a notion originating in work of Greene [17] and
Katz [29]. These finite sums are analogous to truncated hypergeometric series in which
Pochhammer symbols are replaced with Gauss sums, and they provide an efficient mechanism
for computing the L-functions of hypergeometric motives. (Verifying the precise connection
to the hypergeometric differential equation is usually a difficult task, performed only in some
particular cases.)

In this paper, we illustrate some features of hypergeometric motives attached to particular
arithmetically significant hypergeometric identities for 1/π and 1/π2. To motivate this study,
we consider the hypergeometric function

(1.1) 3F2

(
1
2 ,

1
4 ,

3
4

1, 1

∣∣∣∣∣ z
)

=
∞∑
n=0

(1
2)n(1

4)n(3
4)n

n!3 zn,

where we define the Pochhammer symbol (rising factorial) by

(1.2) (α)n := Γ(α + n)
Γ(α) =

α(α + 1) · · · (α + n− 1), for n ≥ 1;
1, for n = 0.
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Ramanujan [34, eq. (36)] more than a century ago proved the delightful identity

(1.3)
∞∑
n=0

(1
2)n(1

4)n(3
4)n

n!3 (28n+ 3)
(
− 1

48

)n
= 16
π
√

3
involving a linear combination of the hypergeometric series (1.1) and its z-derivative (a
different, but contiguous hypergeometric function). Notice the practicality of this series for
computing the quantity on the right-hand side of (1.3), hence for computing 1/π and π itself.

The explanation for the identity (1.3) was already indicated by Ramanujan: the hyper-
geometric function can be parametrized by modular functions (see (2.4) below), and the
value −1/48 arises from evaluation at a complex multiplication (CM) point! Put into the
framework above, we observe that the HGM of rank 3 with parameters α = {1

2 ,
1
4 ,

3
4} and

β = {1, 1, 1} corresponds to the Fermat–Dwork pencil of quartic K3 surfaces of generic
Picard rank 19 defined by the equation
(1.4) Xψ : x4

0 + x4
1 + x4

2 + x4
3 = 4ψx0x1x2x3

whose transcendental L-function is related to the symmetric square L-function attached to a
classical modular form (see Elkies–Schütt [14]). At the specialization z = ψ−4 = −1/48, the
K3 surface is singular, having Picard rank 20; it arises as the Kummer surface of E × τ(E),
where E is the elliptic Q-curve LMFDB label 144.1-b1 defined over Q(

√
3) attached to the

CM order of discriminant −36, and τ(
√

3) = −
√

3. The corresponding classical modular
form f with LMFDB label 144.2.c.a has CM, and we have the identity
(1.5) L(T (X), s) = L(f, s, Sym2)
where T (X) denotes the transcendental lattice of X (as a Galois representation). The rare
event of CM explains the origin of the formula (1.1): for more detail, see Example 3.12
below.

Main result. With this motivation, we seek in this paper to explain similar hypergeomet-
ric Ramanujan-type formulas for 1/π2 in higher rank. Drawing a parallel between these
examples, our main result is to experimentally identify that the L-function of certain spe-
cializations of hypergeometric motives (coming from these formulas) have a rare property:
they arise from Asai L-functions of Hilbert modular forms of weight (2, 4) over real quadratic
fields.

For example, consider the higher rank analogue

(1.6)
∞∑
n=0

(1
2)n(1

3)n(2
3)n(1

4)n(3
4)n

n!5 (252n2 + 63n+ 5)
(
− 1

48

)n
?= 48
π2

given by Guillera [19]; the question mark above a relation indicates that it has been experi-
mentally observed, but not proven. Here, we suggest that (1.6) is ‘explained’ by the existence
of a Hilbert modular form f over Q(

√
12) of weight (2, 4) and level (81) in the sense that we

experimentally observe that

(1.7) L(H(1
2 ,

1
3 ,

2
3 ,

1
4 ,

3
4 ; 1, 1, 1, 1, 1 | −1/48), s) ?= ζ(s− 2)L(f, s+ 1,Asai)

where notation is explained in section 3. (By contrast, specializing the hypergeometric L-
series at other values t ∈ Q generically yields a primitive L-function of degree 5.) Our main
result, stated more generally, can be found in Conjecture 5.1.
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In spite of a visual similarity between Ramanujan’s 3F2 formula (1.3) for 1/π and Guillera’s
5F4 formula (1.6) for 1/π2, the structure of the underlying hypergeometric motives is some-
what different. Motives attached to 3F2 hypergeometric functions are reasonably well un-
derstood (see e.g. Zudilin [39, Observation 4]), and we review them briefly in Section 2. By
contrast, the 5F4 motives associated with similar formulas had not been linked explicitly
to modular forms. In Conjecture 5.1, we propose that they are related to Hilbert modular
forms, and we experimentally establish several other formulas analogous to (1.7).

More generally, for a hypergeometric family, we expect interesting behavior (such as a
formula involving periods) when the motivic Galois group at a specialization is smaller than
the motivic Galois group at the generic point. We hope that experiments in our setting
leading to this kind of explanation will lead to further interesting formulas and, perhaps, a
proof.

Organization. The paper is organized as follows. After a bit of setup in section 2, we
quickly review hypergeometric motives in section 3. In section 4 we discuss Asai lifts of
Hilbert modular forms, then in section 5 we exhibit the conjectural hypergeometric relations.
We conclude in section 6 with some final remarks.
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2. Hypergeometric functions

In this section, we begin with some basic setup. For α1, . . . , αd ∈ Q and β1, . . . , βd−1 ∈ Q>0,
define the generalized hypergeometric function

(2.1) dFd−1

(
α1, α2, . . . , αd
β1, . . . , βd−1

∣∣∣∣∣ z
)

:=
∞∑
n=0

(α1)n(α2)n · · · (αd)n
(β1)n · · · (βd−1)n

zn

n! .

These functions possess numerous features that make them unique in the class of special
functions. It is convenient to abbreviate (2.1) as

(2.2) dFd−1(α,β | z) = F (α,β | z),

where α = {α1, . . . , αd} and β = {β1, . . . , βd} = {β1, . . . , βd−1, 1} are called the parameters
of the hypergeometric function: they are multisets (that is, sets with possibly repeating ele-
ments), with the additional element βd = 1 introduced to reflect the appearance of n! = (1)n
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in the denominator in (2.1). The hypergeometric function (2.1) satisfies a linear homogeneous
differential equation of order d:

(2.3) D(α,β; z) :
(
z

d∏
j=1

(
z

d
dz + αj

)
−

d∏
j=1

(
z

d
dz + βj − 1

))
y = 0.

Among many arithmetic instances of the hypergeometric functions, there are those that
can be parameterized by modular functions. One particular example, referenced in the
introduction, is

(2.4) 3F2

(
1
2 ,

1
4 ,

3
4

1, 1

∣∣∣∣∣ ρ(τ)
)

=
(
η(τ)16

η(2τ)8 + 64 η(2τ)16

η(τ)8

)1/2

,

for τ ∈ C with Im(τ) > 0, where

(2.5) ρ(τ) := 256η(τ)24η(2τ)24

(η(τ)24 + 64η(2τ)24)2

and η(τ) = q1/24∏∞
j=1(1− qj) denotes the Dedekind eta function with q = e2πiτ . Taking the

CM point τ = (1 + 3
√
−1)/2, we obtain ρ(τ) = −1/48 and the evaluation [26, Example 3]

(2.6) 3F2

(
1
2 ,

1
4 ,

3
4

1, 1

∣∣∣∣∣ − 1
48

)
=
√

2
π 35/4

(
Γ(1

4)
Γ(3

4)

)2

.

As indicated by Ramanujan [34], CM evaluations of hypergeometric functions like (2.6) are
accompanied by formulas for 1/π, like (1.3) given in the introduction.

Remark 2.7. Less is known about the conjectured congruence counterpart of (2.6),

(2.8)
p−1∑
n=0

(1
2)n(1

4)n(3
4)n

n!3

(
− 1

48

)n
?≡ bp (mod p2)

for primes p ≥ 5, where

(2.9) bp :=


2(x2 − y2) if p ≡ 1 (mod 12), p = x2 + y2 with 3 | y;
−(x2 − y2) if p ≡ 5 (mod 12), p = 1

2(x2 + y2) with 3 | y;
0 if p ≡ 3 (mod 4).

The congruence (2.8) is in line with a general prediction of Roberts–Rodriguez-Villegas [35],
though stated there for z = ±1 only.

Ramanujan’s and Ramanujan-type formulas for 1/π corresponding to rational values of z
are tabulated in [6, Tables 3–6]. Known 5F4 identities for 1/π2 are due to Guillera [18, 19, 20,
21, 23], also in collaboration with Almkvist [1] and Zudilin [25]. We list the corresponding
hypergeometric data α and z for them in Table 2.10, we have β = {1, 1, 1, 1, 1} in all these
cases.

4



# α z reference
1 {1

2 ,
1
2 ,

1
2 ,

1
2 ,

1
2} −1/22 [20, p. 46], [1]

2 {1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2} −22 [25, eq. (2)]

3 {1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2} −1/210 [18, p. 603], [1]

4 {1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2} −210 [25, eq. (8)]

5 {1
2 ,

1
2 ,

1
2 ,

1
3 ,

2
3} (3/4)3 [21, eq. (17)], [1]

6 {1
2 ,

1
2 ,

1
2 ,

1
3 ,

2
3} −33 [23, eq. (36)]

7 {1
2 ,

1
5 ,

2
5 ,

3
5 ,

4
5} −55/28 [23, eq. (39)]

8 {1
2 ,

1
2 ,

1
2 ,

1
4 ,

3
4} 1/24 [18, p. 603], [1]

9 {1
2 ,

1
3 ,

2
3 ,

1
4 ,

3
4} −1/48 [19, eq. (2-3)], [1]

10 {1
2 ,

1
3 ,

2
3 ,

1
4 ,

3
4} −33/24 [25, eq. (9)]

11 {1
2 ,

1
3 ,

2
3 ,

1
6 ,

5
6} −(3/4)6 [1, Table 3]

12 {1
2 ,

1
3 ,

2
3 ,

1
6 ,

5
6} (3/5)6 [1, eq. (1-1)]

13 {1
2 ,

1
3 ,

2
3 ,

1
6 ,

5
6} −1/803 [19, eq. (2-4)], [1]

14 {1
2 ,

1
4 ,

3
4 ,

1
6 ,

5
6} −1/210 [19, eq. (2-2)], [1]

15 {1
2 ,

1
8 ,

3
8 ,

5
8 ,

7
8} 1/74 [19, eq. (2-5)], [1]

16 {1
2 ,

1
2 ,

1
2 ,

1
3 ,

2
3} 33((−1±

√
5)/2)15 [1, Table 3], [23, eq. (38)]

Table 2.10: Hypergeometric data for Guillera’s formulas for 1/π2

Remark 2.11. Some other entries in Table 2.10 nicely pair up with Ramanujan’s and Ramanu-
jan-type formulas for 1/π [19]. Apart from case #9 from Table 2.10 discussed above, we
highlight another instance [19, eq. (2-4)]:

(2.12)
∞∑
n=0

(1
2)n(1

3)n(2
3)n(1

6)n(5
6)n

n!5 (5418n2 + 693n+ 29)
(
− 1

803

)n
?= 128

√
5

π2

underlying entry #13, which shares similarities with the Ramanujan-type formula

(2.13)
∞∑
n=0

(1
2)n(1

6)n(5
6)n

n!3 (5418n+ 263)
(
− 1

803

)n
= 640

√
15

3π .

Remark 2.14. The specialization points z in Table 2.10 exhibit significant structure: writing
z = a/c and 1 − z = b/c, so that a + b = c, we already see abc-triples of good quality! But
more structure is apparent: see Remark 5.9.

3. Hypergeometric motives

In this section, we quickly introduce the theory of hypergeometric motives over Q.

Definition. Analogous to the generalized hypergeometric function (2.1), a hypergeometric
motive is specified by hypergeometric data, consisting of two multisets α = {α1, . . . , αd} and
β = {β1, . . . , βd} with αj, βj ∈ Q ∩ (0, 1] satisfying α ∩ β = ∅ and βd = 1. Herein, we
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consider only those hypergeometric motives that are defined over Q, which means that the
polynomials

(3.1)
d∏
j=1

(t− e2πiαj ) and
d∏
j=1

(t− e2πiβj )

have coefficients in Z—that is, they are products of cyclotomic polynomials.
Let q be a prime power that is coprime to the least common denominator of α ∪ β, and

let Fq be a finite field with q elements. Let ω : F×q → C× be a generator of the character
group on F×q , and let ψq : Fq → C× be a nontrivial (additive) character. For m ∈ Z, define
the Gauss sum
(3.2) g(m) :=

∑
x∈F×q

ω(x)mψq(x);

then g(m) is periodic in m with period q − 1 = #F×q .
When αj(q − 1), βj(q − 1) ∈ Z for all j, we define the finite field hypergeometric sum for

t ∈ F×q by

(3.3) Hq(α,β | t) = 1
1− q

q−2∑
m=0

ω((−1)dt)m
d∏
j=1

g(m+ αj(q − 1)) g(−m− βj(q − 1))
g(αj(q − 1)) g(−βj(q − 1))

by direct analogy with the generalized hypergeometric function. More generally, Beukers–
Cohen–Mellit [3, Theorem 1.3] have extended this definition to include all prime powers q
that are coprime to the least common denominator of α ∪ β.

There exist p1, . . . , pr, q1, . . . , qs ∈ Z≥1 such that

(3.4)
d∏
j=1

x− e2πiαj

x− e2πiβj
=
∏r
j=1(xpj − 1)∏s
j=1(xqj − 1) ,

and we define

(3.5) M := pp1
1 · · · ppr

r

qq1
1 · · · q

qs
s
.

Computing the local L-factors at good primes is completely automated in the Magma [4]
package of hypergeometric motives.

Motive and L-function. The finite field hypergeometric sums arose in counting points on
algebraic varieties over finite fields, and they combine to give motivic L-functions following
Beukers–Cohen–Mellit [3], as follows. For a parameter λ, let Vλ be the pencil of varieties in
weighted projective space defined by the equations
(3.6) x1 + x2 + · · ·+ xr = y1 + · · ·+ ys, λxp1

1 · · ·xpr
r = yq1

1 · · · yqs
s

and subject to xi, yj 6= 0. The pencil Vλ is affine and singular [3, Section 5]; in fact, it is
smooth outside of λ = 1/M , where it acquires an ordinary double point.

Theorem 3.7. Suppose that gcd(p1, . . . , pr, q1, . . . , qs) = 1 and Mλ 6= 1. Then there exists
a suitable completion Vλ of Vλ such that

#Vλ(Fq) = Prs(q) + (−1)r+s−1qmin(r−1,s−1)H(α,β |Mλ),
and where Prs(q) ∈ Q(q) is explicitly given.
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The completion provided in Theorem 3.7 may still be singular, and a nonsingular comple-
tion is not currently known in general; we expect that Vλ has only quotient singularities, and
hence behaves like a smooth manifold with respect to rational cohomology, by the nature of
the toric (partial) desingularization. In any event, this theorem shows that the sums (3.3)
have an explicit connection to arithmetic geometry and complex analysis.

We accordingly define hypergeometric L-functions, as follows. Let Sλ be the set of primes
dividing the numerator or denominator inM together with the primes dividing the numerator
or denominator of Mλ or Mλ− 1. A prime p 6∈ Sλ is called good (for α,β, λ). For a good
prime p, we define the formal series

(3.8) Lp(H(α,β |Mλ), T ) := exp
(
−
∞∑
r=1

Hpr(α,β |Mλ)T
r

r

)
∈ 1 + TQ[[T ]].

Corollary 3.9. For p 6∈ Sλ and λ ∈ F×p , we have
Lp(H(α,β |Mλ), T ) ∈ Q[T ].

Proof. The zeta function of Vλ over Fp is a rational function by work of Dwork; the expo-
nential series for Prs(q) is also rational, so the result follows from Theorem 3.7. �

Remark 3.10. In fact, we expect that Lp(H(α,β |Mλ), T ) ∈ 1 + TZ[T ] is a polynomial of
degree d; it should follow from the construction in Theorem 3.7 or from work of Katz [28],
but we could not find a published proof. We establish this property in the cases we consider,
as a byproduct of our analysis.

Globalizing, we define the incomplete L-series
(3.11) LS(H(α,β |Mλ), s) =

∏
p 6∈S

Lp(H(α,β |Mλ), p−s)−1

a Dirichlet series that converges in a right half-plane, but otherwise remains rather myste-
rious. Our goal in what follows will be to match such L-functions (coming from geometry,
rapidly computable) with L-functions of modular forms in certain cases, so that the former
can be completed to inherit the good properties of the latter.

Examples. We conclude this section with two examples.

Example 3.12. We return to our motivating example, with the parameters α = {1
2 ,

1
4 ,

3
4}

and β = {1, 1, 1}, we find p1 = 4 and q1 = · · · = q4 = 1. Then eliminating x1 in (3.6) gives
Vλ : λ(y1 + y2 + y3 + y4)4 = y1y2y3y4;

and Theorem 3.7 yields

#Vλ(Fq) = q3 − 1
q − 1 +Hq(1

2 ,
1
4 ,

3
4 ; 1, 1, 1 | 44λ).

We make a change of parameters λ−1 = 44ψ4 and consider the pencil of quartic K3
hypersurfaces with generically smooth fibers defined by
(3.13) Xψ : x4

0 + x4
1 + x4

2 + x4
3 = 4ψx0x1x2x3

as in (1.4), with generic Picard rank 19. The family 3.13 is known as the Fermat–Dwork
family and is well studied (going back to Dwork [13, §6j, p. 73]; see e.g. Doran–Kelly–
Salerno–Sperber–Voight–Whitcher [12, §1.5] for further references). In the context of mirror
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symmetry, one realizes Vλ as the mirror of Xψ [11, §5.2] in the following way, due to Batyrev:
there is an action of G = (Z/4Z)3 onXψ, and Vλ is birational toXψ/G. We see again that the
finite field hypergeometric sum H(1

2 ,
1
4 ,

3
4 ; 1, 1, 1 |ψ−4) contributes nontrivially to the point

counts [12, Main Theorem 1.4.1(a)].
In either model, the holomorphic periods of Vλ or Xψ are given by the hypergeometric

series

(3.14) F (1
2 ,

1
4 ,

3
4 ; 1, 1, 1 |ψ−4) =

∞∑
n=0

(1
2)n(1

4)n(3
4)n

n!3 (44λ)n =
∞∑
n=0

(4n)!
n!4 λn.

As mentioned in the introduction, at the specialization ψ4 = 44λ = −1/48, the K3 surface
is singular, with Picard number 20—it is this rare event that explains the formula (1.3).
Computing the local L-factors, we find

Lp(H(1
2 ,

1
4 ,

3
4 ; 1, 1, 1 | −1/48), T ) = (1− χ(p)pT )(1− bpT + p2T 2)

for p 6= 2, 3, where χ(p) =
(

12
p

)
is the quadratic character attached to Q(

√
12) and bp ∈ Z

defined in (2.9). Indeed, this factorization agrees with the fact that the global L-series can
be completed to

L(H(1
2 ,

1
4 ,

3
4 ; 1, 1, 1 | −1/48), s) = L(f, s, Sym2)

where f is the classical modular form with LMFDB label 144.2.c.a: more generally, see
Elkies–Schütt [14], Doran–Kelly–Salerno–Sperber–Voight–Whitcher [11, Theorem 5.1.3], or
Zudilin [39, Observation 4]. Consequently, the completed hypergeometric L-series inherits
analytic continuation and functional equation.
Example 3.15. We consider the hypergeometric data attached to Ramanujan-type for-
mula (2.12), corresponding to #13 in Table 2.10 and with parameters α = {1

2 ,
1
3 ,

2
3 ,

1
6 ,

5
6} and

β = {1, . . . , 1}. This example is, in many aspects, runs parallel to Example 3.12 and the
related mirror symmetry construction of the famous quintic threefold [5]. We have

Vλ : λ(y1 + y2 + · · ·+ y6)6 = y1y2 · · · y6

and Theorem 3.7 implies

#Vλ(Fq) = q5 − 1
q − 1 +H(1

2 ,
1
3 ,

2
3 ,

1
6 ,

5
6 ; 1, 1, 1, 1, 1 | 66λ).

Alternatively, we consider the pencil of sextic fourfolds
Xψ : x6

0 + x6
1 + x6

2 + x6
3 + x6

4 + x6
5 = 6ψx0x1x2x3x4x5

in P5. Under the change of parameter λ−1 = 66ψ6, we find that Vλ is birational to Xψ/G
where G ' (Z/6Z)5. The Xψ are generically Calabi–Yau fourfolds. A computation (anal-
ogous to Candelas–de la Ossa–Greene–Parks [5]) shows that the Picard–Fuchs differential
operator is given by(

λ
d

dλ

)5

− 6λ
(

6λ d
dλ + 1

)(
6λ d

dλ + 2
)(

6λ d
dλ + 3

)(
6λ d

dλ + 4
)(

6λ d
dλ + 5

)
.

The unique (up to scalar) holomorphic solution near zero is the hypergeometric function

F (α,β | 66λ) =
∞∑
n=0

(1
2)n(1

3)n(2
3)n(1

6)n(5
6)n

n!5 (66λ)n =
∞∑
n=0

(6n)!
n!6 λn.

8
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Using the Magma implementation, we compute the first few (good) L-factors:

(3.16)
L7(T ) = (1 + 72T )(1− 74T 2)(1− 35T + 74T 2)
L11(T ) = (1− 112T )(1− 114T 2)(1− 30T + 114T 2)
L13(T ) = (1 + 132T )(1− 64T − 1758 · 13T 2 − 64 · 134T 3 + 138T 4)

and observe that for p 6= 2, 3, 5,

(3.17) Lp(T ) ?= (1− χ5(p)p2T )(1− apT + bppT − χ129(p)app4T 3 + χ129(p)p8T 4).

Moreover, when χ129(p) = −1 then bp = 0 and the quartic polynomial factors as

1− apT + bppT − χ129(p)app4T 3 + χ129(p)p8T 4 ?= (1− p4T 2)(1− apT + p4T 2)

whereas for χ129(p) = 1 it is generically irreducible. This suggests again a rare event which
we seek to explain using modular forms.

4. The Asai transfer of a Hilbert modular form

Having defined L-functions arising from hypergeometric motives in the previous sections,
over the next two sections we follow the predictions of the Langlands philosophy and seek to
identify these L-functions as coming from modular forms in the cases of interest. More pre-
cisely, we confirm experimentally a match with the Asai transfer of certain Hilbert modular
forms over quadratic fields. We begin in this section by setting up the needed notation and
background. As general references for Hilbert modular forms, consult Freitag [15] or van der
Geer [16]; for a computational take, see Dembélé–Voight [9].

Let F = Q(
√
d) be a real quadratic field of discriminant d > 0 with ring of integers ZF and

Galois group Gal(F |Q) = 〈τ〉. By a prime of ZF we mean a nonzero prime ideal p ⊆ ZF .
Let v1, v2 : F ↪→ R be the two embeddings of F into R. For x ∈ F we write xi := vi(x),
and for γ ∈ M2(F ) we write γi = vi(γ) for the coordinate-wise application of vi. An element
a ∈ F× is totally positive if v1(a), v2(a) > 0; we write F×>0 for the group of totally positive
elements. The group

(4.1) GL+
2 (F ) := {γ ∈ GL2(F ) : det γ ∈ F×>0}

acts on the product H ×H of upper half-planes by embedding-wise linear fractional trans-
formations γ(z) := (γ1(z1), γ2(z2)).

Let k1, k2 ∈ 2Z>0, write k := (k1, k2), and let k0 := max(k1, k2) and w0 := k0 − 1. Let
N ⊆ ZF be a nonzero ideal. Let Sk(N;ψ) denote the (finite-dimensional) C-vector space of
Hilbert cusp forms of weight k, level Γ0(N), and central character ψ. Hilbert cusp forms are
the analogue of classical cusp forms, but over the real quadratic field F . When the narrow
class number of F is equal to 1 (i.e., every nonzero ideal of ZF is principal, generated by a
totally positive element) and ψ is the trivial character, a Hilbert cusp form f ∈ Sk(N) is a
holomorphic function f : H×H → C, vanishing at the cusps, such that

(4.2) f(γz) = (c1z1 + d1)k1/2(c2z2 + d2)k2/2f(z)

for all γ =
(
a b
c d

)
∈ GL+

2 (ZF ) such that c ∈ N.
9



The space Sk(N) is equipped with an action of pairwise commuting Hecke operators Tp
indexed by nonzero primes p - N. A Hilbert cusp form f is a newform if f is an eigenform
for all Hecke operators and f does not arise from Sk(M) with M | N a proper divisor.

Let f ∈ Sk(N) be a newform. For p - N, we have Tpf = apf with ap ∈ C a totally real
algebraic integer (the Hecke eigenvalue), and we factor

1− apT + Nm(p)w0T 2 = (1− αpT )(1− βpT ) ∈ C[T ]
where Nm(p) is the absolute norm. Then |αp| = |βp| =

√
pw0 .

For p ∈ Z prime with p - Nm(N), following Asai [2] we define, abbreviating p′ = τ(p),

(4.3)

Lp(f, T,Asai)

:=


(1− αpαp′T )(1− αp′βpT )(1− αpβp′T )(1− βpβp′T ), if pZF = pp′ splits;
(1− αpT )(1− βpT )(1− ψ(p)p2w0T 2), if pZF = p is inert;
(1− α2

pT )(1− β2
pT )(1− ψ(p)pw0T ), if pZF = p2 ramifies.

We call the factors Lp(f, T,Asai) the good L-factors of f . The partial Asai L-function of f is
the Dirichlet series defined by the Euler product
(4.4) LS(f, s,Asai) :=

∏
p 6∈S

Lp(f, p−s,Asai)−1

where S = {p : p | Nm(N)}.
The key input we need is the following theorem. For a newform f ∈ Sk(N, ψ), let τ(f)

be the newform of weight (k2, k1) and level τ(N) with Tpτ(f) = aτ(p)τ(f), with central
character ψ ◦ τ . Finally, for central character ψ (of the idele class group of F ) let ψ0 denote
its restriction (to the ideles of Q).

Theorem 4.5 (Krishnamurty [31], Ramakrishnan [33]). Let f ∈ Sk(N, ψ) be a Hilbert
newform, and suppose that τ(f) is not a twist of f . Then the partial L-function LS(f, s,Asai)
can be completed to a Q-automorphic L-function

Λ(f, s,Asai) = N s/2ΓC(s)2L(f, s,Asai)
of degree 4, conductor N ∈ Z>0, with central character ψ2

0.
More precisely, there exists a cuspidal automorphic representation Π = Π∞ ⊗ (⊗p Πp)

of GL4(AQ) such that Lp(f, p−s,Asai) = L(s,Πp)−1 for all p - Nm(N). In particular,
L(f, s,Asai) is entire and satisfies a functional equation Λ(s) = εΛ(8− s) with |ε| = 1.

The automorphic representation Π in Theorem 4.5 goes by the name Asai transfer, Asai
lift, or tensor induction of the automorphic representation π attached to f , and we write
Π = Asai(π).
Proof. We may identify GL2(AF ) ∼= ResF |Q GL2(AQ), with L-group
(4.6) L(ResF |Q GL2) ∼= GL2(C)×GL2(C) o GalQ,
where GalQ := Gal(Qal |Q). We define the 4-dimensional representation

(4.7)
r : GL2(C)×GL2(C) o GalQ → GL(C2 ⊗ C2) ' GL4(C)

r(g1, g2, σ) =

g1 ⊗ g2, if σ|F = id;
g2 ⊗ g1, if σ|F = τ .

10



For a place v of Q, let rv be the restriction of r to GL2(C)×GL2(C) o GalQv .
Let π = π∞⊗ (⊗p πp) be the cuspidal automorphic representation of GL2(AF ) attached to

f . Then πp is an admissible representation of GL2(F ⊗Qp) corresponding to an L-parameter
(4.8) φp : W ′

p → GL2(C)×GL2(C) o GalQp ,

where W ′
p is the Weil–Deligne group of Qp. We define Asai(πp) to be the irreducible admis-

sible representation of GL4(Qp) attached to rp ◦ φp by the local Langlands correspondence,
and we combine these to
(4.9) Asai(π) := Asai(π∞)⊗

⊗
p

Asai(πp).

By a theorem of Ramakrishnan [33, Theorem D] or Krishnamurty [31, Theorem 6.7],
Asai(π) is an automorphic representation of GL4(AQ) whose L-function is defined by

(4.10) L(s, π,Asai) := L(s, π∞, r∞ ◦ φ∞)
∏
p

L(s, πp, rp ◦ φp)

whose good L-factors agree with (4.3) [31, §4]. Under the hypothesis that τ(f) is not a twist
of f , we conclude that Asai(π) is cuspidal [33, Theorem D(b)]. Consequently, we may take
Π = Asai(π) in the theorem. �

Remark 4.11. Some authors also define the representation Asai−(π), which is the quadratic
twist of Asai(π) by the quadratic character attached to F .

In addition to the direct construction (4.4) and the automorphic realization in Theorem
4.5, one can also realize the Asai L-function via Galois representations. By Taylor [37,
Theorem 1.2], attached to f is a Galois representation

ρ : GalF → GL(V ) ' GL2(Qal
` )

such that for each prime p - N, we have
det(1− ρ(Frobp)T ) = 1− apT + Nm(p)w0T 2.

Then there is a natural extension of ρ to GalQ, a special case of multiplicative induction (or
tensor induction) [32, §7] defined as follows: for a lift of τ to GalQ which by abuse is also
denoted τ , we define [30, p. 1363] (taking a left action)

(4.12)
Asai(ρ) : GalQ → GL(V ⊗ V ) ' GL4(Qal

` )

Asai(ρ)(σ)(x⊗ y) =

ρ(σ)(x)⊗ ρ(τ−1στ)(y), if σ|F = id;
ρ(στ)(y)⊗ ρ(τ−1σ)(x), if σ|F = τ |F .

Up to isomorphism, this representation does not depend on the choice of lift τ . A direct
computation [30, Lemma 3.3.1] then verifies that det(1−Asai(ρ)(Frobp)T ) = Lp(f, T,Asai)
as defined in (4.4).

The bad L-factors Lp(f, T,Asai) and conductor N of L(f, s,Asai) are uniquely determined
by the good L-factors, but they are not always straightforward to compute.

5. Matching the hypergeometric and Asai L-functions

We now turn to the main conjecture of this paper.
11



Main conjecture. We propose the following conjecture.

Conjecture 5.1. Let α be a set of parameters from Table 2.10 and let β = {1, 1, 1, 1, 1}.
Then there exist quadratic Dirichlet characters χ, ε and a Hilbert cusp form f over a real
quadratic field F of weight (2, 4) such that for all good primes p we have

Lp(H(α,β | z), T ) ?= (1− χ(p)p2T )Lp(f, T/p,Asai, ε).

In particular, we have the identity

L(H(α,β | z), s) ?= L(s− 2, χ)L(f, s+ 1,Asai, ε).

We can be more precise in Conjecture 5.1 for some of the rows, as follows. Let #n be a
row in Table 2.10 with n 6= 7, 13, 14, 15, 16. Then we conjecture that the central character
ψ of f is a quadratic character of the class group of F induced from a Dirichlet character;
and the conductors of χ, ε, ψ, the discriminant dF of F , and the level N of f are indicated
in Table 5.2.

# α z χ dF N ψ ε

1, 2 {1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2} −2±2 1 5 (4) 1 1

3, 4 {1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2} −2±10 1 41 (1) 1 1

5 {1
2 ,

1
2 ,

1
2 ,

1
3 ,

2
3} (3/4)3 1 37 (1) 1 1

6 {1
2 ,

1
2 ,

1
2 ,

1
3 ,

2
3} −33 1 28 (8) 1 −4

7 {1
2 ,

1
5 ,

2
5 ,

3
5 ,

4
5} −55/28 1? 69 ? ? 1?

8 {1
2 ,

1
2 ,

1
2 ,

1
4 ,

3
4} 1/24 1 60 (4) 3 1

9 {1
2 ,

1
3 ,

2
3 ,

1
4 ,

3
4} −1/48 1 12 (81) 1 1

10 {1
2 ,

1
3 ,

2
3 ,

1
4 ,

3
4} −33/24 1 172 (4) 1 1

11 {1
2 ,

1
3 ,

2
3 ,

1
6 ,

5
6} −(3/4)6 1 193 (1) 1 1

12 {1
2 ,

1
3 ,

2
3 ,

1
6 ,

5
6} (3/5)6 1 76 (8) 1 −4

13 {1
2 ,

1
3 ,

2
3 ,

1
6 ,

5
6} −1/803 5? 129 ? ? 1?

14 {1
2 ,

1
4 ,

3
4 ,

1
6 ,

5
6} −1/210 12? 492 ? ? 1?

15 {1
2 ,

1
8 ,

3
8 ,

5
8 ,

7
8} 1/74 28? 168 ? ? −7?

Table 5.2: Hilbert modular form data

Evidence. We verified Conjecture 5.1 for the complete rows indicated in Table 5.2 using
Magma [4]; the algorithms for hypergeometric motives were implemented by Watkins, algo-
rithms for L-functions implemented by Tim Dokchitser, and algorithms for Hilbert modular
forms by Dembélé, Donnelly, Kirschmer, and Voight. The code is available online [10].

Moreover, using the L-factor data in Table 5.3, we have confirmed the functional equation
for L(H(α,β | z), s) up to 20 decimal digits for all but #13. When the discriminant dF and
the level N are coprime, we observe that the conductor of L(f, s,Asai) is N = dF Nm(N).
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# N p ordp(N) Lp(f, T/p,Asai, ε)

1, 2 80 2 4 1
5 1 (1− p2T )(1 + 6pT + p4T 2)

3, 4 41 2 0 1 + 5T + 5pT 2 + 5p4T 3 + p8T 4

41 1 (1− p2T )(1− 18pT − p4T 2)

5 37
2 0 (1− p2T )2(1 + 3pT + p4T 2)
3 0 1 + 11T + 28pT 2 + 11p4T 3 + p8T 4

37 1 (1− p2T )(1 + 70pT + p4T 2)

6 112
2 4 1− p4T 2

3 0 1 + 8T + 10pT 2 + 8p4T 3 + p8T 4

7 1 (1 + p2T )(1 + 46T + p4T 2)

7 69
2 0 (1− p4T 2)(1 + p4T 2)
3 1 (1 + p2T )(1 + 5T + p4T 2)
5 0 1 + 4T − 14pT 2 + 4p4T 3 + p8T 4

23 1 (1 + p2T )(1− 470T + 234T 2)

8 60
2 2 (1− p2T )(1 + 3pT + p4T 2)
3 1 (1 + p2T )(1 + 2T + p4T 2)
5 1 (1 + p2T )(1− 2T + p4T 2)

9 972 2 2 (1− p2T )(1− p4T 2)
3 5 1− p4T 2

10 172
2 2 (1− p2T )(1− p4T 2)
3 0 1 + 14T + 34pT 2 + 14p4T 3 + p8T 4

43 1 (1− p2T )(1 + 22pT + p4T 2)

11 193 2 0 (1− p4T 2)2

193 1 (1− p2T )(1 + 361pT + p4T 2)

12 304

2 4 1− p4T 2

3 0 1 + 5T − 8pT 2 + 5p4T 3 + p8T 4

5 0 1− 250pT 2 + p8T 4

19 1 (1 + p2T )(1 + 178T + p4T 2)

14 850176
2 8 1 + p2T

3 4 1− p2T

41 1 (1 + p2T )(1− 32pT 2 + p4T 2)

15 59006976
2 13 1
3 1 (1 + p2T )(1− 4T + p4T 2)
7 4 1 + p2T

Table 5.3: L-factor data for Lp(H(α,β | z), T ) ?= Lp(χ, p2T )Lp(f, T/p,Asai, ε)

Remark 5.4. In a recent arithmetic study of his formulas for 1/π2, Guillera [24] comes up
with an explicit recipe to cook up the two quadratic characters for each such formula. He
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calls them χ0 and ε0 and records them in [24, Table 2]. Quite surprisingly, they coincide
with our χ and ε in Table 5.2.
Example 5.5. Consider row #1. In the space S(2,4)(4) of Hilbert cusp forms over F = Q(

√
5)

of weight (2, 4) and level (4) with trivial central character, we find a unique newform f
with first few Hecke eigenvalues a(2) = 0, a(3) = −30, a(

√
5) = −10, a(7) = −70, and

ap, aτ(p) = 12± 8
√

5, giving for example
L3(f, T,Asai) = (1− 36T 2)(1 + 10 · 3T + 36T 2);

we then match
L3(H(1

2 , . . . ,
1
2 ; 1, . . . , 1 | −1/22), T ) = (1− 32T )L3(f, T/3,Asai).

We matched L-factors for all good primes p such that a prime p of F lying over p has
Nm(p) ≤ 200.

Example 5.6. For row #9, the space of Hilbert cusp forms over F = Q(
√

12) of weight
(2, 4) and level N = (81) has dimension 2186 with a newspace of dimension 972. We find a
form f with Hecke eigenvalues a(5) = 140, a(7) = 98, . . . ; accordingly, we find

(5.7)
L5(H(α,β | −1/48), T ) = (1− 52T )L5(f, T/5,Asai)

= (1− 52T )2(1 + 52T )(1 + 28T + 625T 2),
and so on. We again matched Hecke eigenvalues up to prime norm 200.
Remark 5.8. To match row #16 in Table 2.10 with a candidate Hilbert modular form, we
would need to extend the implementation of hypergeometric motives to apply for special-
ization at points z 6∈ Q; we expect this extension to be straightforward, given the current
implementation of finite field hypergeometric sums.

By contrast, to match the final rows #7 and #13–#15, we run into difficulty with com-
puting spaces of Hilbert modular forms: we looked for forms in low level, but the dimensions
grow too quickly with the level. We also currently lack the ability to efficiently compute
with arbitrary nontrivial central character. We plan to return to these examples with a new
approach to computing systems of Hecke eigenvalues for Hilbert modular forms in future
work.
Remark 5.9. Returning to Remark 2.14, we observe structure in the specialization points
z from Table 2.10: beyond patterns in the factorization of z and 1 − z, we also note that
for these points the completed L-function typically has unusually small conductor N , as in
Table 5.3. (Perhaps a twist of #15 has smaller conductor?) Some general observations that
may explain this conductor drop:

• Factor N = N1N2 where N1 consists of the product of primes p | N that divide the
least common denominator of α or the numerator or denominator of z. Then N2
should be the squarefree part of the numerator of 1 − z; this numerator is divisible
by a nontrivial square in ten of the fifteen cases.
• The power of p dividing the numerator or denominator of z is itself a multiple of p
for most primes p dividing a denominator in α.
• For a prime p, define sp(α) = 0 if α is coprime to p and otherwise let sp(α) =

ordp(α) + 1/(p− 1). If ordp(z) is a multiple of ∑5
j=1 sp(αj), then ordp(N) tends to be

especially small.
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These last two phenomena were first observed by Rodriguez-Villegas; we thank the referee
for these observations.

While not making any assertions about completeness, these observations give some indi-
cation of why our Table 2.10 is so short: the specialization points z like those listed are
quite rare, and they seem to depend on a pleasing but remarkable arithmetic confluence. It
would be certainly valuable to be able to predict more generally and precisely the conductor
of hypergeometric L-functions.

Method. We now discuss the recipe by which we found a match. For simplicity, we exclude
the case #8 and suppose that the central character ψ is trivial. In a nutshell, our method
uses good split ordinary primes to recover the Hecke eigenvalues up to sign.

We start with the hypergeometric motive and compute Lp(H,T ) := Lp(H(α,β | z), T ) for
many good primes p. We first guess χ and dF by factoring Lp(H,T ) = (1− χ(p)p2T )Qp(T ):
for primes p that are split in F , we usually have Qp(T ) irreducible whereas and for inert
primes we find (1− p4T 2) | Qp(T ). We observe in many cases that dF is (up to squares) the
numerator of 1− z. Combining this information gives us a good guess for χ and dF .

We now try to guess the Hecke eigenvalues of a candidate Hilbert newform f of weight
(2, 4). Let p = pτ(p) be a good split prime, and suppose that p is ordinary for f , i.e., the
normalized valuations ordp(ap), ordp(aτ(p)) = 0, 1 are as small as possible, or equivalently,
factoring

(5.10)
Lp(f, T ) = 1− apT + p3T 2 = (1− αpT )(1− βpT )

Lτ(p)(f, T ) = 1− aτ(p)T + p3T 2 = (1− ατ(p)T )(1− βτ(p)T )
we may choose p so that αp, ατ(p)/p are p-adic units. We expect that such primes will
be abundant, though that seems difficult to prove. Then Lp(f, T,Asai) has Hodge–Tate
weights (i.e., reciprocal roots with valuations) (0, 3) ⊗ (1, 2) = (1, 2, 4, 5) (adding pairwise)
so the Tate twist Lp(f, T/p,Asai) has Hodge–Tate weights (0, 1, 3, 4) and coefficients with
valuations 0, 0, 1, 3, 4, 8, matching that of the hypergeometric motive.

So we factor Qp(T ) over the p-adic numbers, identifying ordinary p when the roots
δ0, δ1, δ3, δ4 have corresponding valuations 0, 1, 3, 4. Then we have the equations

(5.11)
pδ0 = αpατ(p)

pδ1 = αpβτ(p)

and two similar equations for δ3, δ4. Therefore
(5.12) p2δ0δ1 = α2

pατ(p)βτ(p) = α2
pp

3

so

(5.13) αp = ±
√
δ0δ1

p
;

and this determines the Hecke eigenvalue
(5.14) ap = αp + βp = αp + p3/αp

up to sign.
We then go hunting in Magma by slowly increasing the level and looking for newforms

whose Hecke eigenvalues match the value ap in (5.14) up to sign. With a candidate in hand,
we then compute all good L-factors using (4.3) to identify a precise match. The bottleneck
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in this approach is the computation of systems of Hecke eigenvalues for Hilbert modular
forms.

6. Conclusion

The 1/π story brings many more puzzles into investigation, as formulas discussed in this
note do not exhaust the full set of mysteries. Some of them are associated with the special
4F3 evaluations of 1/π, like the intermediate one in the trio

∞∑
n=0

(1
2)n(1

4)n(3
4)n

n!3 (40n+ 3) 1
74n = 49

√
3

9π ,(6.1)

∞∑
n=0

(1
8)n(3

8)n(5
8)n(7

8)n
n!3(3

2)n
(1920n2 + 1072n+ 55) 1

74n = 196
√

7
3π ,(6.2)

∞∑
n=0

(1
2)n(1

8)n(3
8)n(5

8)n(7
8)n

n!5 (1920n2 + 304n+ 15) 1
74n

?= 56
√

7
π2 .(6.3)

Here the first equation is from Ramanujan’s list [34, eq. (42)], the second one is recently
established by Guillera [22, eq. (1.6)], while the third one corresponds to Entry #15 in Ta-
ble 2.10 and is given in [19, eq. (2-5)]. There is also one formula for 1/π3, due to B. Gourevich
(2002),

∞∑
n=0

(1
2)7
n

n!7 (168n3 + 76n2 + 14n+ 1) 1
26n

?= 32
π3 ,(6.4)

which shares similarities with Ramanujan’s [34, eq. (29)]
∞∑
n=0

(1
2)3
n

n!3 (42n+ 5) 1
26n = 16

π
(6.5)

(observe that 168 = 42× 4). And the pattern extends even further with the support of the
experimental findings

∞∑
n=0

(1
2)7
n(1

4)n(3
4)n

n!9 (43680n4 + 20632n3 + 4340n2 + 466n+ 21) 1
212n

?= 2048
π4 ,(6.6)

due to J. Cullen (December 2010), and
∞∑
n=0

(1
2)5
n(1

3)n(2
3)n(1

4)n(3
4)n

n!9 (4528n4 + 3180n3 + 972n2 + 147n+ 9)
(
− 27

256

)n
?= 768
π4 ,(6.7)

due to Yue Zhao [38] (September 2017). On the top of these examples there are ‘divergent’
hypergeometric formulas for 1/π3 and 1/π4 coming from ‘reversing’ Zhao’s experimental
formulas for π4 and ζ(5) in [38], and corresponding to the hypergeometric data

7F6

(
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
3 ,

2
3

1, . . . , 1

∣∣∣∣∣ 33

22

)
and 9F8

(
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
5 ,

2
5 ,

3
5 ,

4
5

1, . . . , 1

∣∣∣∣∣ − 55

210

)
,

respectively. We hope to address the arithmetic-geometric origins of the underlying motives
in the near future.
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