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1. Introduction

1.1. Motivation. Databases of classical modular forms have been used for a variety of mathemati-
cal purposes and have almost a 50 year history (see §2). In this article, we report on a recent effort in
this direction in the L-functions and Modular Forms Database (LMFDB [62], https://lmfdb.org);
for more on the LMFDB, see the overview by Cremona [32].

1.2. Organization. The paper is organized as follows. In §2, we begin with a short history, and
we follow this in §3 with a preliminary discussion of Dirichlet characters. Next, in §4 we make
more explicit what we mean by computing (spaces of) modular forms, and then in section §5 we
give a short overview of the many existing algorithmic approaches to computing modular forms.
We pause in §6 to prove two technical results. In §7, we sample the available implementations and
make some comparisons. Next, in §8 we discuss some computational, theoretical, and practical
issues that arose in our efforts and in §9 we explain how we (rigorously) computed the L-functions
attached to modular newforms. Turning to our main effort, in §10 we provide an overview of the
computations we performed, make some remarks on the data obtained, and explain some of the
features of our database. Finally, in §11 and §12 we treat twists and issues specific to modular
forms of weight 1.
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As is clear from this organization, we consider the algorithmic problem of computing modular
forms from a variety of perspectives, so this paper need not be read linearly. For the convenience
of readers, we draw attention here to a number of highlights:

• In §2, we survey the rather interesting history of computing databases of modular forms.

• In §3.2, we exhibit a labeling scheme for Dirichlet characters, due to Conrey.

• In Theorem 4.3.4, we record formulas for the new, old, and total dimensions of spaces of
Eisenstein series of arbitrary integer weight k ≥ 2, level, and character, obtained from work
of Cohen–Oesterlé and Buzzard. (Such formulas are not available for weight k = 1.)

• In Corollary 6.1.5, we compute an Eichler–Selberg trace formula restricted to the space of
newforms; this was used by Belabas–Cohen [4] in their implementation in Pari/GP.

• In Tables 7.1.1 and 7.1.2, we compare the implementations of Magma and Pari/GP; in Table
7.1.3 we note some computationally challenging newspaces.

• In §8.7, we show that by writing Hecke eigenvalues in terms of an LLL-reduced basis of the
Hecke order, we can drastically reduce their total size.

• In §9.4, we certify analytic ranks of L-functions of modular forms and remark on the ranks
occurring in our dataset.

• In §9.5, we numerically verify a generalization of Chowla’s conjecture for central values of
non-self-dual modular form L-functions.

• In §10.2, we present statistics on our data, and in §10.4 we note some interesting and
extreme behavior that we observed in our dataset.

• In Theorems 11.2.4 and 11.2.8, we exhibit simple and effectively computable criteria for
rigorously certifying that a modular form has an inner twist.

• In section 12.5, we highlight some interesting and extreme behavior found among weight 1
modular forms in our database.
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their comments. This research was undertaken as part of the Simons Collaboration on Arithmetic
Geometry, Number Theory, and Computation, with the support of Simons Collaboration Grants:
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Costa, Derickx, and Roe. Additional support was provided by a Programme Grant from the
UK Engineering and Physical Sciences Research Council (EPSRC) LMF: L-functions and modular
forms, EPSRC reference EP/K034383/1.

2. History

In this section, we survey the history of computing tables of modular forms; for a broader but
still computationally-oriented history, see Kilford [56, Section 7.1].

• Perhaps the first systematic tabulation of modular forms was performed by Wada [101, 102].
As early as 1971, he used the Eichler–Selberg trace formula to compute a factorization of the
characteristic polynomial of the Hecke operator Tp on S2(Γ0(q), χ) for q ≡ 1 (mod 4) prime
where χ was either trivial or the quadratic character of conductor q. The total computation
time was reported to be about 300 hours on a TOSBAC-3000.

• The next major step was made in the famous Antwerp IV tables [75] (published in 1975),
motivated by the study of modularity of elliptic curves. Vélu and Stephens–Vélu computed
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all newforms in S2(Γ0(N)) with N ≤ 200 using modular symbols [75, Table 3] and these
forms were matched with isogeny classes of elliptic curves over Q found by Swinnerton-Dyer.
Tingley [99] computed the complete splitting into Hecke eigenspaces of S2(Γ0(N)) for N ≤
300, extending an earlier table due to Atkin. In particular he found the dimensions of the
Atkin-Lehner eigenspaces, and computed the actual eigenvalues as floating point numbers,
numerically matching conjugate newforms. By integrating differentials, he also computed
elliptic curves from the newforms with integer eigenvalues. In some cases, this computation
revealed the existence of elliptic curves not previously found by search. (According to Birch,
this was the case for the elliptic curve with Antwerp label 78A and Cremona label 78a1;
the curves in its isogeny class have rather large coefficients.)

• Extending the Antwerp IV tables, Cremona [30] (first edition published in 1992) computed
a database of newforms in S2(Γ0(N)) with rational coefficients for N ≤ 1000, providing also
a wealth of data on the corresponding (modular) elliptic curves. In the second edition and
in later computations, this data was considerably extended. A more recent report [31] was
made on the elliptic curve tables to conductor 130 000, later extended to conductor 500 000
and rank at most 3. By 2016 this database had reached conductor 400 000, and in July
2019 Cremona and Sutherland extended it to conductor 500 000. In this range there are
2 164 260 rational newforms, and the same number of isogeny classes of elliptic curves.

• Miyake [71] published some numerical tables of modular forms as appendices in his book
on modular forms; these were computed using the trace formula. These tables included
dimensions of Sk(Γ0(N)) for k ≥ 2 even and small values ofN , eigenvalues and characteristic
polynomials of Hecke operators on S2(Γ0(N)) for small prime values of N , and Fourier
coefficients of a primitive form in S2(Γ0(N), χN ) for N = 29, 37.

• In the 1990s, Cohen, Skoruppa, and Zagier compiled tables of eigenforms in weights 2
through 12, levels up to 1000 in weight 2 and with a smaller range in higher weight; also
some tables of eigenforms with non-trivial character. Their method followed a paper by
Skoruppa and Zagier on the trace formula [91], but these tables were not published.

• In the early 2000s, Stein created an online modular forms database [92], computed primar-
ily using a modular symbols package [93] he implemented in Magma [12] starting in the
late 1990s. The data was computed using a rack of six custom-built machines and a Sun
V480; it was stored in a PostgreSQL database (more than 10 GB), and a (Python-based)
web interface to the data was provided. These tables included dimensions, characteristic
polynomials, and q-expansions in a variety of weights and levels.

• Using this Magma implementation, Meyer [69, 70] computed a table of newforms for Γ0(N)
with rational coefficients: in weight k = 2 he went to N ≤ 3000 and for k = 4 to N ≤ 2000.

• Prior to our work, the LMFDB had a database of classical modular forms computed by Ehlen
and Strömberg [43], which used the SageMath [83] implementation of modular symbols. This
dataset included partial information on Sk(Γ0(N)) for (k,N) in the ranges [2, 12]× [1, 100]
and [2, 40]× [1, 25], and on Sk(Γ1(N)) in the ranges [2, 10]× [1, 50] and [2, 20]× [1, 16].

The scope of our modular forms database includes all of the ranges mentioned above (and more),
with the exception of Cremona’s tables of elliptic curves; see §10.1 for details.

3. Characters

Our database of modular forms is organized into subspaces identified by a level N ∈ Z≥1, a
weight k ∈ Z≥1, and a character χ : Z→ C taking values in the cyclotomic field Q(ζN ). In order to
identify these subspaces and the modular forms they contain, we adopt a standard convention for
identifying Dirichlet characters that is well suited to computation, the Conrey labels recalled in §3.2
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below. We also introduce a convention for identifying Galois orbits of Dirichlet characters that will
be used to identify the newform subspaces and newform orbits defined in §4.

3.1. Definitions. For N ∈ Z≥1, a Dirichlet character of modulus N is a pair (χ,N) where χ : Z→ C
is a periodic function modulo N that is the extension of a group homomorphism (Z/NZ)× → C×
by zero (defining χ(n) = 0 whenever gcd(n,N) 6= 1)—in particular, χ is totally multiplicative. The
degree of a Dirichlet character χ is the degree of the cyclotomic subfield Q(χ) ⊆ C generated by
the values of χ.

Given two Dirichlet characters χ, χ′ of moduli N,N ′, we define their product χχ′ to be the
Dirichlet character of modulus lcm(N,N ′) defined by (χχ′)(n) = χ(n)χ′(n). Under this definition,
the set of Dirichlet characters of a fixed modulus N has the structure of a finite abelian group, with
identity the principal (or trivial) character with χ(n) = 1 if gcd(n,N) = 1 and χ(n) = 0 otherwise.
The order ord(χ) of a Dirichlet character χ is its order in this group, i.e., the smallest m ∈ Z≥1

such that χm is the principal character.
Let χ be a Dirichlet character of modulus N . Given a multiple N ′ of N , we may induce χ to

a Dirichlet character χ′ of modulus N ′ by χ′(n) := χ(n mod N) whenever gcd(n,N ′) = 1 and
χ′(n) = 0 otherwise. Consequently, there is a well-defined minimal modulus M := cond(χ) | N ,
called the conductor of χ, such that χ is induced from a Dirichlet character of modulus M . If
cond(χ) = N , i.e., the conductor of χ is equal to its modulus, then we say that χ is a primitive
character.

It is sometimes convenient to think about Dirichlet characters without a modulus, remembering
only a periodic, totally multiplicative arithmetic function χ. In our context, Dirichlet characters
arise from modular forms with level structure, so there should be little chance for confusion.

3.2. Conrey labels. We briefly describe a scheme, due to Brian Conrey, for labeling and com-
puting with Dirichlet characters. Our labeling scheme can be thought of as a choice of an explicit
isomorphism between two finite abelian groups: the multiplicative group (Z/NZ)× and the group
of Dirichlet characters modulo N . In particular, our Dirichlet characters by definition take values
in the complex numbers, so implicit in our choice of labels is a choice of embedding Qab ↪→ C.

For each N ∈ Z≥1, we will construct a function

(3.2.1) χN : (Z/NZ)× × (Z/NZ)× → C×

satisfying the following three properties:

• χN is multiplicative in each variable (separately);

• χN is symmetric (i.e., χN (m,n) = χN (n,m) for all m,n ∈ (Z/NZ)×); and

• χN is nondegenerate (i.e., if χN (m,n) = 1 for all m ∈ (Z/NZ)×, then n ≡ 1 (mod N)).

Moreover, χN will be multiplicative in N , and hence it is sufficient to define it for prime powers pe

and then extend χN (m,n) to general N by multiplicativity:

χN (m,n) =
∏
pe‖N

χpe(m,n).

We use the notation pe‖N to mean that pe | N but pe+1 - N . On the left side, m and n denote
elements of (Z/NZ)×, while on the right they denote the images of these in (Z/peZ)×. We then
extend χN to a multiplicative, periodic function on Z × Z by setting χN (m,n) = 0 whenever
gcd(mn,N) > 1.

Under these conditions, fixing one input to χN defines a Dirichlet character modulo N and
conversely every Dirichlet character arises in this way. Thus each Dirichlet character is given
a unique name of the form χN (m, ·) for m ∈ (Z/NZ)×. In particular, by symmetry, we see
that χN (1, ·) is the trivial character modulo N , and χN (m, ·) is a quadratic character when m 6≡
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1 (mod N) but m2 ≡ 1 (mod N). (More generally, the order of the character χN (m, ·) is the
multiplicative order of m modulo N .)

We now describe the construction of χN .

Odd prime powers: Let p be an odd prime. Let g be the smallest positive integer that is a
primitive root mod pe for all e ≥ 1. (This is almost always the same as the smallest primitive root
mod p, but may not be; the only odd prime under one million for which these differ is 40487.) For
m ∈ (Z/peZ)×, we define logg(m) ∈ Z/φ(pe)Z by the condition

(3.2.2) m ≡ glogg(m) (mod pe),

so that logg : (Z/peZ)× → Z/φ(pe)Z is an isomorphism of groups.

For m,n ∈ (Z/peZ)×, we then define

(3.2.3) χpe(m,n) := exp

(
2πi

logg(m) logg(n)

ϕ(pe)

)
.

Then χpe clearly satisfies the three required conditions (multiplicative, symmetric, and nondegen-
erate).

Powers of 2: We define χ2 to be the trivial map (so χ2(1, 1) = 1), and define

(3.2.4) χ4(m,n) = (−1)(m−1)(n−1)/2

for m,n ∈ (Z/4Z)×. Let e ≥ 3. The group (Z/2eZ)× is generated by 5 and −1. For m ∈ (Z/2eZ)×,
we define ε(m) ∈ {0, 1} and log5(m) ∈ Z/2e−2Z by

(3.2.5) m ≡ (−1)ε(m)5log5(m) (mod 2e)

so that now (ε, log5) : (Z/2eZ)× → Z/2Z × Z/2e−2Z is an isomorphism. For m,n ∈ (Z/2eZ)×, we
then define

(3.2.6) χ2e(m,n) := exp

(
2πi

ε(m)ε(n)

2
+ 2πi

log5(m) log5(n)

2e−2

)
.

As for the case of odd prime power modulus, this function satisfies the required properties.
In this article, as in the LMFDB, the Conrey label of the character χN (m, ·) has the form N.m.

For example, the Conrey label of χ7(6, ·), the unique quadratic character of modulus 7, is 7.6.

3.3. Orbit labels. There is an action of the absolute Galois group GalQ := Gal(Qal |Q) of Q on
the set of Dirichlet characters of modulus N , defined by

(3.3.1) (σχ)(n) := σ(χ(n))

for σ ∈ GalQ and n ∈ Z.
It is natural to organize characters by Galois orbits, and indeed we will also want to work with

modular forms defined without an embedding into the complex numbers, specified up to the action
of Galois (see §4.2). So we also assign an orbit label to each Galois orbit of Dirichlet characters, as
follows. To choose this label we lexicographically order the sequences

ord(χ),Trχ(1),Trχ(2),Trχ(3),Trχ(4), . . .

of integers, where Tr: Q(χ)→ Q is the absolute trace; we then assign the label written in base 26
using the letters of the alphabet, so

a, b, . . . , z, ba, bb, . . . , bz, ca, . . . , zz, baa, . . . .

For every modulus N ≥ 1, the Dirichlet character orbit N.a is the trivial character, since it is
the unique character with (smallest) order 1.
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Example 3.3.2. The table below lists the Conrey labels of the eight Dirichlet characters of modulus
20, their values on the generators 11 and 17 of (Z/20Z)×, their orders, the absolute traces of their
values the first five positive integers coprime to 20 (note Tr(χ(n)) = 0 if gcd(20, n) 6= 1), and the
labels of the six Galois orbits in which they lie.

Conrey label χ(11) χ(17) ord(χ) Tr(χ(1)) Tr(χ(3)) Tr(χ(7)) Tr(χ(11)) Tr(χ(13)) orbit label

20.1 1 1 1 1 1 1 1 1 20.a
20.11 -1 1 2 1 -1 -1 1 -1 20.b

20.9 1 -1 2 1 -1 -1 1 1 20.c
20.19 -1 -1 2 1 1 1 1 -1 20.d

20.3 -1 −i 4 2 0 0 -2 -2 20.e
20.7 -1 i 4 2 0 0 -2 -2 20.e
20.13 1 −i 4 2 0 0 -2 2 20.f
20.17 1 i 4 2 0 0 -2 2 20.f

Remark 3.3.3. The field Q(χ) is contained in the coefficient field Q(f) of a newform f with
character χ. When the dimension of Q(f) is large it may be difficult to compute a complex
embedding Q(f)→ C, and we often need to distinguish embeddings that are compatible with the
Hecke action, which means we must know the image of Q(χ) under embeddings of Q(f). Matching
up roots of unity of large order can be surprisingly nontrivial! So when computing the coefficient
field (as an abstract field, not necessarily embedded in the complex numbers), we compute the
values of χ on generators for (Z/NZ)× as elements of the coefficient field. In this way, we may
organize embeddings of the coefficient field according to a desired embedding of Q(χ).

We could instead keep track of the coefficient field as an extension of Q(χ), but that approach cre-
ates headaches when comparing results across implementations, it shifts the problem to a different
place when working with forms in a Galois orbit, and it does not allow us to represent eigenvalues
in terms of a nice LLL-reduced basis (see §8.7).

4. Computing modular forms

In this section, we make precise what it means to compute modular forms. For background, we
refer to the wealth of references available, for example Cohen–Strömberg [26], Diamond–Shurman
[39], Serre [86, Chapter VII], and Stein [93].

4.1. Setup. The group SL2(R) acts (on the left) by linear fractional transformations on the upper
half-plane H := {z ∈ C : Im z > 0}. For N ∈ Z≥1, define the congruence subgroups

(4.1.1)

Γ0(N) :=

{
γ ∈ SL2(Z) : γ ≡

(
∗ ∗
0 ∗

)
(mod N)

}
,

Γ1(N) :=

{
γ ∈ SL2(Z) : γ ≡

(
1 ∗
0 1

)
(mod N)

}
.

For Γ ≤ SL2(Z) a congruence subgroup, the quotient Y (Γ) := Γ\H can be compactified to X(Γ)
by adding finitely many cusps, identified with the orbits of Γ on P1(Q). As usual, we write
X0(N), X1(N) for the quotients X(Γ) with Γ = Γ0(N),Γ1(N).

For k,N ∈ Z≥1, a modular form of weight k and level N is a holomorphic function f : H → C that
is bounded in vertical strips and satisfies

(4.1.2) f

(
az + b

cz + d

)
= (cz + d)kf(z)

for all γ =

(
a b
c d

)
∈ Γ1(N); the C-vector space of such forms is denoted Mk(Γ1(N)).
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Modular forms are organized by character, as follows. The space Mk(Γ1(N)) decomposes ac-
cording to the action of diamond operators as

(4.1.3) Mk(Γ1(N)) =
⊕
χ

Mk(Γ0(N), χ),

the sum being over all Dirichlet characters χ : Z/NZ → C of modulus N , where Mk(Γ0(N), χ) is
the subspace of modular forms with (Nebentypus) character χ consisting of those forms f satisfying

(4.1.4) f

(
az + b

cz + d

)
= χ(d)(cz + d)kf(z)

for all γ ∈ Γ0(N). Throughout, we will abbreviate Mk(Γ0(N), χ) to Mk(N,χ) and when χ is trivial,
write simply Mk(N).

In order to handle character values with some finesse (as explained above in §3 and below in
§4.2), we work in the absolute situation (relative to Q) and consider the entire Galois orbit [χ] of
χ, and so we write

(4.1.5) Mk(Γ0(N), [χ]) :=
⊕
χ′∈[χ]

Mk(Γ0(N), χ′),

so that from (4.1.3) we have

Mk(Γ1(N)) =
⊕
[χ]

Mk(Γ0(N), [χ]),

where the direct sum is over Galois orbits of characters [χ]. We similarly abbreviate Mk(Γ0(N), [χ])
to just Mk(N, [χ]).

Every such modular form f has a q-expansion (i.e., Fourier expansion at ∞)

(4.1.6) f(z) =
∞∑
n=0

anq
n ∈ C[[q]],

where q = exp(2πiz) and z ∈ H. We call an ∈ C the coefficients of f , and we write Z[{an}n] for the
coefficient ring and Q({an}n) for the coefficient field of f , the subring and subfield of C generated
by its coefficients, respectively.

A modular form f is a cusp form if f vanishes at the cusps of X1(N). The subspace of cusp forms
is denoted Sk(Γ1(N)) ⊆ Mk(Γ1(N)), and similarly Sk(Γ0(N), χ) ⊆ Mk(Γ0(N), χ). In particular, a
cusp form vanishes at the cusp ∞, so that the coefficient a0 of its q-expansion is zero.

The Petersson inner product provides an orthogonal decomposition

(4.1.7) Mk(Γ0(N), χ) = Sk(Γ0(N), χ)⊕ Ek(Γ0(N), χ)

where Ek(Γ0(N), χ) is the space spanned by Eisenstein series, obtained in an explicit way using
characters (see §4.4). Each of the spaces above can further be decomposed into old and new
subspaces, and we denote the new subspace by Snew

k (Γ1(N)), etc.
The above spaces can be equipped with an action of Hecke operators Tn indexed by n ∈ Z≥1. The

operators Tn are normal and pairwise commute for gcd(n,N) = 1, so there is a common normalized
(a1 = 1) basis for the action of the Hecke operators, called eigenforms; for such forms, Tnf = anf
for f as in (4.1.6). A new cuspidal eigenform is called an (embedded) newform. The coefficients of
a newform are algebraic integers and the coefficient field is a number field. When χ is trivial, this
coefficient field is totally real. When χ is trivial, we also have Atkin–Lehner involutions Wp for
p | N , and the Fricke involution WN :=

∏
p|N Wp. (See subsection 8.3 below.)

For a subring A ⊆ C, we write Mk(Γ1(N);A) ⊆ Mk(Γ1(N)) for the A-submodule of modular
forms whose q-expansions have coefficients in A, and similarly with the other decorated spaces.
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From now on, we suppose we are given the input of a weight k ∈ Z≥1, a level N ∈ Z≥1, and an
orbit of Dirichlet characters χ of modulus N and orbit label N.s; we encode this data of a space of
modular forms in the label N.k.s.

Example 4.1.8. For N = 280, k = 2, and trivial character χ having label 280.a, the space
M2(280) = M2(Γ0(280)) has label 280.2.a.

Remark 4.1.9. We restrict ourselves to integral weight forms in this article. For forms of half-
integral weight, the algorithms, applications, and issues that arise are quite different.

4.2. Galois digression. As is usual in Galois theory, it is convenient to work both with abstract
objects as well as embedded objects. To this end, we call the Aut(C)-orbit of an embedded newform
f a newform orbit, and write [f ] for this orbit. We call a Q-subspace of Snew

k (Γ0(N), [χ];Q) that is
irreducible under the action of the Hecke operators a newform subspace.

For an eigenform f in a newform subspace, we obtain an embedded newform by a choice of
embedding of its coefficient field into C, and all such embeddings are conjugate under Aut(C). Con-
versely, given an embedded newform f ∈ Snew

k (Γ0(N), χ), the C-subspace of Sk(Γ0(N), [χ]) spanned
by σ(f) :=

∑
n σ(an(f))qn for σ ∈ Aut(C) descends to a newform subspace Vf ⊆ Sk(Γ0(N), [χ];Q),

visibly depending only on the Aut(C)-orbit of f . In other words, there is a bijection between new-
form subspaces V ⊆ Snew

k (Γ1(N)) and newform orbits [f ] of embedded newforms f of weight k and
level N .

The coefficient field K of a newform subspace, defined to be the coefficient field of any eigenform
in the subspace, is well-defined as an abstract number field. The expansion (4.1.6) considered in
K, is similarly well-defined.

4.3. Dimensions. The first thing one may ask to compute for a space of modular forms is just
dimensions of the subspaces as defined above: the total dimension dimCMk(Γ0(N), [χ]), the dimen-
sion of the Eisenstein subspace dimCEk(Γ0(N), [χ]), and the dimension of the cuspidal subspace
dimC Sk(Γ0(N), [χ]), as well as the old and new subspaces of each of these. Since these subspaces
are naturally vector spaces over Q, we have

dimCMk(Γ0(N), [χ]) = dimQMk(Γ0(N), [χ];Q);

moreover, an individual space Mk(Γ0(N), χ) is a vector space over Q(χ) and each summand in
(4.1.5) has the same dimension, so these absolute dimensions are the product of their relative
dimension by the degree d = [Q(χ) : Q] of χ, i.e., we also have

dimCMk(Γ0(N), [χ]) = dimQ(χ)Mk(Γ0(N), χ;Q).

Remark 4.3.1. To avoid errors, to compare across packages, and to store data conveniently, we
found it essential to compute in the absolute setting (over Q) rather than the relative setting (over
Q(χ)).

For weight k ≥ 2, these dimensions can be computed using the valence formula, the Riemann–
Roch theorem, or the trace formula—they are given explicitly e.g. by Cohen–Strömberg [26, The-
orem 7.4.1]. Unfortunately, no formula is known for these dimensions when k = 1.

Because they can be understood explicitly in terms of Dirichlet characters, there are separately
given formulas for the Eisenstein dimension as well as the dimension of the new and old subspaces in
all weights k ≥ 1: see Cohen–Strömberg [26, Propositions 8.5.15 and 8.5.21] for the full dimension,
with the new dimension worked out by Buzzard [18] using a formula of Cohen–Oesterlé [25, Theorem
1] as follows. Lacking a reference for these formulas, we record them here.
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For r, s, p ∈ Z with p prime and r > 0 and s ≤ r, define

(4.3.2) λ(r, s, p) :=


pr
′
+ pr

′−1, if 2s ≤ r = 2r′;

2pr
′
, if 2s ≤ r = 2r′ + 1;

2pr−s, if 2s > r;

and

(4.3.3) λnew(r, s, p) :=



2

2p− 4

2(p− 1)2pr−s−2

 if 2s > r and


r = s;

r = s+ 1;

r ≥ s+ 2;

0

p− 3

(p− 2)(p− 1)ps−2

 if 2s = r and


p = 2;

r = 2 and p ≥ 3;

r ≥ 4;

0

p− 2

(p− 1)2pr/2−2

 if 2s < r and


2 - r;
r = 2;

r ≥ 4 and 2 | r.

Theorem 4.3.4 (Cohen–Oesterlé, Buzzard). Let N, k ∈ Z≥1 and let χ be a character of modulus
N and conductor M | N . Then the following statements hold:

(a) If χ(−1) 6= (−1)k, then dimCEk(N,χ) = dimCE
new
k (N,χ) = 0.

(b) For N = 1, we have

(4.3.5) dimCEk(1) = dimCE
new
k (1) =

{
1, if k ≥ 4 and 2 | k;

0, otherwise.

Suppose further that N ≥ 2 and χ(−1) = (−1)k, and let

(4.3.6)

e :=
∏
p|N

λ(ordp(N), ordp(M), p)

enew :=
∏
p|N

λnew(ordp(N), ordp(M), p).

Then the following hold:

(c) We have

(4.3.7) dimCEk(N,χ) =


e− 1 if k = 2 and χ is trivial;

e/2 if k = 1;

e otherwise.

(d) We have

(4.3.8) dimCE
new
k (N,χ) =


enew + 1 if k = 2 and χ is trivial and N is prime;

enew/2 if k = 1;

enew otherwise.

(e) We have

dimCEk(N, [χ]) = ddimCEk(N,χ)

where d = [Q(χ) : Q] is the degree of χ, and similarly with dimCE
new
k (N, [χ]).
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Proof. The proof is an elaborate and rather tedious exercise in counting characters using the trace
formula. �

We organize this dimension data in a table, as follows.

Example 4.3.9. We consider the space M3(560, [χ]) with label 560.3.bt; a character χ in this orbit
has label 560.bt, order 6, and degree 2. We then compute dimensions as in Table 4.3.10.

Total New Old

Modular forms 408 96 312

Cusp forms 360 96 264

Eisenstein series 48 0 48

Table 4.3.10: Dimensions for subspaces of M3(560, [χ])

One can also ask for the full trace form

(4.3.11)
∞∑
n=1

Tr(Tn |Sk(N, [χ]))qn ∈ Sk(N, [χ];Z)

on Sk(N, [χ]) to some (q-adic) precision, with analogous definitions for the other subspaces consid-
ered above; see also (4.5.3) below.

4.4. Eisenstein series. Beyond dimensions, we may next ask for further information about the
decomposition of the space Mk(N,χ). Of course the first step is the decomposition of the Eisenstein
subspaces Ek(N,χ)—for this purpose, explicit bases are given by Cohen–Strömberg [26, Theorems
8.5.17, 8.5.22, and 8.5.23].

Remark 4.4.1. We do not currently display an Eisenstein basis in the LMFDB.

4.5. Decomposition of newspaces into Hecke orbits. With the Eisenstein subspace described
explicitly above, we now turn to the cuspidal subspace. By the newform theory of Atkin–Lehner
[1] and Li [60], the multiplicity of the space Snew

k (M,χM ) in Sk(N,χ), is equal to the number of
divisors of N/M (so depends only on the conductor and level). While it suffices to study the new
subspace, it may be computationally expensive to determine Snew

k (N,χ) as a subspace of Sk(N,χ);
one way to do this is via projection operators called degeneracy maps, one for each prime divisor
of N .

At this stage, for each newspace Snew
k (N, [χ]) we may first ask for just the dimensions of its

newform subspaces V or Hecke orbits—see §8.5 below for a discussion of decomposition and ir-
reducibility. When χ is trivial, we may also ask for the decomposition of the space under the
Atkin–Lehner involutions and the Fricke involution.

Example 4.5.1. The space Snew
2 (3111), with trivial character, has dimension 159; it decomposes

into newspaces of dimensions 1 + 2 + 3 + 3 + 7 + 13 + 14 + 14 + 21 + 24 + 28 + 29 = 159, and we
have the following decomposition into subspaces under Atkin–Lehner operators:
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3 17 61 Fricke dimension decomposition

+ + + + 13 1 + 2 + 3 + 7

+ + − − 29 29

+ − + − 24 3 + 21

+ − − + 14 14

− + + − 24 24

− + − + 14 14

− − + + 13 13

− − − − 28 28

Table 4.5.2: Dimensions for subspaces of Snew
2 (3111)

In practice, one computes this decomposition as follows. We first compute a Q(χ)-basis for
Snew
k (N,χ) in some manner, and then we compute the matrix of Tp on this basis for p - N for

a few primes p in such a way that a small (finite) Z-linear combination
∑

p cpTp has squarefree
characteristic polynomial. Therefore, the Q-dimension decomposition is simply the degrees of
the irreducible factors each multiplied by [Q(χ) : Q]. There seems to be no problem in practice
finding such a small linear combination, but the best thing that we can say rigorously involves
the Sturm bound and appears to be far from optimal. Already at this point engineering concerns
enter: for example, the time to compute such a characteristic polynomial may be faster in certain
implementations if done over Q instead.

With this basic decomposition data in hand, we may continue. For each newform orbit [f ]↔ V
(cf. §4.2) we wish to compute the following:

(1) The trace form

(4.5.3) Tr(f)(q) :=
∞∑
n=1

TrK|Q(an(f))qn ∈ Sk(N, [χ];Z)

(well-defined on the Galois orbit [f ]), where K is the coefficient field of f , to precision n up
to the Sturm bound (see §8.2). Equivalently, writing Tr(f)(q) =

∑
n tnq

n ∈ Z[[q]], we have
tn = Tr(Tn |V ) as the trace of the Hecke operator Tn restricted to V—see §8.6 for further
discussion.

(2) A minimal polynomial for the coefficient field K of [f ].

(3) A finite set of generators for the Hecke kernel for V , the ideal in the Hecke algebra on
Snew
k (N,χ) that vanishes on V ; i.e., a finite set of polynomials in Tn such that the ideal

generated by these polynomials cuts out exactly V . (We use the Hecke kernel when com-
puting inner twists: see §11.)

Although it is possible to compute coefficients of the trace form Tr(f) by computing coefficients
of f and taking traces, this is more expensive than other techniques and is not computationally
feasible in many cases where it is feasible to compute the trace form (e.g., using the trace formula:
see section §5.2). The trace form conveniently records interesting information about the newform
orbit, e.g., the coefficient t1 of the trace form is equal to the dimension of the newform subspace.

Example 4.5.4. Consider the space S2(1166, [χ]) with label 1166.2.c, the character having order
2 and conductor 53 | 1166. The old subspace decomposes as

Sold
2 (1166, [χ]) ' Snew

2 (53, [χ])⊕4 ⊕ Snew
2 (106, [χ])⊕2 ⊕ Snew

2 (583, [χ])⊕2.
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The decomposition of the new space Snew
2 (1166, [χ]) into irreducibles by Q-dimension is 46 =

2 + 22 + 22, giving rise to three newform orbits 1166.2.c.a, 1166.2.c.b, 1166.2.c.c with respective
trace forms

(4.5.5)

Tr(fa)(q) = 2q − 2q4 + 2q6 − 8q7 + 4q9 +O(q10)

Tr(fb)(q) = 22q − 22q4 − 6q6 − 24q9 +O(q10)

Tr(fc)(q) = 22q − 22q4 + 4q6 + 8q7 − 34q9 +O(q10).

We computed the last two trace forms without computing coefficients of a constituent newform
(belonging to a number field of degree 22, or even determining what this number field is), which
would have been much more time consuming. For the newform orbit [fa], we determined that its
coefficient field is Q(

√
−1), that it can be constructed as the kernel of the linear operator T 2

3 + 1
acting on Snew

2 (1166, [χ]), and then computed the first 1000 coefficients an of its q-expansion
∑
anq

n

as elements of Q(
√
−1).

4.6. Hecke eigenvalues. Finally, for a newform f , we can ask for the coefficients of f up to (at
least) the Sturm bound. These coefficients can be represented either exactly or as complex numbers
(approximately, e.g. using interval arithmetic).

• For exact coefficients, there are issues in representing them compactly: see §8.7 for our
approaches.

• For the numerical (complex) coefficients an, the most useful for computing L-functions (see
the next section), we ask for these coefficients for each embedded form in the newspace.

These coefficients are of size O(n(k−1)/2+ε) for all ε > 0, so in large weight we prefer to

compute the normalized coefficients an/n
(k−1)/2, which by the Ramanujan–Petersson bounds

have absolute value of size O(nε).

For large degree coefficient fields, it is often practical to compute numerical coefficients even when
storing exact coefficients would be impractical.

Finally, when the character is trivial, for the signs of the Atkin–Lehner involutions.

Example 4.6.1. Consider the newform orbit 5355.2.a.bf of dimension 3, with coefficient field Q(ν)
(LMFDB label 3.3.169.1) where ν is a root of the polynomial x3− x2− 4x− 1. The q-expansion of
a newform f in this orbit, with coefficients in Q(ν), is

f(q) = q + (1− β1)q2 + (2− β1 + β2)q4 + q5 + q7 + (2− β1 + 2β2)q8 +O(q10)

where β1 = ν and β2 = ν2 − ν − 3.
The 3 embedded newforms are labeled 5355.2.a.bf.1.m for m = 1, 2, 3 encoding the three embed-

dings ιm : Q(ν) ↪→ C; the embedded coefficients to 6 decimal digits are as follows:

Label ιm(ν) a2 a3 a4 a5 a6 a7 a8

1.1 2.65109 −1.65109 0 0.726109 1.00000 0 1.00000 2.10331

1.2 −0.273891 1.27389 0 −0.377203 1.00000 0 1.00000 −3.02830

1.3 −1.37720 2.37720 0 3.65109 1.00000 0 1.00000 3.92498

Table 4.6.2: Embedded newforms for 5355.2.a.bf.

4.7. L-functions. We can also ask for computations related to (invariants of) L-functions of mod-
ular forms, including the sign of the functional equation, the first few zeros, and special values to
some precision: see §9 for more detail.
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5. Algorithms

In this section, we give a brief overview of different algorithmic methods to compute modular
forms and indicate where they are currently implemented. In our computations for the LMFDB,
we only used the first two (modular symbols and the trace formula), but here we also survey the
others. Our goal is to give a flavor of what each method entails, referring to the references provided
for details. Throughout, we keep notation from the previous section.

5.1. Modular symbols. The most well-known method to compute modular forms is the method
of modular symbols, introduced by Birch [6] and developed by Manin [63], Merel [67], Stein [93],
and many others. For an extensive history, see Stein [93, 8.10.2], and for a gentle overview see Stein
[94]. This method was implemented in Magma [12] by William Stein, with contributions by Steve
Donnelly and Mark Watkins, and in SageMath [83] by William Stein, with contributions by David
Loeffler, Craig Citro, Peter Bruin, Frédéric Chapoton, Alex Ghitza, and many others.

We now briefly introduce modular symbols. Assume k ≥ 2. Integration gives a perfect pairing

(5.1.1)

Sk(Γ1(N))×H1(X1(N),R[x, y]k−2)→ C

(f, υ ⊗ P ) 7→
∫
υ
f(z)P (z, 1) dz

where R[x, y]k−2 denotes the R-vector space of homogeneous polynomials of degree k − 2. In a
slogan, (5.1.1) indicates that the homology of a modular curve is dual to its cusp forms, and this is
formalized as follows. Let Div(P1(Q)) be the free abelian group on symbols [α] for α ∈ P1(Q), and
let Div0(P1(Q)) ≤ Div(P1(Q)) be the subgroup of degree zero elements under the natural degree
map. Then Div0(P1(Q)) is generated by elements {α, β} := [α]− [β] for α, β ∈ P1(Q), written this
way to suggest a path from α to β in C. We define the space of modular symbols of weight k and
level N (with Q-coefficients) to be the quotient

ModSymk(Γ1(N);Q) :=
Q[x, y]k−2 ⊗Div0(P1(Q))

〈P ⊗ {α, β} − γ(P ⊗ {α, β})〉α,β∈P1(Q),γ∈Γ1(N)

under the natural action of Γ1(N) ≤ SL2(Q). The space ModSymk(Γ1(N);Q) of modular symbols
has moreover a natural action of Hecke operators and Atkin-Lehner operators.

Theorem 5.1.2. There is a Hecke-equivariant isomorphism

ModSymk(Γ1(N);Q)
∼−→Mk(Γ1(N);Q)⊕ Sk(Γ1(N);Q)

where Sk(Γ1(N);Q) denotes the space of anti-holomorphic cusp forms, the image of Sk(Γ1(N);Q)
under complex conjugation.

Proof. See Manin [63], Merel [67], or Stein [93, §8.5]. �

Theorem 5.1.2 has many variants: one may restrict to Γ0(N), work with the (appropriately
defined) space of cuspidal modular symbols as the kernel of a certain boundary map, carve out just
Mk(Γ1(N);Q) as the +-space for a natural action of complex conjugation, and so on.

Example 5.1.3. For Γ0(N), the space of modular symbols has a convenient description in terms
of Manin symbols as follows: ModSymk(Γ0(N);Q) is the Q-vector space generated by the set ∆ of
elements δ = (xiyk−2−i, (c : d)) for i = 0, . . . , k − 2 and (c : d) ∈ P1(Z/NZ), modulo the subspace

〈δ + δS, δ + δR+ δR2〉δ∈∆

where S =

(
0 1
−1 0

)
and R =

(
0 1
−1 1

)
. The Hecke operators do not preserve Manin symbols,

but there is an efficient procedure (arising from the Euclidean algorithm) for reducing an arbitrary
element of ModSymk(Γ0(N);Q) to a linear combination of Manin symbols.

13



One feature of modular symbols is that they are especially well-suited for certain applications,
including arithmetic invariants of elliptic curve quotients [31] (and more generally modular abelian
varieties) as well as L-values of modular forms (see e.g. §9.4 below for an application). Moreover,
modular symbols can be employed for arbitrary congruence subgroups (see [3] for an example).

In practice, it is quite efficient to compute the space of modular symbols with its Hecke action. It
is a matter of sparse linear algebra to compute a basis of modular symbols, a negligible contribution.
The number of field operations to compute the action of the Hecke operator Tn on this basis is

Õ(nd), where d is the Q(χ)-dimension of the space under consideration: for each of the d basis

elements, we sum the action of σ1(n) :=
∑

d|n d = Õ(n) cosets and reduce to the basis in time

polynomial in log n using continued fractions. In this way, we may compute the q-expansions of a

basis to precision O(qr) using Õ(dr2) field operations, and thereby also the trace form.
The most difficult engineering effort that goes into a working implementation of modular symbols

is the careful handling of linear algebra aspects: we apply degeneracy operators to obtain precisely
the subspace Snew

k (N,χ), and once the matrices [Tn] representing the Hecke operators are computed
on this space, we compute its decomposition into newform subspaces, etc. Indeed, in the preceding
paragraphs, the actual time complexity of this method may depend on the output desired and the
meaning of “arithmetic operation”. If we wish for exact results, which is the approach taken by
Magma and Pari/GP, then we need to do exact arithmetic with elements of cyclotomic fields, and
the larger the order of the corresponding Dirichlet character, the more expensive the computation.
Similarly, the coefficients of the newforms themselves may live in a large extension of the field of
character values, and the larger this extension is, the harder the computation.

Remark 5.1.4. As alternatives, we may do all of the computations described using floating point
approximations to complex numbers, for example using complex ball arithmetic to compute rigorous
error bounds for all of the output. In this case, the degree of the field of coefficients of the
modular form is irrelevant, and the time complexity matches the estimates above; this is particularly
attractive if our application is to the computation of Dirichlet coefficients for input into L-function
computations. Similar comments apply by doing computations over a finite field, for example
working with coefficients over a finite field with prime cardinality congruent to 1 modulo the
order of χ—in this case, we can do all computations over Fp. In both cases, we must do some
reconstruction to obtain exact results in characteristic zero.

The above description requires weight k ≥ 2. For weight 1, there are two approaches that reduce
the problem to higher weight. In the approach originated by Buhler [15], further developed by
Buzzard [19], and carried out to scale by Buzzard–Lauder [20], we choose nonzero f ∈Mk(Γ1(N))
and consider S1(Γ1(N)) ⊆ f−1Mk+1(Γ1(N)). Intersecting the spaces obtained for many choices
of f , we quickly obtain an upper bound for the space S1(Γ1(N)) that can then be matched with a
lower bound. Using Buzzard’s code, this method was implemented in Magma by Steve Donnelly.
(Currently, Magma can provide a basis for the cuspidal subspace, but it does not decompose the
space into the old and new subspace and does not provide the action of the Hecke operators; this
was implemented by Buzzard–Lauder, but has not yet been incorporated into Magma.) A second
related approach is to use the Hecke stability method of Schaeffer [84], instead computing the largest
subspace of f−1Mk+1(Γ1(N)) that is stable under the Hecke operators; this has been implemented
in SageMath by Schaeffer and Loeffler, and in Pari/GP by Belabas and Cohen [4, §4].

5.2. Trace formula. Perhaps the earliest method to compute modular forms used the trace for-
mula. The trace formula is an explicit formula for the trace of a Hecke operator acting on a
space of modular forms, and it was pioneered by Selberg [85] and later developed by Eichler [41],
Hijikata [49], and Cohen–Oesterlé [25]. A comprehensive treatment with references is the book
of Knightly–Li [59], and a tidy presentation is given by Schoof–van der Vlugt [89, Theorem 2.2].
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Proofs of the trace formula from different vantage points continue to be developed, see e.g. Popa
[78]. This method has been implemented in Pari/GP [76] by Belabas–Cohen [4] and in a standalone
implementation by Bober, described in §7.2.

We again assume k ≥ 2. An explicit version of the trace formula for Tr(Tn |Sk(Γ0(N), χ)) ∈ Q(χ)
is too complicated to give here. Aside from easily computed terms, it can be naively understood as
a weighted sum of (Hurwitz) class numbers of imaginary quadratic fields: for a precise statement,
see e.g. Belabas–Cohen [4, Theorem 4]. We obtain Tr(Tn |Snew

k (N,χ)) from a nontrivial application
of the Möbius inversion formula, proven in Corollary 6.1.5 below.

Let d := dimQ(χ) S
new
k (N,χ) = O(kN). The computation of Tr(Tn |Snew

k (N,χ)) requires com-
puting class numbers of imaginary quadratic fields with absolute discriminant up to O(n), and one

can compute all of these at once in time complexity Õ(n3/2). For the purposes of a large-scale
computation, these class numbers are cached and may be assumed to be precomputed (their cost
amortized over many computations, thereby negligible). Under this assumption, and given factor-
izations of n and N , to compute Tr(Tn |Snew

k (N,χ)) we sum O(
√
n) terms giving a complexity of

O(
√
nN ε) field operations for any ε > 0; computing all traces up to n > d then takes Õ(n3/2) field

operations.
In this manner, we compute the relative trace form on the new cuspidal subspace

(5.2.1) t(q) :=
∞∑
n=1

Tr(Tn |Snew
k (N,χ))qn ∈ Snew

k (N,χ;Z[χ]),

and from this we quickly compute the full trace form (4.3.11) in Snew
k (Γ1(N);Z). In particular, using

the trace formula method we can compute either trace form to precision O(qr) using Õ(r3/2N ε)

field operations, which for r > d becomes Õ(r3/2) as in the previous paragraph.
By multiplicity one theorems, and since the Hecke operators act semisimply on the newspace,

the images of t under the Hecke operators span Snew
k (N,χ). Explicitly, applying Tm to t, we obtain

(5.2.2) (Tmt)(q) =
∞∑
n=1

Tr(TmTn |Snew
k (N,χ))qn,

and the forms T1t, T2t, . . . span Snew
k (N,χ). (We recall that TmTn = Tmn when gcd(m,n) = 1, and

more generally a recursion for the Hecke operators applies. Therefore, these coefficients can again
be expressed in terms of traces of Hecke operators.) Once we have a spanning set, we can extract
a basis and apply Hecke operators to that basis.

Typically (in practice) we need O(d) forms to span and O(d) coefficients of each form to
get a full rank matrix. Thus writing down a basis typically requires the first O(d2) values of
Tr(Tn |Snew

k (N,χ)), which can be computed using O(d3) field operations. Finding this basis—and

the q-expansion to precision Õ(d) for each form—is standard linear algebra, accomplished using

Õ(d3) field operations. To compute the matrix of the Hecke operator Tn on this basis requires

traces up to O(nd) and so Õ(n3/2d3/2) operations. Finally and similarly, to compute a basis of
q-expansions to precision O(qr) with r > d, we compute traces up to O(rd) and apply a change of

basis, for a total of Õ(d3/2r3/2) arithmetic operations.
We summarize the estimated complexity of these two approaches in Table 5.2.3, where again d

is the Q(χ)-dimension of the space under consideration and we suppose precision r > d.
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Task Modular symbols Trace formula

Full trace form to precision O(qr), d = O(r) Õ(dr2) Õ(r3/2)

[Tn] on a basis Õ(dn) Õ(d3/2n3/2 + d3)

Characteristic polynomial of Tn on a basis Õ(dn+ d3) Õ(d3/2n3/2 + d3)

Basis of q-expansions to precision O(qr), d = O(r) Õ(dr2) Õ(d3/2r3/2)

Hecke decomposition Õ(d3) Õ(d3)

Minimal polynomials for newspace coefficient fields Õ(d3) Õ(d3)

Table 5.2.3: Heuristic complexity of modular form computations

So although linear algebra eventually dominates both approaches, neither modular symbols nor
the trace formula seems to be a winner for all tasks: it seems to be much better to use modular
symbols to get information about a small number of Hecke operators, while it is much better to
use the trace formula to get a large number of coefficients of a basis of newforms. This heuristic
analysis matches our practical experience in the course of our computations.

Similar comments with reference to weight 1 forms apply as in the previous section. The same
is true for the issue of time complexity and the coefficient field (see e.g. Remark 5.1.4), with the
caveat that the matrices representing Hecke operators using modular symbols tend to be much
sparser in comparison to those using the trace formula. In particular, one expects that taking
advantage of sparsity will allow a more efficient implementation of the linear algebra aspects for
modular symbols.

Remark 5.2.4. In some circumstances, it can be more convenient to work with a basis that is
in echelon form with respect to q-expansions (sometimes called a Victor Miller basis) in the trace
formula method. With such a basis, going back and forth between an action on q-expansions and
the matrix form for various linear operators one can see some gains in efficiency.

5.3. Definite methods. In both of the previous algorithms, we work (either explicitly or implic-
itly) on the modular curve. In this section, we indicate another class of algorithms that compute
systems of Hecke eigenvalues using a different underlying object.

Going back at least to Jacobi, surely the first modular forms studied were theta series. Let
Q(x) = Q(x1, . . . , xd) ∈ Z[x1, . . . , xd] be a positive definite integral quadratic form in d = 2k ∈ 2Z≥1

variables with discriminant N . Let P (x) be a (nonzero) spherical polynomial of degree m ≥ 0 with
respect to Q, for example P (x) = 1. We form the generating series for representations of n ∈ Z≥0

by Q weighted by P , a theta series of Q, by

(5.3.1) θQ,P (q) :=
∑
x∈Zd

P (x)qQ(x).

For example, if P (x) = 1, then

(5.3.2) θQ,1(q) =

∞∑
n=0

rQ(n)qn ∈ Z[[q]]

where rQ(n) = #{x ∈ Zd : Q(x) = n} counts the number of representations of n by Q. By letting
q = e2πiz for z ∈ H as usual, we obtain a holomorphic function θQ : H → C. Further, by an
application of the Poisson summation formula (see e.g. Miyake [71, Corollary 4.9.5]), we find that
θP,Q ∈ Mk+m(Γ0(2N), χN ) is a classical modular form of weight k + m, level 2N , and character

χN (a) :=

(
N

a

)
of order at most 2.
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Turning this around, we can use theta series to compute spaces of classical modular forms.
Perhaps the most convenient source of such theta series is to work with quaternary (d = 4) quadratic
forms of square discriminant coming from quaternion algebras—this method goes by the name
Brandt matrices as it came about from early work of Brandt. Building on work of Eichler [42],
Hijikata–Pizer–Shemanske [50] proved that linear combinations of such theta series span the space
of cusp forms, up to twists. (See also Martin [64] for a more recent development.) The coefficients
of theta series can then be reformulated in terms of classes of right ideals of specified reduced norm
in a quaternion order. This method was first developed in an algorithmic context by Pizer [77]; it
has been implemented in Magma by David Kohel and in SageMath by Bober, Alia Hamieh, Victoria
de Quehen, William Stein, and Gonzalo Tornaŕıa.

In a little more detail, the method of Brandt matrices runs as follows. Let B be a definite
quaternion algebra of discriminant D := discB, a squarefree product of the primes that ramify
in B. Let O ⊆ B be an Eichler order of level M with gcd(D,M) = 1, and let N := DM .
Let ClsO be the set of locally principal (equivalently, invertible) fractional right O-ideals up to
isomorphism (given by left multiplication by an element of B×). Then ClsO is a finite set, so
let ClsO = {[I1], [I2], . . . , [Ih]} with h := # ClsO. Let OL(Ii) be the left order of Ii, and let
Γi := OL(Ii)

× be its unit group with #Γi <∞. Let qi := nrd(Ii). For n ∈ Z≥1, define

Θ(n)i,j := Γi\{α ∈ IjI−1
i : nrd(α)qiq

−1
j = n}.

We have α ∈ Θ(n)i,j if and only if αIi ⊆ Ij with index n2. To connect this with the previous
paragraph, we have

(5.3.3)
Qij : IjI

−1
i → Z

Qij(α) = nrd(α)
qi
qj

is a positive definite integral quaternary quadratic form of discriminant N2 whose theta series
descends to a modular form of level N—in the notation above, we have rQij (n) = #Θ(n)i,j . In this
way, we can compute a matrix for the Hecke operator [Tn] acting on Sk(Γ0(N), χ) by quaternionic
arithmetic: for weight k = 2, the matrix [Tn] is the adjacency matrix of the directed graph with
vertex set ClsO and directed edges between [Ii] and [Ij ] with multiplicity #Θ(n)i,j .

The method of Brandt matrices has several advantages. First, the forms computed this way are
necessarily new at all primes p | D, so linear algebra with degeneracy operators can be minimized.
Second, the matrices [Tn] of Hecke operators are sparse: for example, in weight k = 2 they have
nonnegative integer coefficients whose columns sum to σ(n). Accordingly, linear algebra steps have
an improved complexity both in theory and in practice. Third, Brandt matrices also carry useful
arithmetic information about the reduction of modular curves at primes of bad reduction. Fourth,
the set Θ(n)i,j is independent of the weight k and so may be reused. Despite these advantages,
the main limitation of Brandt matrices seems to be that it works most simply when there exists
a prime p that exactly divides the level N (so that an Eichler order of reduced discriminant N
exists); otherwise, we must work with non-Eichler orders. Hence current implementations focus on
this case.

The Brandt graph is an expander graph by the Ramanujan–Peterson bound, so with short vector
computations one can compute a set of representatives for ClsO and a spanning set for Sk(Γ0(N), χ)

using Õ(h2) operations; computing a basis from this is a matter of sparse linear algebra and can be
considered to be negligible. To compute a single matrix [Tn], in principle we could use Minkowski

reduction (together with some awkward corner cases) on hσ(n) right ideals using Õ(hn) = Õ(dn)
operations. To compute a basis of q-expansions to precision O(qr) with d = O(r), for each of
the h classes we can enumerate elements of small reduced norm using the Fincke–Pohst algorithm

in time proportional to the volume so Õ(dr2), performing reduction with the same complexity.
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These heuristics match the running time of modular symbols with linear algebra again eventually
dominating— however, it is here where sparse linear algebra may ultimately in practice give the
Brandt matrix method an edge.

A method that shares much in common with Brandt matrices is the method of graphs due
to Mestre [68] and Oesterlé. We suppose that p ‖ N and work with the quaternion algebra B
of discriminant D = p. We recall that there is an equivalence of categories between supersingular
elliptic curves over an algebraic closure of Fp under isogenies and invertible right (or left) O-modules
under homomorphisms. So to compute a matrix for the Hecke operator, in place of ClsO we can
compute the set of isomorphism classes of pairs (E,C) where E is a supersingular elliptic curve in
characteristic p and C is a cyclic subgroup of order M = N/p, and in place of the sets Θ(n)ij we
can enumerate cyclic isogenies between these points up to a natural equivalence.

Finally, a related method of Birch [7] (who sought to generalize the method of graphs beyond
discriminant D = p) uses ternary quadratic forms instead. This method captures all of the advan-
tages above, with an additional feature: work in progress by Hein–Tornaŕıa–Voight shows that one
can carve out not just a new subspace but moreover one can specify the Atkin–Lehner eigenvalue,
reducing the total dimension and thereby the complexity of linear algebra operations.

5.4. Other methods. We conclude by briefly indicating two other methods in addition to the
above.

• Multiplying forms of lower weight. We compute a presentation for the graded ring of mod-
ular forms of level N

M(Γ1(N)) :=

∞⊕
k=0

Mk(Γ1(N))

(or the same for Γ0(N)) in terms of a finite set of generators and a Gröbner basis for
the ideal of relations among them; see work of Voight–Zureick-Brown [100] for an explicit
description of this graded ring in terms of the genus and number of cusps for Γ1(N) (and
more generally in terms of the signature of the uniformizing Fuchsian group) as well as
further references and discussion. From this, one can compute for each weight k a set of
(leading) monomials in the generators that are a Q-basis for Mk(Γ1(N)). Using fast Fourier
techniques, the multiplication of these q-expansions allows the computation of a basis for
large weights k (and fixed level N) quite efficiently in comparison to any of the approaches
above.

• Polynomial-time algorithms. By work of Edixhoven–Couveignes [40], Bruin [13], and Mas-
cot [66], one can compute coefficients of modular forms of level 1 in polynomial time: for
example, for the modular discriminant ∆(q) =

∑
n τ(n)qn ∈ S12(1), the value τ(p) for a

prime p can be computed in time bounded by a fixed power of log p.

6. Two technical ingredients

In this section, we consider two technical results that are needed in the above algorithmic de-
scription.

6.1. Eichler–Selberg trace formula for newforms. We first prove a technical result that is
used by Belabas–Cohen [4] in the computation of modular forms in Pari/GP [76], as explained
above: we describe the trace of Hecke operators on the new subspace in terms of the trace on the
total space.

Let χ be a primitive character of conductor Q | N and k a positive integer satisfying χ(−1) =
(−1)k; we take these to be fixed and suppress their dependence from the notation.
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For any positive integer n, the nth Hecke operator Tn : Sk(N,χ)→ Sk(N,χ) may be defined by

(Tnf)(z) =
1

n

∑
ad=n

gcd(a,N)=1

χ(a)ak
∑

b mod d

f

(
az + b

d

)
.

Then

(Tnf)(z) =

∞∑
m=1

 ∑
d|(m,n)
(d,N)=1

χ(d)dk−1amn
d2

 e(mz),

where f(z) =
∑∞

m=1 ame(mz). This operator stabilizes the subspace Snew
k (N,χ).

Let {fN,j}sNj=1 be a basis of normalized newforms for Snew
k (N,χ) and write

fN,j(z) =

∞∑
m=1

aN,j(m)e(mz).

We assume that each fN,j is an eigenfunction of Tn of eigenvalue aN,j(n) and define

gn =

sN∑
j=1

aN,j(n)fN,j =

∞∑
m=1

e(mz) Tr
(
TnTm|Snew

k (N,χ)

)
.

We parameterize the basis of Sk(N,χ): for M1,M2 ∈ Z≥1 with Q |M1 and M1M2 | N , let

fM2
M1,j

(z) := fM1,j(M2z).

Then {
fM2
M1,j

: M1,M2 ∈ Z≥1, Q |M1, M1M2 | N
}

is a basis for Sk(N,χ). Let us extend the definition of aN,j(n) to Q>0 by writing aN,j(x) = 0 if
x /∈ Z≥1.

If gcd(n,N) = 1, then

Tnf
M2
M1,j

=
∞∑
m=1

∑
d|(m,n)
(d,N)=1

χ(d)dk−1aM1,j

(
mn

d2M2

)
e(mz)

=

∞∑
m=1

aM1,j

(
m

M2

)
aM1,j(n)e(mz) = aM1,j(n)fM2

M1,j
,

so each fM2
M1,j

is an eigenfunction of Tn. To compute the action of Tn when gcd(n,N) > 1, we need
the following theorem.

Theorem 6.1.1. Let p | N be prime, let α ∈ Z≥0, and let r := ordpM2. Let χM1 be the character
modulo M1 induced from χ. Then

(6.1.2) Tpαf
M2
M1,j

=

{
fM2p−α

M1,j
, if α− r ≤ 0;

aM1,j(p
α−r)fM2p−r

M1,j
− χM1(p)pk−1aM1,j(p

α−r−1)fM2p−r+1

M1,j
, if α− r > 0.

Proof. By the definition of the Hecke operator, we get

Tpαf
M2
M1,j

=

∞∑
m=1

∑
d|(m,pα),
(d,N)=1

χ(d)dk−1aM1,j

(
mpα

M2d2

)
e(mz) =

∞∑
m=1

aM1,j

(
mpα

M2

)
e(mz).
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If α− r ≤ 0, then

Tpαf
M2
M1,j

=

∞∑
m=1

aM1,j

(
m

M2p−r · p−α+r

)
e(mz) = fM2p−α

M1,j
.

Assume that α− r > 0. Since fM1,j is a normalized newform for Γ0(M1), we get

(6.1.3) aM1,j

(
m

M2p−r

)
· aM1,j

(
pα−r

)
=

aM1,j

(
mpα

M2

)
, if p |M1,∑min{ordp(m),α−r}

e=0 (χ(p)p(k−1))eaM1,j

(
mpα−2e−r

M2p−r

)
, if p -M1.

Then, if p |M1, we have

Tpαf
M2
M1,j

= aM1,j(p)
α−r · fM2p−r

M1,j
.

We now assume that α− r > 0 and p -M1. If α− r = 1, we have

aM1,j

(
mpα

M2

)
= aM1,j

(
m

M2p−r

)
· aM1,j

(
pα−r

)
− δordp(m)≥1χ(p)p(k−1)aM1,j

(
mpα−2

M2

)
.

By taking the summation over m ∈ Z≥1, we get:

Tpαf
M2
M1,j

= aM1,j(p
α−r)fM2p−r

M1,j
− χ(p)pk−1

∞∑
m=1

aM1,j

(
mpα−1

M2

)
e(mpz)

= aM1,j(p
α−r)fM2p−r

M1,j
− χ(p)pk−1fM2p−r+1

M1,j
.

Note that when r = 0 we have M1M2p | N , since p | N .
If α− r − 2 ≥ 0, by changing α to α− 2, we get

χ(p)pk−1aM1,j

(
m

M2p−r

)
· aM1,j

(
pα−2−r) =

min{ordp(m),α−2−r}+1∑
e=1

(χ(p)p(k−1))eaM1,j

(
mpα−2e−r

M2p−r

)
.

By subtracting from (6.1.3), we get

{
aM1,j(p

α−r)− χ(p)pk−1aM1,j(p
α−r−2)

}
aM1,j

(
m

M2p−r

)
= aM1,j

(
mpα

M2

)

+


−
(
χ(p)pk−1

)ordp(m)+1
aM1,j

(
mpα−2(ordp(m)+1)−r

M2p−r

)
, if 0 ≤ ordp(m) ≤ α− 2− r,(

χ(p)pk−1
)α−r

aM1,j

(
mp−(α−r)

M2p−r

)
, if ordp(m) ≥ α− r,

0, otherwise.
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After taking the summation over m ∈ Z≥1 on both sides, we get

∞∑
m=1

aM1,j

(
mpα

M2

)
e(mz) = Tαf

M2
M1,j

(z)

=
{
aM1,j(p

α−r)− χ(p)pk−1aM1,j(p
α−2−r)

}
fM2p−r

M1,j

+
α−2−r∑
`=0

(χ(p)pk−1)`+1
∞∑

m=1,
p-m

aM1,j

(
mpα−2−r−`

M2p−r

)
e(mp`z)

− (χ(p)pk−1)α−r
∞∑
m=1

aM1,j

(
m

M2p−r

)
e(mpα−rz).

For the last piece, we have
∞∑
m=1

aM1,j

(
m

M2p−r

)
e(mpα−rz) = fM2pα−2r

M1,j
(z).

Now consider
∞∑

m=1,
p-m

aM1,j

(
m

M2p−r

)
e(mz) = fM2p−r

M1,j
(z)−

∞∑
m=1

aM1,j

(
mp

M2p−r

)
e(mpz).

Since

aM1,j(p) · f
M2p−r

M1,j
(z) =

∞∑
m=1

aM1,j

(
mp

M2p−r

)
e(mz) + χ(p)pk−1fM2p−r+1

M1,j
(z),

we get
∞∑

m=1,
p-m

aM1,j

(
m

M2p−r

)
e(mz) = fM2p−r

M1,j
(z)− aM1,j(p) · f

M2p−r+1

M1,j
(z) + χ(p)pk−1fM2p−r+2

M1,j
(z).

For each 0 ≤ ` ≤ α− 2− r, we get

∞∑
m=1,
p-m

aM1,j

(
mpα−2−r−`

M2p−r

)
e(mp`z)

= aM1,j

(
pα−2−r−`

)
·
{
fM2p−r+`

M1,j
(z)− aM1,j(p) · f

M2p−r+1+`

M1,j
(z) + χ(p)pk−1fM2p−r+2+`

M1,j
(z)
}
.

So we finally get

Tαf
M2
M1,j

=
{
aM1,j(p

α−r)− χ(p)pk−1aM1,j(p
α−2−r)

}
fM2p−r

M1,j

+

α−2−r∑
`=0

(χ(p)pk−1)`+1aM1,j

(
pα−2−r−`

)
·
{
fM2p−r+`

M1,j
− aM1,j(p) · f

M2p−r+1+`

M1,j
+ χ(p)pk−1fM2p−r+2+`

M1,j

}
− (χ(p)pk−1)α−rfM2pα−2r

M1,j
.

For s ∈ Z≥0, we have

aM1,j(p
s) · aM1,j(p) = aM1,j(p

s+1) + χ(p)pk−1aM1,j(p
s−1),
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so we get

α−2−r∑
`=0

(χ(p)pk−1)`+1aM1,j

(
pα−2−r−`

)
aM1,j(p) · f

M2p−r+1+`

M1,j

=
α−2−r∑
`=0

(χ(p)pk−1)`+1aM1,j(p
α−1−r−`) · fM2p−r+1+`

M1,j

+

α−2−r∑
`=0

(χ(p)pk−1)`+2aM1,j

(
pα−3−r−`

)
· fM2p−r+1+`

M1,j

=
α−1−r∑
`=1

(χ(p)pk−1)`aM1,j(p
α−r−`) · fM2p−r+`

M1,j

+
α−1−r∑
`=1

(χ(p)pk−1)`+2aM1,j

(
pα−2−r−`

)
· fM2p−r+`

M1,j
.

Then we have

Tαf
M2
M1,j

=
{
aM1,j(p

α−r)− χ(p)pk−1aM1,j(p
α−2−r)

}
fM2p−r

M1,j

+
α−2−r∑
`=0

(χ(p)pk−1)`+1aM1,j

(
pα−2−r−`

)
fM2p−r+`

M1,j

+

α−r∑
`=2

(χ(p)pk−1)`aM1,j

(
pα−r−`

)
fM2p−r+`

M1,j

−
α−1−r∑
`=1

(χ(p)pk−1)`aM1,j(p
α−r−`) · fM2p−r+`

M1,j

−
α−1−r∑
`=1

(χ(p)pk−1)`+2aM1,j

(
pα−2−r−`

)
· fM2p−r+`

M1,j

− (χ(p)pk−1)α−rfM2pα−2r

M1,j

= aM1,j(p
α−r)fM2p−r

M1,j
− (χ(p)pk−1)aM1,j(p

α−r−1)fM2p−r+1

M1,j
.

Combining, we obtain (6.1.2). �

For n,N ∈ Z>0, we write gcd(n,N∞) for the largest positive integer d such that d | n and d | Nk

for some k ∈ Z≥1, i.e.,

(6.1.4) gcd(n,N∞) =
∏

p|gcd(n,N)

pordp(n).

The following corollary is then immediate.

Corollary 6.1.5. With notation as above, we have

Tr(Tn |Sk(N,χ)) =
∑

M∈Z≥1

M |N
cond(χ)|M

d

(
N/M

gcd(N/M,n∞)

) ∑
b2|gcd(n,N∞)
gcd(b,M)=1

µ(b)χ(b)bk−1 Tr(T n
b2
|Snew

k (M,χ)).
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6.2. Certifying generalized eigenvalues. Second, we show how to certify generalized eigenval-
ues. Consider the generalized eigensystem

(6.2.1) Ax = λBx,

where A and B are real symmetric n× n matrices, with B positive definite. Choosing R such that
B = RTR and making the change of variables x = R−1y, this becomes

(6.2.2) A′y = λy,

where A′ = (R−1)TAR−1. Note that A′ is again symmetric, so there is an orthonormal basis
{y1, . . . , yn} with A′yj = λjyj . We set xj = R−1yj , so that the xj are orthonormal with respect to
the inner product defined by B.

Suppose that we have found approximate eigenvalues λ̃j and eigenvectors x̃j , i.e. so that ej =

(A− λ̃jB)x̃j is small. Let

x̃j =
n∑
k=1

cjkxk

be the expansion of x̃j in terms of the eigenbasis. For any ε > 0, define

(6.2.3) Vj,ε = span{xk : |λk − λ̃j | < ε},
and let

(6.2.4) vj,ε =
∑
k

|λk−λ̃j |<ε

cjkxk

be the orthogonal projection (with respect to the inner product defined by B) of x̃j onto Vj,ε. Then
we have

(6.2.5)

vTj,εBvj,ε = x̃Tj Bx̃j −
∑

{k:|λk−λ̃j |≥ε}

c2
jk ≥ x̃Tj Bx̃j − ε−2

n∑
k=1

c2
jk(λk − λ̃j)2

= x̃Tj Bx̃j − ε−2[(B−1A− λ̃j)x̃j ]TB[(B−1A− λ̃j)x̃j ]
= x̃Tj Bx̃j − ε−2eTj B

−1ej ≥ x̃Tj Bx̃j − ε−2b−1|ej |2,
where b > 0 is the smallest eigenvalue of B. Note that this is positive if

ε > εj :=
|ej |√
bx̃Tj Bx̃j

,

and thus Vj,ε is non-zero. Hence, there is an eigenvalue λk in the interval Ij = [λ̃j − εj , λ̃j + εj ].
Suppose that we are in the favorable situation that the Ij are pairwise disjoint. Then our system

has distinct eigenvalues, and we may assume without loss of generality that λj ∈ Ij . Next, let

δj = min
{
|λ − λ̃j | : λ ∈

⋃
k 6=j Ik

}
, so that (λ̃j − δj , λ̃j + δj) contains λj and no other eigenvalues.

Put ∆j = x̃j − vj,δj , where Vj,ε and vj,ε are as above, so that x̃j − ∆j is an eigenvector with
eigenvalue λj . To use this in practice, we bound the coordinates of ∆j from above and add them as
small error intervals onto the coordinates of x̃j . (The resulting vector must then be renormalized
in interval arithmetic, according to whatever convention we use, e.g. first Fourier coefficient 1.) To
that end, we have

(6.2.6)
|R∆j |2 = ∆T

j B∆j =
∑

{k:|λk−λ̃j |≥δj}

c2
jk ≤ δ−2

j

n∑
k=1

c2
jk(λk − λ̃j)2

= δ−2
j [(B−1A− λ̃j)x̃j ]TB[(B−1A− λ̃j)x̃j ] = δ−2

j eTj B
−1ej ,
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and thus

(6.2.7) |∆j | ≤ δ−1
j

√
b−1eTj B

−1ej ≤
|ej |
bδj

.

Finally, to estimate b we first compute a double-precision approximation P̃ to the orthogonal
matrix which diagonalizes B. We then compute in interval arithmetic the matrices

S = (sjk) = P̃ TBP̃ and T = (tjk) = P̃ T P̃ .

By Sylvester’s law of inertia, we have b > λ for any λ such that S−λT is positive definite. In turn,
by the Gershgorin circle theorem, this holds if the diagonal entries sjj and tjj are strictly positive
and

(6.2.8) λ > λ∗ := min
j

2sjj −
∑

k |sjk|∑
k |tjk|

.

Hence b ≥ λ∗.

7. A sample of the implementations

7.1. Comparison of methods. In the course of our computations we made extensive use of the
modular forms functionality included in both Pari/GP [76] and Magma [12]. In this section we
compare the performance of the two implementations on a small but representative subset of the
modular forms we computed: all newforms of weight k and level N with Nk2 ≤ 1000 and k > 1.
We exclude the case k = 1 from this comparison because it is not fully supported in Magma and
the algorithms used to compute weight one forms are substantially different. For modular forms
of weight k > 1 the Magma implementation is based on the modular symbols approach, while the
Pari/GP implementation uses the explicit trace formula.

For each level N in our chosen range we fix a representative Dirichlet character χ for each Galois
orbit [χ] of modulus N , and for each newspace Snew

k (N,χ) with k > 1 and Nk2 ≤ 2000 we carried
out the following computations in both Pari/GP and Magma:

(1) Determine the dimensions of the irreducible subspaces of Snew
k (N, [χ]) (the newform orbits).

(2) For each newform orbit [f ], compute the first 1000 integer coefficients tn of the trace form
Tr(f) =

∑
n≥1 tnq

n.

(3) For each newform orbit [f ] of (absolute) dimension d ≤ 20, compute a (reasonably nice)
defining polynomial for its coefficient field K and the first 1000 algebraic integer coefficients
an(f) ∈ K for a constituent newform f .

(4) For each newform orbit [f ] of dimension d ≤ 20, compute an LLL-optimized basis for its
coefficient ring and express the first 1000 coefficients an(f) in this basis.
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split time (s) total time (s)

Nk2 num S num f
∑

dim(S) Magma Pari/GP Magma Pari/GP

[1, 200] 183 214 897 0.4 1.1 73.8 18.2

[201, 400] 453 709 7 560 3.5 17.2 302.4 116.6

[401, 600] 574 1 050 21 452 22.2 50.2 643.4 220.1

[601, 800] 677 1 326 43 515 132.1 70.8 2 444.8 300.6

[801, 1000] 764 1 542 71 358 751.3 322.3 9 216.4 728.2

[1001, 1200] 879 1 805 109 570 2 653.1 1 253.3 36 940.0 2 347.6

[1201, 1400] 905 2 001 152 344 8 889.0 5 517.0 161 327.7 11 855.8

[1401, 1600] 995 2 284 203 492 24 841.1 21 256.5 349 656.8 67 233.4

[1601, 1800] 1 032 2 420 264 506 63 476.2 59 392.6 952 669.0 194 405.8

[1801, 2000] 1 157 2 378 331 348 79 307.2 175 890.1 1 752 685.4 596 779.2

7 621 15 731 1 206 658 180 089.5 263 771.8 3 266 135.9 874 006.0

Table 7.1.1: Magma 2.24-7 vs. Pari/GP 2.12.1 (Intel Xeon W-2155 3.3GHz);
timings for newspaces S of level N ≥ 1, weight k > 1 by Nk2 range

split time (s) total time (s)

#S max dim(f) num S num f
∑

dim(S) Magma Pari/GP Magma Pari/GP

1 [1, 200] 2 859 2 859 161 375 423.8 529.9 11 967.2 818.0

1 [201, 2000] 1 027 1 027 544 092 26 060.6 55 272.8 701 094.2 53 727.6

1 [2001,∞] 65 65 215 016 146 044.1 170 751.3 2 226 371.4 163 789.9

2 [1, 200] 1 703 3 406 100 080 278.7 660.9 4 233.8 30 837.0

2 [201, 2000] 145 290 95 704 4 192.1 8 188.7 188 745.7 576 764.6

2 [2001,∞] 4 8 10 870 2 636.5 26 821.1 97 329.8 24 785.1

≥ 3 [1, 20] 873 4 785 19 282 46.2 64.1 1 596.2 1 197.9

≥ 3 [21, 200] 235 1 155 23 135 160.8 275.7 1 228.8 5 255.3

≥ 3 [201,∞] 3 15 1 024 12.0 347.7 1 364.5 357.4

7 621 15 731 1 206 658 180 089.5 263 771.8 3 266 135.9 874 006.0

Table 7.1.2: Magma 2.24-7 vs. Pari/GP 2.12.1 (Intel Xeon W-2155 3.3GHz);
timings for newspaces S of level N ≥ 1, weight k > 1, Nk2 ≤ 2000 by #S := #{f ∈ S}.

As can be seen in Tables 7.1.1 and 7.1.2, the explicit trace formula approach used by Pari/GP
is faster overall than the modular symbol method implemented in Magma, especially for spaces
that consists of a single Galois orbit, but for newspaces that split into multiple Galois orbits it is
typically slower, and in general Magma is able to decompose newspaces into Galois orbits more
quickly than Pari/GP. The large advantage Pari/GP has on irreducible spaces is due to the fact that
in this situation we can use mfsplit to determine that the space is irreducible without actually
computing any eigenforms, and then use mftraceform to compute the trace form for the entire
space.

In Table 7.1.3 we list the 10 newspaces in our chosen range that were the computationally
most difficult for either Magma or Pari/GP. In each case, the 10 most time consuming newspaces
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accounted for approximately half of the total time to process the 7621 nonzero newspaces in our
test range.

Notably, only two newspaces (467.2.c and 497.2.c) were among the computationally most difficult
for both methods (these are the two newspaces of largest dimension in our chosen range). Most
of the newspaces listed in Table 7.1.3 were computationally much more difficult for one of the two
methods: on the largest irreducible spaces in our test range Pari/GP is typically at least ten times
as fast as Magma, but for newspaces that split into two large Galois orbits Magma is faster than
Pari/GP by a similar (or even larger) factor. This suggests that the optimal approach is to use the
explicit trace formula and modular symbol methods in combination. Indeed, a hybrid approach
that uses Magma to decompose the space, and then delegates the computation to Pari/GP whenever
the newspace contains a Galois orbit of dimension at least 2/3 the dimension of the newspace, takes
a total of 264 726 seconds; this is more than 3 times faster than using Pari/GP alone and more than
10 times faster than using Magma alone.

newspace [Q(χ) : Q] decomposition Magma(s) Pari/GP(s)

413.2.i 28 420 + 420 68.91 23 711.71

419.2.g 180 6120 79 654.08 5 175.04

424.2.v 24 1248 60 111.92 150.62

431.2.g 168 5880 82 907.51 5 333.59

435.2.bf 12 240 + 240 39.63 25 272.26

443.2.g 192 6912 180 453.61 8 134.21

454.2.c 112 1008 + 1120 1 197.47 44 216.52

467.2.c 232 8816 370 791.77 22 719.24

472.2.l 28 56 + 1568 103 117.42 562.40

478.2.g 96 960 + 960 861.98 87 147.90

479.2.c 238 9282 363 002.59 26 148.67

486.2.i 54 702 + 756 351.60 139 762.27

487.2.k 162 6480 110 903.14 6 766.85

489.2.q 54 702 + 756 202.91 38 345.59

491.2.k 168 6720 121 405.39 8 558.33

497.2.v 24 408 + 456 99.20 18 438.91

498.2.f 40 560 + 560 269.01 48 844.21

499.2.g 164 6724 119 807.20 12 148.53

Table 7.1.3: Some computationally challenging newspaces

7.2. A trace formula implementation with complex coefficients. In this section, we describe
an implementation of the trace formula using ball arithmetic over the complex numbers due to
Bober [8]. This implementation follows the description given in §5.2. The main focus here is to
compute a moderate number of coefficients for all of the newforms in a given space Snew

k (N,χ)
as approximate complex numbers, which enables the computation of modular form L-functions
at small height, for example. These computations use Arb [53], a C library which implements
arbitrary precision ball arithmetic, so that we can ensure that all of our computations come with
rigorous error bounds. There is also some facility for computing with coefficients in a finite field
F`, where ` is some prime congruent to 1 modulo the order of χ, which is used in the computation
of characteristic polynomials of Hecke operators, for example, and in other auxiliary pieces. The
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package also contains some limited functionality to compute information about spaces of weight
one modular forms, which we do not discuss here.

We describe briefly some details of how this implementation works in practice.
To start a computation we first choose a prime and determine a set of trace forms which will

give a full rank basis of the space of newforms modulo this prime, avoiding any issues of computing
the rank of a matrix with floating point entries. Specifically, we find some matrix of coefficients
(Tr(T (mi)T (nj) |Snew

k (N,χ)))1≤i,j≤d that has full rank, and we also choose our mi and nj so that
gcd(minj , N) = 1, which will make later computations easier. Once we know which computation
will give us a full rank matrix, we do the computation again over the complex numbers, computing
additional coefficients so that we will be able to compute the action of Hecke operators. At this
point we find a sum of Hecke operators T =

∑
n cnTn such that the characteristic polynomial of T

is squarefree (keeping cn = 0 when gcd(n,N) 6= 1).
The diagonalization of T would in general be a computation over the complex numbers, but

because we have chosen to only use Hecke operators coprime to the level, we can use knowledge
of the arguments of the eigenvalues to turn this into a problem of diagonalizing a real symmetric
matrix. This problem is solved by an implementation of Jacobi’s algorithm, certifying the result
as described in §6.2. Once we have diagonalized, we obtain a change of basis matrix that takes our
trace form basis to the newform basis, and we can compute as many coefficients of newforms as we
like by evaluation of the trace formula.

Once we have computed all the embeddings of all of our newforms, we may also wish to compute
the decomposition of the space into Hecke-irreducible subspaces. To do this we will compute the
characteristic polynomial of a linear combination T of Hecke operators (it is sufficient to find one
that is squarefree). If we have enough precision in the Hecke eigenvalues we have computed, we
can do this simply by forming the product

∏
λ(x−λ), where λ ranges over the eigenvalues of T . In

general we will find that we do not have enough accuracy to uniquely identify a polynomial with
coefficients in Z[x], however, and we refine the computation by computing this polynomial modulo
` for enough small primes ` to obtain the polynomial exactly.

The factorization of this Hecke polynomial gives the decomposition of Snew
k (N,χ) into Hecke

irreducible subspaces. However, there is still one more problem we may be faced with: namely,
identifying which embeddings correspond to which subspaces. In this problem we have a set of
polynomials f1, f2, . . . , fn and a set of approximations of complex numbers r1, r2, . . . , rd, and all we
need to do is determine which complex number is a root of which polynomial. This may seem like
a relatively trivial problem, but in fact these polynomials may be enormous and obtaining enough
precision in the roots to solve this by simple evaluation may not be feasible.

Example 7.2.1. To give a moderately-sized example, we can consider the space 766.2.c. This
space is only 32-dimensional over the field of definition of χ, but there are 190 Galois conjugate
characters to consider, so the full degree is 6080. The characteristic polynomial of T3 acting on the
space Snew

2 (766, [χ]) is squarefree and factors into 2 irreducible factors of degree 3040; each factor
contains more than 1.5 million decimal digits.

To make this problem tractable, we again make use of the arguments of the eigenvalues. Let
f(x) be one of these irreducible factors. We know that each root of f can be written as ζt for some
root of unity ζ and some real number t, and we find that t is a root of the greatest common divisor
of f(ζx) and f(ζ−1x) in Q(ζ)[x]. In fact, as we prefer to work with real numbers, we compute

gcd(f(ζx) + f(ζ−1x), i(f(ζx)− f(ζ−1x))) ∈ Q(ζ + ζ−1)[x].

In principle, computing this greatest common divisor when we have only floating point approxima-
tions available could be troublesome, but it is possible because we know what its degree is.
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8. Issues: computational, theoretical, and practical

8.1. Analytic conductor. Earlier efforts to tabulate modular forms have tended to compute all
newforms in particular boxes, where the weight and level each vary in a specified range. This
approach is easy to describe, but the computational complexity of finding newforms with simulta-
neously large weight and level ensures that some newforms of interest will be missed (either large
weight or large level). Instead of working with boxes, we organized our computation around a single
invariant which scales with the complexity of the newform.

Introduced by Iwaniec–Sarnak [52, Eq. (31)] (see also Iwaniec–Kowalski [51, (5.7)]), the analytic
conductor of a newform f ∈ Snew

k (N,χ) is the positive real number

(8.1.1) A := N

(
exp(ψ(k/2))

2π

)2

,

where ψ(x) := Γ′(x)/Γ(x) is the logarithmic derivative of the Gamma function. The analytic
conductor includes a factor that can be thought of as measuring the complexity at infinity. We

have A ∼ Nk2

16π2
as k → ∞, so for simplicity we organized our computations by specifying bounds

on the quantity Nk2.

8.2. Sturm bound. In this section, we elaborate upon bounds for truncations of q-expansions
of modular forms that determine them uniquely. The most well-known of these bounds is due to
Hecke (and more generally to Sturm [95, Theorem 1]).

Theorem 8.2.1 (Hecke, Sturm). Let Γ ≤ SL2(Z) be a congruence subgroup and let f be a modular
form of weight k for Γ. Then f = 0 if and only if an(f) = 0 for all 0 ≤ n ≤ k[SL2(Z) : Γ]/12.

In fact, for modular forms with character as in our setting, one can apply a sharper bound (as
though it was without character) as follows.

Definition 8.2.2. For k,N ∈ Z≥1, define the (Hecke-)Sturm bound

Sturm(k,N) :=
k

12
[SL2(Z) : Γ0(N)] =

Nk

12

∏
p|N

(
1 +

1

p

)
.

Proposition 8.2.3 (Hecke, Sturm). Let N, k ≥ 1 and let χ be a character of modulus N . Let
T ⊆ EndC(Sk(N,χ)) be the Z-subalgebra generated by the Hecke operators Tn for all n ∈ Z≥1, and
let Z[χ] ⊆ C be the Z-subalgebra generated by the values of χ. Then there is a natural inclusion
Z[χ] ↪→ T , and the following statements hold.

(a) If f ∈ Sk(N,χ) has an(f) = 0 for all n ≤ Sturm(k,N), then f = 0.

(b) T is generated as a Z[χ]-module by Tn for all n ≤ Sturm(k,N).

(c) T is generated as a Z[χ]-algebra by T1 and Tp for all primes p ≤ Sturm(k,N).

Proof. For the inclusion Z[χ] ↪→ T , we argue as follows: from the Hecke recursion

(8.2.4) Tp2 − T 2
p + χ(p)pk−1 = 0

for p - N , we see that χ(p)pk−1 ∈ T ; choosing two distinct primes p congruent modulo N and
applying the CRT shows that Z[χ] ⊆ T . Consequently, T is a torsion free Z[χ]-module. Since Z[χ]
is a Dedekind domain, T is locally free.

Abbreviate S := Sk(N,χ;Z[χ]). We claim that the pairing

(8.2.5)
T × S → Z[χ]

(T, f) 7→ a1(Tf)
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is perfect, i.e., the map

(8.2.6)
ϕ : S → HomZ[χ](T ,Z[χ])

f 7→ (T 7→ a1(Tf))

is an isomorphism. When Z[χ] = Z, this is an argument of Ribet [81, Theorem (2.2)], and we
only need to make a small modification. The map ϕ is injective with torsion-free cokernel because
a1 ◦ Tn = an and the map taking a form to its q-expansion is injective. Since S and T are locally
free Z[χ]-modules of finite rank, it suffices to show that the rank of T is at most the rank of S
(localizing at primes l of Z[χ]). To this end, consider the other map induced by the pairing, namely,

(8.2.7)
ω : T → HomZ[χ](S,Z[χ])

T 7→ (f 7→ a1(Tf)).

We claim that ω is injective. Indeed, if T ∈ kerω, then for all f ∈ S and all n ≥ 1 we have

0 = ω(T )(Tnf) = a1(TTnf) = a1(TnTf) = an(Tf)

as T is commutative. Since the q-expansion map is injective, we conclude Tf = 0 for all f , so
T = 0 as an endomorphism, proving the claim. Finally, localizing ω at l, the injectivity of ω implies
the desired rank bound.

We now prove (a) following Buzzard, and suppose that f ∈ Sk(N,χ;Z[χ]) has an(f) = 0 for all
n ≤ Sturm(k,N). Let d be the order of χ, let s := Sturm(k,N), and consider fd ∈ Sdk(Γ0(N);Z[χ]).

Since f = O(qs+1), we have fd = O(qd(s+1)). Moreover, Sturm(kd,N) = ds, so by the Sturm bound
(Theorem 8.2.1) applied to Sdk(Γ0(N);Z[χ]) we conclude fd = 0, which implies f = 0.

To prove (b), let T≤n ⊆ T be the Z[χ]-submodule generated by Tn with n ≤ Sturm(k,N). By
the previous paragraph, the pairing (8.2.5) restricted to T≤n is still perfect; indeed we can simply
argue with T≤n in the injectivity of ω in (8.2.7). We conclude that T≤n = T .

For part (c), we use multiplicativity to see that Tn for n composite is contained in the algebra
generated by the prime power operators Tpe , and then the Hecke recurrence and induction to see
that Tpe is contained in the algebra generated by T1 and Tp. �

8.3. Atkin–Lehner operators and eigenvalues. Let χ be a Dirichlet character modulo N . For
M | N with gcd(M,N/M) = 1, there are unique characters χM (mod M) and χN/M (mod N/M)
such that χ = χMχN/M . The Atkin–Lehner–Li operator WM [2, §1] maps the space Sk(N,χ) to
Sk(N,χMχN/M ). In general χMχN/M is different from χ, so then this operator cannot be used for
splitting up spaces. We have χMχN/M = χ when the character χM is trivial or quadratic, and
in these cases, WM is an involution on the space Sk(N,χ), which then splits as the direct sum of
±1-eigenspaces. Magma only implements Atkin-Lehner operators on spaces with trivial character,
where they commute with all Hecke operators and hence map every newform f to ±f , and the
sign ± is the Atkin-Lehner eigenvalue of f with respect to M . (By a common abuse of notation
and terminology, when M is the power of a prime q not dividing N/M , the operator WM is often
denoted Wq.) In our computations we only compute Atkin-Lehner eigenvalues on newforms with
trivial character.

In general, the image of a normalized newform f in Sk(N,χMχN/M ) under WM is a multiple
of a normalized newform in Sk(N,χMχN/M ), and the multiple, not necessarily ±1, is called the
pseudo-eigenvalue of WM on f . Atkin–Li [2] do not give a general formula for pseudo-eigenvalues,
which are not always easy to compute in practice. See also Belabas–Cohen [4, §§5–6].

When M = 1 the operator WM is trivial, while when M = N it is called the Fricke involution.
The Fricke involution is the product of all Wq for primes q | N (using the convention of the previous
paragraph.) For a newform of weight k and trivial character, the Fricke eigenvalue ε is related to the
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sign ε that appears in the functional equation (9.1.3) via ε = (−1)k/2ε, see Miyake [71, Cor. 4.3.7].
Each Wq-eigenvalue is similarly related to the sign of a certain local functional equation.

8.4. Self-duality. The coefficient field of a newform f ∈ Sk(N,χ) is either totally real or CM [79,
Prop 3.2]; we say that f is self-dual in the totally real case. Computing the coefficient field can be
time consuming, so we use the following easier criteria when applicable.

Proposition 8.4.1 (Ribet). Let f ∈ Sk(N,χ) have Hecke orbit of dimension d and trace form∑∞
n=0 tnq

n. Then the following statements hold.

(a) If χ is trivial or d is odd, then f is self-dual;

(b) If χ has order larger than 2, then f is not self-dual;

(c) If there exists a prime p so that tp 6= 0 and χ(p) 6= 1, then f is not self-dual.

Proof. See Ribet [79, Propositions 3.2 and 3.3]. �

8.5. Efficiently recognizing irreducibility. Level N = 2 is by far the most time-consuming
case for Magma (note that this allows for the largest range of k with N 6= 1 for any given bound
on the analytic conductor). For k > 400 with 4 | k, each space takes more than 12 hours of
CPU time. However, we observed behavior analogous to the Maeda conjecture in weight 1 up to
weight k ≤ 400. The Atkin–Lehner operator W2 splits the space as evenly as possible, and the
W2-eigenspaces appear to always be irreducible.

Conjecture 8.5.1. For all k ≥ 2, the space Snew
k (Γ0(2)) decomposes under the Atkin–Lehner opera-

tor W2 into Hecke irreducible subspaces of dimensions bd/2cand dd/2e, where d :=dimC S
new
k (Γ0(2)).

The dimensions in the corollary follow from work of Martin [64, Theorem 2.2], which implies
that for even weights k > 2 we have

(8.5.2) dimSnew
k (Γ0(2))+ − dimSnew

k (Γ0(2))− =

{
0 k = 4, 6 mod 8,

(−1)k/2 k ≡ 0, 2 mod 8,

it is only the irreducibility of the eigenspaces that is conjectural. The factor (−1)k/2 in (8.5.2)
appears as 1 in [65, Theorem 2.2] because there the Atkin-Lehner operator follows the convention

of Diamond–Shurman [39, p. 209], which includes a factor of (−1)k/2, while we are following the
convention of Miyake [71], which does not include this factor.

One can find similar formulas for dimSnew
k (Γ0(N))+ − dimSnew

k (Γ0(N))− for any squarefree N
in Martin [65], in which case they are a linear function of the class number h(−4N). For general
N > 4 not of the form M2, 2M2, 3M2, 4M2 with M squarefree, we refer the reader to Helfgott [48,
pp. 266–267].

Question 8.5.3. Given an n × n matrix with entries in Z[ζm] (typically sparse), is there a fast
algorithm that with positive probability correctly determines when its characteristic polynomial is
irreducible?

In other words, if you expect that a polynomial is irreducible, can you verify this quickly without
factoring the polynomial? Under the expectation that the Galois group of the polynomial is tran-
sitive and therefore likely to be Sd, one could succeed in some cases by factoring the polynomial
modulo primes. This is different than the typical factorization problems solved in computer algebra
systems, which compute a factorization p-adically and then reconstruct the factorization over Z.
(See Table 7.1.3 for some difficult spaces where this would help.) A natural generalization of this
question would be to efficiently determine the degrees of the irreducible factors of its characteristic
polynomial (without explicitly computing it).
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8.6. Trace form. As defined in §4.5, each newform f ∈ Snew
k (N, [χ]) has an associated trace form

Tr(f)(q) =
∑

n tnq
n ∈ Sk(N, [χ];Z) equal to the sum of the distinct Gal(Qal |Q) conjugates of f

and thereby well-defined on its Galois orbit [f ]. More precisely, we have Tr(f) ∈ Snew
k (Γ) where

Γ := {
(
a b
c d

)
∈ Γ0(N) : χ(a) = 1} ⊇ Γ1(N),

(but in general Tr(f) 6∈ Sk(N,χ)). One can thus apply the Sturm bound (Theorem 8.2.1) for Γ:
trace forms of newforms in Sk(N,χ) with the same Fourier coefficients an for n ≤ k[SL2(Z) : Γ]/12
must coincide, but note that this will typically be larger than the Sturm bound Sturm(k,N). As
noted above, we always have t1 = [K : Q], where K = Q(f) is the coefficient field of f .

Trace forms can be efficiently computed using the trace formula. In the common case where
Sk(N,χ) is irreducible, this can be done via the Pari/GP function mftraceform [76], which is
dramatically faster than computing the coefficients of f as elements of K and taking traces (indeed,
it is not even necessary to determine K). More generally, if one knows the decomposition of
Sk(N, [χ]) into newform subspaces and has computed trace forms for all but one of them, the
remaining trace form can be computed by subtracting corresponding coefficients of the known
trace forms from the coefficients given by mftraceform, which computes absolute traces of the
Hecke operators Tn acting on the entire newspace Sk(N, [χ]). Alternatively, one can sum complex
coefficients an of the Galois conjugates of f computed to sufficient precision to allow the sum to be
identified as a unique integer.

The coefficients tp of the trace form at primes p are equal to the Dirichlet coefficients of the
(typically imprimitive) L-function L(s) =

∑
bnn
−s with integer Dirichlet coefficients bn obtained

by taking the product of the L-functions of the Galois conjugates of f . But for nonprime values
of n the integer coefficients tn do not match the integer coefficients bn unless the newspace has
dimension one (in which case L(s) is primitive). Indeed t1 = [K : Q] cannot coincide with b1 = 1,
and in general the coefficients tn at nonprime values of n encode different information.

8.7. Presenting coefficients using LLL-reduction. One of the most dramatic improvements
we saw, both in performance and in display, is in the choice of how to represent coefficient rings.
In this section and the next, we explain two such methods.

As explained in section 4.5, one computes a minimal polynomial for the coefficient field by factor-
ing the characteristic polynomial of a Hecke operator. This polynomial may be unwieldy! So we first
apply the Pari/GP function polredbest which finds an improved minimal polynomial representing
the same field by computing an LLL-reduced basis for an order with respect to the Minkowski
embedding (whose underlying quadratic form is given by the T2-norm)—this runs in deterministic
polynomial time in the size of the input. When possible, we improve this to polredabs, which
applies the same technique but to the maximal order (this may require factoring a discriminant,
and we frequently encounter situations where this is a bottleneck).

Remark 8.7.1. The function polredabs changed in Pari/GP 2.9.5 (Fall 2017); we use the more
recent version, described in [33].

We can make significant further improvements by optimizing the Z-basis we use to represent
coefficients. Let f ∈ Snew

k (N,χ) be a newform. By the Hecke–Sturm bound (Proposition 8.2.3), the
coefficient ring of f is generated over Z[χ] by the values an(f) for n ≤ Sturm(k,N), so by extension
we obtain a set of Z-module generators for the ring. We reduce this to an LLL-reduced Z-basis for
the coefficient ring, and we rewrite the coefficients in terms of this basis. In our computations, we
always use complex precision that is at least as large as the discriminant of the coefficient ring.

We observe the following.

Lemma 8.7.2. Let F be a number field and let R ⊆ F be a Z-order in F . Then the shortest vectors
in R with respect to the T2-norm are exactly the roots of unity in R.
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Proof. The order R contains 1, and T2(1) = n := [F : Q]. More generally, for any root of unity
ζ ∈ R, we have T2(ζ) = n. Conversely, let α ∈ R have T2(α) ≤ n. Then by the arithmetic-geometric
mean inequality, we have

1 ≥ T2(α)

n
=

1

n

n∑
i=1

|αi|2 ≥
n∏
i=1

|αi|2/n =
∣∣NmF |Q α

∣∣2/n
with equality if and only if |α1| = · · · = |αn| = 1. But α ∈ R is integral, so

∣∣NmF |Q α
∣∣ ≥ 1, so

equality holds. By Kronecker’s theorem, we conclude that α is a root of unity. �

In spite of this lemma, because of nonuniqueness, we may not have 1 as an element of an LLL-
reduced basis as there may be more roots of unity than the degree, such as in a cyclotomic field.
However, using the above lemma we can recognize the roots of unity in the coefficient ring and
thereby recognize when the coefficient ring is cyclotomic itself, where we may institute a canonical
basis (see also the next section).

The effect of such a representation is dramatic.

Example 8.7.3. Consider the newform 153.2.e.c. Its coefficient field is Q(ν) where ν has minimal
polynomial

x20 − x19 + 3x18 + 2x17 + 13x16 − 12x15 + 54x14 + 27x13 + 93x12 − 54x11 + 693x10 − 162x9

+ 837x8 + 729x7 + 4374x6 − 2916x5 + 9477x4 + 4374x3 + 19683x2 − 19683x+ 59049.

An integral basis written in terms of the powers of ν is too large to record here, and similarly the
coefficients of f written in a power basis are enormous!

However, in terms of an LLL-reduced basis β0 = 1, · · · , β19, we have coefficients

a2(f) = β16

a3(f) = −β10

a4(f) = −1− β3 − β5

...

a57(f) = β2 − β3 − β4 + β5 − 3β7 + 2β9 − β10

+ 2β13 + β14 + β15 − β16 + 2β17 − β18 − β19

...

that are very small integer linear combinations of the basis elements. Moreover, we have

1 = β0

ν = β1

ν2 = β8 − β7 − β4 + β2

...

ν19 = 5114β19 + 2632β18 + · · · − 1807β1 − 6756

and the powers of ν are reasonably sized Z-linear combinations of our basis elements.

We observe that the matrix that writes the powers of a primitive element in terms of the LLL-
reduced basis is noticeably smaller than the other way around. Working with the coefficient ring
itself rather than a maximal order containing it is not only more efficient (as it may be prohibitively
expensive to compute such a maximal order), but it also seems to give better results.
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The intuitive reason that this works is simple: by the Ramanujan–Petersson bounds, the coef-
ficients of a newform are of small size in all complex embeddings, and so it can be expected that
writing it in terms of a Z-basis which is LLL-reduced with respect to size provides a small linear
combination.

Remark 8.7.4. In the above, we have been concentrating on the case where f is a newform,
representing a Galois orbit of newforms, and we write down its q-expansion in terms of a Z-basis
for the coefficient ring.

As an alternative, we can consider the C-vector space spanned by f and its conjugates under
Aut(C), making a C-vector space of dimension say d. These conjugates will include conjugates
that do not preserve the character, so we would either be working implicitly in the direct sum of
the spaces over the full Galois orbit of characters, or we need to restrict to quadratic characters,
or we only consider conjugates under Aut(C |Q(χ)) and get a Q(χ)-vector space. However, inside
this space is a canonical Q-subspace, namely, those forms whose q-expansion belongs to Q[[q]].
So we could instead represent the Galois orbit canonically by an echelonized basis of d individual
q-expansions with coefficients in Q. We could then write a representative newform as before as a
linear combination of this basis over the coefficient field.

To go from the eigenform to the Q-basis, we apply the operators Tr(βif) for βi any Q-basis for
the coefficient field. (To go from the Q-basis to an eigenform one needs to retain sufficiently many
eigenvalues to do the linear algebra. In other words, the eigenform contains more information than
the Q-basis.) This generalizes the trace form, which is where we take βi = β0 = 1.

We could also work integrally and take the Z-module of forms whose q-expansions belong to Z
and then take a LLL-reduced basis which minimizes a (weighted) sum of finitely many coefficients.
It is conceivable that in a world where linear algebra over Q is much faster than linear algebra over
number fields that we could succeed in computing a Q-basis in reasonable time but not succeed in
computing an eigenform.

8.8. Presenting coefficients using a sparse cyclotomic representation. When the coefficient
ring of a newform is contained in a cyclotomic field Q(ζm), writing coefficients in terms of an LLL-
optimized basis as described in the previous section does not necessarily give the most compact
representation, for two reasons. First, when the coefficient ring is not the maximal order, it may
be more compact to express coefficients as elements of the maximal order Z[ζm]. Second, even
when the coefficient ring is the maximal order, in which case the LLL-optimized basis will typically

be the standard power basis 1, ζm, ζ
2
m, . . . , ζ

φ(m)−1
m , the eigenvalues an can often be written more

compactly by expressing them as sparse polynomials in ζm rather than integer linear combinations
of the power basis. Every integer linear combination of elements of the power basis is of course
also a polynomial in ζm; the question is whether to allow polynomials of higher degree whose terms
involve powers of ζm that are not in the power basis (because m > φ(m) = [Q(ζm) : Q]), which
allows more flexibility and a potentially sparser choice of polynomial.

This added flexibility is particular relevant for weight one newforms, whose coefficients always lie
in a cyclotomic field. The correspondence between weight one newforms and (odd irreducible) 2-
dimensional Artin representations [37] implies that for weight one newforms the eigenvalues ap can
always be written as a sum of at most two roots of unity. For composite values of n the eigenvalues
an will not be as sparse, but even if one näıvely expands them as products of polynomials in ζm
for each apr , for most an we obtain an expression with O(2log logn) nonzero coefficients (a typical
integer n has log log n distinct prime factors p and p-adic valuation 1 at all but O(1) of them),
which is exponentially sparser than a generic element of Z[ζm] written in the power basis. For even

values of m we can improve on this näıve approach by using the identity ζ
m/2
m = −1 to reduce to

polynomials of degree at most m/2 − 1 in ζm; this never increases the number of terms and may
reduce it.
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For example, the second Fourier coefficient of the newform 3997.1.cz.a is

a2 = −ζ570
201 + ζ244

570 ,

but when written in terms of the standard power basis 1, ζ570, . . . , ζ
143
570 we instead have

a2 = 1 + ζ2
570 + ζ5

570 + ζ11
570 − ζ12

570 − ζ15
570 − ζ17

570 + ζ19
570 − ζ20

570 + ζ21
570 + ζ24

570 + ζ27
570 + ζ30

570 − ζ31
570

+ ζ32
570 − ζ34

570 + ζ35
570 − ζ36

570 − ζ39
570 − ζ42

570 − ζ45
570 + ζ46

570 − ζ47
570 + ζ49

570 − ζ50
570 + ζ51

570 − ζ59
570

+ ζ60
570 − ζ61

570 − ζ64
570 + ζ65

570 − ζ66
570 + ζ74

570 − ζ75
570 − ζ78

570 + ζ79
570 − ζ80

570 + ζ88
570 − ζ89

570 + ζ90
570

+ ζ93
570 − ζ94

570 − ζ97
570 − ζ100

570 − ζ103
570 + ζ104

570 − ζ105
570 − ζ106

570 + ζ107
570 − ζ108

570 + ζ109
570 + ζ112

570 + ζ115
570

+ ζ118
570 − ζ119

570 + ζ120
570 − ζ122

570 + ζ123
570 − ζ124

570 − ζ127
570 − ζ130

570 + ζ134
570 + ζ137

570 + ζ139
570 + ζ142

570 .

Among the 585 nonzero an with n ≤ 2000, the average number of terms needed to express an as a
sparse polynomial in ζm is 4.1; by contrast, when written in the power basis the average number
of nonzero coefficients of an is 42.8. This leads to a more than tenfold reduction in storage and a
corresponding reduction in the time to transmit or render the q-expansion.

Remark 8.8.1. For modular forms of weight k > 1 with cyclotomic coefficient fields Q(ζm) there
is no a priori reason to expect the ap to be expressible as sparse polynomials in ζm, and one can
see in examples that this is often not the case. One might instead try to apply a more general
approach, which, given α ∈ Z[ζm] searches for a sparse polynomial f(ζm) of degree less than m
with small coefficients that is equivalent to α. We do not know an efficient solution to this problem,
but we note that even if one exists, for generic values of α it is unlikely to result in representations
that are significantly more compact than using the power basis for purely information theoretic
reasons: the number of α ∈ Z[ζm] that can be expressed as r-term polynomials in ζm using b bits
to represent the coefficients must be approximately the same as the number of integer vectors of
length φ(m) that can be encoded in b bits. For this reason we use sparse cyclotomic coefficient
representations only for k = 1.

8.9. Hecke kernels. Having determined the decomposition of a newspace Snew
k (N, [χ]) into Hecke

orbits Vf corresponding to newforms f , we can compute and store information that will allow us to
reconstruct a single Hecke orbit, without having to decompose the entire newspace again. This is
particularly useful when the dimension of a particular newform f of interest is much smaller than
that of Snew

k (N, [χ]). To achieve this we compute a list of pairs (p, gp(X)), where p is a prime and
g ∈ Z[X] is the minimal polynomial of the Hecke operator Tp acting on Vf (viewed as a Q-subspace
of Snew

k (N, [χ])), such that Vf is equal to the intersection of the kernels of the linear operators
gp(Tp) acting on Snew

k (N, [χ]), in other words, the operators gp(Tp) generate the Hecke kernel of
Vf . Such a list of generators can be used to reconstruct the newform f in Magma via the Kernel

function.
It is computationally convenient to restrict to primes p not dividing the level N , and to use the

same list of primes p for all the newforms in Snew
k (N, [χ]). To this end, for a set of primes S, not

dividing N , and a newform f , we let Xf (S) denote the set of pairs (p, gp), where gp ∈ Z[X] is
the minimal polynomial of Tp acting on Vf , and say that S is a set of distinguishing primes for the
newspace Snew

k (N, [χ]) if the sets Xf (S) are distinct as f varies over the newforms of Snew
k (N, [χ]).

We construct a set of distinguishing primes as follows. We start by taking S to be the empty
set. If the newspace Snew

k (N, [χ]) consists of a single Hecke orbit, then S is a set of distinguishing
primes, and otherwise we increase the size of S by adding the least prime p - N not contained in S
for which

{Xf (S) : f ∈ Snew
k (N, [χ])} ( {Xf (S ∪ {p}) : f ∈ Snew

k (N, [χ])}.
We observe that the cardinality of the set S constructed in this fashion is at most one less than
the number of Hecke orbits in Snew

k (N, [χ]). This greedy approach to constructing S does not
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necessarily minimize its cardinality, but it does minimize the largest p that appears in S, which
may be viewed as an invariant of the newspace. For example, we may distinguish the 8 Hecke orbits
of the newspace 2608.2.g, where 2608 = 24 · 163, using p = 3 and 41. In this case T3 distinguishes
all the forms with the exception of the two CM forms, which both have vanishing ap for all p split
in Q(

√
−163), hence the smallest prime p such that ap could possibly distinguish them is 41, and

41 does in fact do so.

Remark 8.9.1. The largest prime p that appears in S may occasionally exceed the Sturm bound,
as in the case of the newforms 66.2.b and 735.2.p, for example. This fact is relevant in the context
of Theorem 11.2.8, which we use to determine the group of inner twists of a newform in §11. This
is one reason to compute ap(f) past the Sturm bound.

9. Computing L-functions rigorously

In this section, we describe rigorous methods to compute L-functions of modular forms.

9.1. Embedded modular forms. To a newform f ∈ Snew
k (N,χ), with q-expansion

∑
anq

n, for
each complex embedding of the coefficient field ι : Q(f) ↪→ C we may consider the embedded
modular form

(9.1.1) ι(f) :=
∑

ι(an)qn,

which is a modular form over the complex numbers.
We label such forms by N.k.s.x.c.j, where N.k.s.x is the label of Hecke orbit, N.c is the Conrey

label for the character corresponding to the embedding, and j is the index for the embedding within
those with the same Dirichlet character; these embeddings are ordered by the vector ι(an), where
we order the complex numbers first by their real part and then by their imaginary part.

To such an embedded modular form ι(f), we may associate a primitive L-function of degree 2

(9.1.2)

L(ι(f), s) :=
∑

ι(an)n−s =
∏
p

Lp(ι(f), p−s)

=
∏
p|N

(
1− ι(ap)p−s

)−1
∏
p-N

(
1− ι(ap)p−s + χ(p)p−2s

)−1
.

Let Λ(ι(f), s) := N s/2ΓC(s)L(ι(f), s), where ΓC(s) := 2(2π)−sΓ(s). Then Λ(ι(f), s) continues to
an entire function of order 1 and satisfies the functional equation

(9.1.3) Λ(ι(f), s) = εΛ(ι(f), k − s),

where ε is the root number of Λ(ι(f), s), a root of unity.
The generalized Riemann hypothesis also predicts that any nontrivial zero of the L-function lies

on the line of symmetry of its functional equation <(s) = k/2, known as the critical line. To study
the behavior of L(ι(f), s) on the critical line, it is natural to introduce the associated Z-function,
a smooth real-valued function of a real variable t defined by

(9.1.4) Z(ι(f), t) := ε1/2 γ(k/2 + it)

|γ(k/2 + it)|
L(ι(f), k/2 + it),

where γ(s) := N s/2ΓC(s) and the square root is chosen so that Z(t) > 0 for sufficiently small t > 0.
By construction, we have |Z(ι(f), t)| = |L(ι(f), k/2+it)|, the multiset of zeros of Z(ι(f), t) matches
the multiset of zeros of L(ι(f), k/2+ it), and Z(ι(f), t) changes sign at the zeros of L(ι(f), k/2+ it)
of odd multiplicity.
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9.2. Computations. Given ι(f) we would like to compute certain invariants of L(ι(f), s). For
example, the root number ε, the imaginary part of the first few zeros on the critical line, an upper
bound on the order of vanishing at s = k/2, the leading Taylor coefficient at s = k/2, and the plot
Z(ι(f), t) on some interval. Given that a majority of these items cannot be represented exactly, we
instead aim to determine a small interval in R or rectangle in C. Precisely, let b denote the number
of bits of target accuracy. We would like to compute the following:

• the root number: xε, yε ∈ Z such that 2b+1<(z) ∈ [xε−1, xε+1] and 2b+1=(z) ∈ [y−1, y+1];

• the imaginary part of the first few zeros on the critical line: t1, . . . , tn ∈ Z such that⋃
i[ti − 1, ti + 1]2−b−1 covers the first n zeros of L(ι(f), k/2 + it);

• an upper bound on the order of vanishing at s = k/2: r := maxi{i : |L(i)(ι(f), k/2)/i!| <
2−b−1};
• the leading Taylor coefficient at s = k/2: 0 6= s ∈ Z such that 2p+1L(r)(ι(f), k/2)/r! ∈

[s+ 1, s− 1];

• an approximation to the plot of Z(ι(f), t): approximations as doubles of Z(ι(f), iδ) for
some chosen δ and i = 0, . . . , n.

In order to rigorously compute the items above, we follow an approach that builds on several
improvements and extensions of the algorithm from [11] specialized to the motivic case, the details

of which will appear in future work [9]. In practice, given the first Ck
√
N embedded Dirichlet

coefficients, with sufficient precision, and while carrying out all floating-point calculations using
rigorous error bounds and interval arithmetic [53], one may compute all the items above to the
desired bit accuracy. A generic library to carry out such computations, due originally to Dave
Platt [28], has been developed.

Example 9.2.1. For an explicit example, we encourage the reader to peruse the source file
examples/cmf 23.1.b.a.cpp in [28], where the authors show how to use the library to compute
all of the items above for the modular form 23.1.b.a, which matches its unique embedding. By
running this example, one can compute that

ε = (1± 10−117) + (0± 4.7× 10−59) i,

(since f is self dual, we must actually have ε = 1), and

L(f, 1/2) = 0.174036326987934183499504592018± 8.2317× 10−59,

as well as approximate values for the imaginary part of the first ten zeros. Using the notation
above, we can represent an approximation to the imaginary part of the first zero

5.11568332881511759855335642038± 3.9443× 10−31

by the interval [t1 − 1, t1 + 1]2−101, where

t1 = 12969798084700060914517716069360.

The imaginary part of the following nine zeros are approximately 7.15926, 8.88140, 10.2820, 11.4300,
12.9344, 14.6625, 16.4982, 17.1013, and 18.0807.

We carried out this computation with 100 bits of target accuracy for the 14 398 359 embedded
newforms in our database with k ≤ 200. In our computation we observed that it was sufficient to
work with 200 bits of precision and Ck ≤ 0.08k log(k) + 24. While we did not keep track of CPU
time used along the way, by rerunning some of the computations, we extrapolate that we spent at
least 11 CPU years on these computations.
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9.3. Imprimitive L-function. Associated to a newform f with coefficient field Q(f) of degree d,
we may also consider the L-function of degree 2d associated to its Galois orbit:

(9.3.1) L(f, s) :=
∏

ι:Q(f)↪→C

L(ι(f), s) =
∏
p

Lp(f, p
−s).

This gives rise to a Q-primitive L-function with Lp(f, T ) ∈ 1+TZ[T ], which satisfies the functional
equation

(9.3.2) Λ(f, s) := N sd/2ΓC(s)dL(f, s) = εΛ(f, k − s),
where now we have ε = ±1. Using the invariants for each L(ι(f), s) mentioned above, one can
easily deduce the respective invariants for L(f, s).

For these L-functions we would also like to compute the local factors for small p. This is
straightforward if one has access to an exact representation of ap in Q(f). Otherwise, we relied on
Newton identities to compute Lp(f, T ) ∈ Z[T ] from the roots of Lp(ι(f), T ) ∈ C[T ], while working
with interval arithmetic [53]: see L(500.2.e.c) for an example. In some cases, for example when
[Q(f) : Q] or the weight is large, we were only able to compute the initial coefficients for some local
factors—this occurred for L(20.10.e.b), for example.

9.4. Verifying the analytic rank. In this section, we discuss methods for rigorously verifying
the analytic rank of a modular form L-function. Throughout, let N and k be positive integers and
let f ∈ Sk(Γ1(N);C) be a newform of weight k and level N (with coefficient field embedded in the
complex numbers).

Definition 9.4.1. Suppose k is even. We define the analytic rank of f to be the order of vanishing
of L(f, s) at k/2.

When L(n)(f, k/2) 6= 0 one can certify such a statement using ball arithmetic by working with

enough precision. However, if L(n)(f, k/2) = 0, this approach does not work, as there is no known

bound ε such that |L(n)(f, k/2)| < ε implies L(n)(f, k/2) = 0. Nonetheless, if the order of vanishing
is small, then there are other methods to computationally verify the order of vanishing. Using
these methods we were able to provably verify the analytic rank of all modular forms for which the
L-functions were computed. The way the analytic computations were verified is detailed below.
The strategy used depends on the order of vanishing, and whether the modular form is self-dual or
not. The analytic rank zero case is skipped because this can just be done by computing L(f, k/2)
to enough precision using interval arithmetic until 0 is no longer in the computed interval.

Analytic rank

0 1 2 3 ≥ 4

Self-dual 83 338 85 254 2 565 1 0

Not self-dual 63 804 1 798 1 0 0

Total 147 142 87 052 2 566 1 0

Table 9.4.2: Number of even weight newforms in the database by analytic rank

Self-dual and analytic rank 1. We begin by considering self-dual newforms f whose analytic rank
numerically appears to be 1. All such forms in the range of our computation have trivial character.
In this case the functional equation takes the form

(9.4.3) Λ(f, s) = ε′ikΛ(f, k − s),
where ε′ = ±1 is the eigenvalue of the Atkin Lehner involution WN . For such forms in the
database, we verified that ε′ιk = −1, forcing Λ(f, k/2) = 0, and the non-vanishing of N s/2ΓC(k/2)
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then implies that L(f, k/2) = 0. The upper bound of 1 on the analytic rank was obtained using
interval arithmetic.

Non-self-dual and analytic rank 1. Following Stein [93, §8.5], we define a pairing between modular
forms and modular symbols

Sk(Γ1(N))⊕ Sk(Γ1(N))×ModSymk(Γ1(N))→ C
by defining

〈(f, g), P{a, b}〉 :=

∫ b

a
f(z)P (z, 1)dz +

∫ b

a
g(z)P (z, 1)dz.

This pairing allows one to determine the vanishing of L-functions, because for every integer
1 ≤ j ≤ k − 1 we have

L(f, j) =
(−2πi)j

(j − 1)!
〈(f, 0), Xj−1Y k−2−(j−1){0,∞}〉.

The pairing is Hecke-equivariant, meaning that 〈(Tnf, Tng), x〉 = 〈(f, g), Tnx〉 for all integers n.
Let f ∈ Snew

k (Γ1(N)) be a newform and Vf ⊆ Snew
k (Γ1(N)) the subspace generated by its Galois

conjugates. Then by Atkin–Lehner–Li theory, Vf is a simple module over the Hecke algebra T ,
and there exists a Hecke operator tf ∈ T such that tf : Mk(Γ1(N)) → Mk(Γ1(N)) is a projection
onto Vf . Because tf is a projection we have 〈(f, 0), x〉 = 〈(tff, tf0), x〉 = 〈(f, 0), tfx〉 for all
x ∈ ModSymk(Γ1(N)), and hence in particular this means that if

tf (Xj−1Y k−2−(j−1){0,∞}) = 0

then L(f, j) = 0.
A map t′f with the same kernel as tf can be obtained from tf (ModSymk(Γ1(N),Q)) in Magma

using the command PeriodMapping. Furthermore, this Magma command only uses exact arithmetic
over Q. For all non-self-dual modular forms whose analytic rank numerically seemed to be 1, it was
verified that indeed t′f (Xk/2−1Y k/2−1{0,∞}) = 0, implying that L(f, k/2) = 0. The upper bound
of 1 on the analytic rank was again obtained using interval arithmetic.

Self-dual and analytic rank 2. As in the preceding subsection, all newforms in the database whose
analytic rank numerically seemed to be 2 have trivial character. This time it was verified that
ε′ιk = 1 for all these modular forms. In particular, the functional equation then forces all odd
derivatives of Λ(f, s) to vanish at k/2. This forces the order of vanishing of Λ(f, s) at k/2 to be
even, and hence the analytic rank of L(f, s) to be even as well. The techniques of the preceding
paragraph were used to prove that for all these modular forms one has that L(f, k/2) = 0, which
together with the parity argument gives a lower bound of 2 on the analytic rank. The upper bound
of 2 was again obtained using interval arithmetic.

Non-self-dual analytic rank 2. There is exactly one Galois orbit of non-self-dual newforms in the
database whose analytic rank numerically seems to be 2. Let f denote the newform of weight 2
and level 1154 with LMFDB label 1154.2.e.a with coefficient field Q(ζ3). This pair corresponds to
an isogeny class of abelian surfaces, and our first goal is to find a representative of this isogeny
class. By searching for hyperelliptic curves over Fp that match the local factors of L(f, s) for small
p, and then by lifting their Weierstrass equations to Z we found the following genus 2 curve:

(9.4.4) C : y2 = x6 − 12x5 + 34x4 − 18x3 − 11x2 + 6x+ 1.

Letting J denote its Jacobian, we find it is of conductor 11542 as desired. Our goal is first to show
that J really is in the isogeny class of abelian surfaces corresponding to the newform 1154.2.e.a.
Using [27] we were able to compute the endomorphism ring of J , and verify that J is of GL2-type
and hence is modular [82, 58]. Thus, J is a good candidate to be a representative of the isogeny
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class of abelian surfaces corresponding to the newform 1154.2.e.a. Alternatively, one can also verify
that J is of GL2-type by noting that C has an automorphism of order 3 given by x 7→ 1 − 1/x,
y 7→ −y/x3 and thus showing that its Jacobian is of GL2-type. Additionally, the Euler factor at 5
of its L-function is

1 + 6T + 17T 2 + 30T 3 + 25T 4

which is irreducible. Hence its Jacobian is simple, showing that its Jacobian corresponds to a pair
of Galois conjugate newforms of level 1154. There is one other pair of Galois conjugate newforms
whose coefficient field is Q(ζ3), namely that with LMFDB label 1154.2.c.a. So it remains to show
that J does not come from the newform with label 1154.2.c.a. However the Euler factor of the
L-function at 5 for that newform is 1− 3T + 4T 2 − 15T 3 + 25T 4 which does not match that of J .
This means that Jacobian of C really is in the isogeny class of abelian surfaces corresponding to
the newform 1154.2.e.a.

Using the Magma function RankBounds one readily computes that J has Mordell-Weil rank 4.
In particular, it has rank 2 as a module over Z[ζ3]. The generalization by Kato of the work of
Kolyvagin and Logachev on the Birch–Swinnerton-Dyer conjecture in the analytic rank 0 and 1
cases to all isogeny factors of J1(N) (see Kato [55, Corollary 14.3]) shows that the order of vanishing
of L(f, s) at 1 cannot be 0 or 1 since this would give J rank 0 or 1 as a Z[ζ3]-module. So the order
of vanishing is at least 2. An upper bound was again obtained using interval arithmetic.

Self-dual analytic rank 3. The approach here is similar to that in §9.4 and the result was already
briefly mentioned in [31, Section 3.4] where the analytic rank is determined for all elliptic curves
of conductor N < 130 000. There is only one newform that numerically seems to be of analytic
rank 3 in the database, namely 5077.2.a.a of weight 2, level 5077 and trivial character. This
modular form corresponds to the elliptic curve y2 + y = x3 − 7x + 6 which has rank 3 and is the
only one in its isogeny class. The verification that its L-function has analytic rank 3 is a famous
calculation of Buhler–Gross–Zagier [16], used by Gross–Zagier [46] in their solution to the Gauss
class number 1 problem. We confirm it quickly as follows: by known cases of the Birch–Swinnerton-
Dyer conjecture, the analytic rank cannot be 0 or 1; by parity of the root number, the analytic rank
cannot be 2, so it must be at least 3; and an upper bound on the analytic rank of 3 is obtained by
interval arithmetic.

9.5. Chowla’s conjecture. The definition of analytic rank (Definition 9.4.1) as an order of van-
ishing also makes sense for k odd, and by analogy one might also find it natural to study the central
values of L(f, s) at k/2 and their derivatives. However, for k odd the central value s = k/2 is not
a special value in the sense of Deligne [38] and thus there is no abelian group whose rank (as a
module over an appropriate coefficient ring) is conjecturally related to its leading Taylor coefficient.
It would therefore be a stretch to call the order of vanishing at the central point an analytic rank.
Moreover, one does not expect L(f, k/2) to ever vanish, and this is a generalization of Chowla’s
conjecture for Dirichlet L-functions [22], as follows.

Let χ be a non-trivial Dirichlet character, then the functional equation associated to L(χ, s) :=∑
χ(n)n−s, similar to equation 9.1.3, relates L(χ, s) to L(χ, 1 − s). The value of L(χ, 1) is quite

well understood. For example, the fact that L(1, χ) 6= 0 gives us Dirichlet’s theorem on arithmetic
progressions, and for primitive real characters the value L(χ, 1) gives us Dirichlet’s class number
formula. As mentioned above, inspired by Definition 9.4.1, one might also find it natural to study
the order of vanishing of L(χ, s) at s = 1/2 and its derivatives. However, it is believed that
L(χ, 1/2) 6= 0; this was first conjectured by Chowla [22] for primitive real characters and later
generalized to other characters. One of the reasons behind such a belief is that for primitive real
characters the root number of such L-functions is always 1 [45], and thus there is no simple reason for
L(χ, 1/2) to vanish. Although Chowla’s conjecture remains open, it has been numerically verified
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for all real characters χ of modulus less than 1010 [74], and substantial progress towards showing
the non-vanishing of L(χ, 1/2) has also been made, see [45] for a short overview.

A generalization of Chowla’s conjecture is that L(f, k/2) 6= 0 for k odd. As in the case of Dirichlet
L-functions for primitive real characters, we also have that the root number of L(f, k/2) can never
be −1 when f is self-dual. This is in stark contrast to the case of self dual even weight modular
forms, where the root numbers are split approximately 50-50 between −1 and 1. We verified this
generalization of Chowla’s conjecture, as we computed L(f, k/2) for every newform in our database
with k ≤ 200, and found that this was nonzero for all the odd weight newforms.

10. An overview of the computation

In this section, we provide an overview of the computations we performed, the results of which
are now available in the LMFDB [62]. These were accomplished using a combination of Magma,
Pari/GP, and SageMath scripts, as well as hand written C code for some of the more computationally-
intensive tasks. In aggregate, these computations consumed more than 100 years of CPU time.

10.1. Data extent. Our database consists of four overlapping sets of newforms described in Ta-
ble 10.1.1. These datasets were chosen both for reasons of mathematical interest, and to ensure
that the database included all modular forms contained in existing datasets such as the Stein tables
of modular forms [92], the Buzzard-Lauder tables of weight one newforms [20], and the previous
database of modular forms contained in the LMFDB. More detailed statistics on the newforms in
the database can be found at the statistics page.

Constraints on Snew
k (N,χ) Newspaces Newforms Embeddings

(1) Nk2 ≤ 4 000 30 738 67 180 9 966 498

(2) Nk2 ≤ 40 000, |χ| = 1 16 277 170 611 3 092 301

(3) Nk2 ≤ 40 000, k > 1, dimSnew
k (N,χ) ≤ 100 30 345 131 540 1 648 617

(4) Nk2 ≤ 40 000, N ≤ 24 or

Nk2 ≤ 100 000, N ≤ 10 or

N ≤ 100, k ≤ 12 7 627 12 237 676 574

Union of sets above 62 142 281 219 14 398 359

Table 10.1.1: Extent of the newform database (only nonzero newspaces are included)

For the first dataset (1), we used three independent sources of newform data:

• Complex eigenvalue data for each embedded newform of weight k > 1 computed by the
mflib software package [8], which uses Arb [53] to rigorously implement the trace formula
(as described in [89], for example) to obtain approximate complex values to a precision of
200 decimal digits.

• Exact algebraic eigenvalue data for each newform of weight k > 1 and dimension d ≤ 20
computed using Magma’s [12] modular symbols package (originally written by William
Stein);

• Exact algebraic eigenvalue data for each newform of weight k > 1 and dimension d ≤ 20
were computed using the modular forms implementation in Pari/GP [76] described in [4],
which was also applied to all newforms of weight k = 1.

For k > 1 and Nk2 ≤ 4000 the decomposition of every newspace Snew
k (N,χ) was computed in all

three cases and compared for consistency. Exact algebraic data was computed only for newforms
of dimension d ≤ 20, except for k = 1 where exact algebraic data was computed in every case.
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For newforms of weight k > 1 and dimension d ≤ 20, the algebraic data independently computed
by Magma and Pari/GP were checked for consistency (this was not a completely trivial task, as
it generally required determining an appropriate automorphism of the coefficient field in order
to compare sequences of Fourier coefficients). We also compared the trace forms using all three
methods and compared the results for consistency, and for newforms of weight k = 1 and level
N ≤ 1500 we compared the Pari/GP computations with the Buzzard-Lauder database [20].

Datasets (2) and (3) were computed entirely in Magma, as was dataset (4), except for 12 spaces
of high dimension where complex analytic methods were used. For the portions of these datasets
that overlap with the Stein database of modular forms [92], we compared the results for consistency.

For newforms f =
∑
anq

n of level N ≤ 1000 we computed 1000 coefficients an, while for
newforms of level 1001 ≤ N ≤ 4000 we computed 2000 coefficients, and for newforms of level
4001 ≤ N ≤ 10 000 we computed 3000 coefficients. This substantially exceeds the Sturm bound in
every case, and also exceeds the bound 30

√
N required for the L-function calculations described

in §9. For every newform in the database we computed complex coefficients to a precision of at
least 200 bits. In cases where we compute algebraic coefficient data we computed an optimized
representation using an LLL-basis as described in §8.7, along with a set of generators for the
coefficient ring.

For each newform we determined any non-trivial self-twists admitted by the newform (CM, RM,
or both), and for newforms with algebraic eigenvalue data available, we computed all inner twists as
described in §11. We also computed the analytic rank of every newform, as described in §9.4, and
for weight one newforms we computed the image of the associated projective Artin representation
and a defining polynomial for its kernel, as described in §12. These computations have now all
been rigorously verified.

In addition to the newform database, we computed dimension tables for all newspaces in the
range Nk2 ≤ 40 000 with k > 1, and we computed trace forms for all newspaces of level N ≤ 4000
in this range using the mftraceform function in Pari/GP.

10.2. Statistics. In addition to the ability to browse and to search for examples with specific prop-
erties, the modular forms database allows for an investigation of arithmetic statistics. The LMFDB
[62] includes precomputed tables displaying how various quantities vary across the database, some
of which we have duplicated here in Tables 10.2.2, 10.2.3, 10.2.4, and 10.2.5.

In addition to these static tables, we have added dynamic statistics

http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/dynamic_stats

which allow users to customize which variables to view and any constraints to impose. For example,
a researcher might create a table displaying how the weight and level vary among forms with complex
multiplication. We hope that this new feature will enable examination of large-scale patterns, both
in the modular form data and elsewhere in the LMFDB.

Remark 10.2.1. The statistics and examples presented in this article reflect the dataset defined
in §10.1, which represents the state of the LMFDB as of January 2020. As new data is added to
the LMFDB these statistics may no longer match those displayed in the LMFDB, and the number
of newforms returned by some of the example queries listed below may increase.

analytic rank 0 1 2 3

count 191 520 87 052 2 566 1

proportion 68.12% 30.96% 0.91% 0.00%

example 23.1.b.a 37.2.a.a 389.2.a.a 5077.2.a.a

Table 10.2.2: Distribution of analytic ranks
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projective image A4 S4 A5 D2 Dn

count 458 1 033 202 1 311 17 613

proportion 2.37% 5.35% 1.05% 6.79% 91.23%

example 124.1.i.a 148.1.f.a 1763.1.p.b 3600.1.e.a 3997.1.cz.a

Table 10.2.3: Distribution of projective images

Inner twists Unknown 1 2 4 6 8 10 12

count 73 993 129 197 47 492 25 803 24 4 295 6 51

proportion 26.31% 45.94% 16.89% 9.18% 0.01% 1.53% 0.00% 0.02%

Inner twists 16 20 24 32 40 44 56

count 311 3 14 20 7 1 2

proportion 0.11% 0.00% 0.00% 0.01% 0.00% 0.00% 0.00%

Table 10.2.4: Distribution of inner twists

weight

1 2 3 4 5-316 total

neither
1 693 174 853 11 117 27 877 40 278 255 818

8.77% 98.27% 87.85% 98.02% 93.91% 90.97%

CM only
15 841 3 074 1 538 563 2 613 23 629

82.05% 1.73% 12.15% 1.98% 6.09% 8.40%

RM only
461 461

2.39% 0.16%

both
1 311 1 311

6.79% 0.47%

Table 10.2.5: Distribution of self twist types by weight

10.3. Data reliability. All of our modular form data was computed or verified using rigorous
algorithms that do not depend on any unproved assumptions or conjectures.

• Self-twists were either verified via Theorem 11.2.4 and Proposition 11.1.7 using exact alge-
braic Fourier coefficients an or ruled out using complex approximations of sufficient precision
to rigorously distinguish zero and nonzero values of an and checking for self-twists by all
primitive quadratic characters ψ of conductor dividing the level (a newform that admits a
self-twist by ψ must have an = 0 whenever ψ(an) 6= 1).

• We computed and verified inner twists for all newforms in our dataset that are either of
weight one or have dimension at most 20 by computing sufficiently many algebraic Fourier
coefficients and applying Theorem 11.2.4 and Proposition 11.1.7.

• Analytic ranks were computed using complex approximations as described in §9 and then
rigorously verified using the symbolic methods described in §9.4.

• For weight one newforms the classification of projective images as Dn, A4, S4, A5 was rigor-
ously verified by explicitly computing the number field fixed by the kernel of the associated
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projective Galois representation. As described in §12, this was accomplished using a com-
bination of the ray class field functionality provided by Pari/GP and Magma, the rigorous
tabulation of all A4, S4, and A5 number fields with compatible ramification, and the explicit
computation of quotients of ring class fields of orders in imaginary quadratic fields via the
theory of complex multiplication.

In addition to using mathematically rigorous algorithms, we performed a variety of consistency
checks intended to catch any errors in the software packages used to compute modular forms data,
or any errors that might have been introduced during post-processing. The following checks have
been performed:

• All newforms of weight k > 1 and level N satisfying Nk2 ≤ 2000 have been independently
computed using Magma and Pari/GP. By comparing the results of these computations we
have verified that the decompositions of each newspace Snew

k (N,χ) into Galois orbits agree
(with matching coefficient fields), that the first 1000 coefficients of the trace forms for each
Galois orbit agree, and for newforms of dimension d ≤ 20, that there is an automorphism
of the coefficient field that relates the sequences of algebraic eigenvalues (a1, . . . , a1000)
computed by Pari/GP and Magma.

• For all newforms of weight k > 1 and level N satisfying Nk2 ≤ 4000 we have verified that
the trace forms computed by Magma (using modular symbols) agree with the trace forms
obtained from complex analytic data computed using the explicit trace formula. This also
verifies the dimensions of the coefficient fields.

• For newforms of weight k = 1 and level N ≤ 1000 we have matched the data computed
using Pari/GP with the tables computed by Buzzard and Lauder [20].

• For all dihedral newforms of weight k = 1 and level N ≤ 4000 we have matched trace forms
with data computed using the explicit trace formula in Pari/GP with data independently
computed using the ray class field functionality implemented in Pari/GP and Magma.

As a consistency check for our L-function computations, after computing a provisional list of all
non-trivial zeros on the critical line up to a chosen height bound b we confirmed that no zeros are
missing, in other words, that the Riemann Hypothesis holds for each L-function up to height b.
We use the method described in [17] based on the Weil–Barner explicit formula. If an L-function
also arises from another object in the LMFDB for which we already had computed its L-function
we verified that these computations match.

10.4. Interesting, extreme behavior and examples from the literature. When putting
modular forms in a database it is easy to view them as an aggregate, but of course each modular
form is distinct and many have unique interesting properties.

We take this opportunity to recall the rich history and special properties of several forms in this
database. We also provide links between these forms and the literature and note several forms that
have naturally arisen in previous work. We focus on weight k ≥ 2 in this section; see §12.5 for
interesting behavior in weight k = 1.

• The most well known, and the prototypical, example of a modular form is the Ramanujan
∆ function, of weight 12 and level 1; its label is 1.12.a.a. This is the lowest weight in which a
cusp form appears for the full modular group, so many properties of more general newforms
were first noticed for ∆. Similarly, ∆ has served as a testing ground for techniques and
results before they were known more generally. For instance, the Ramanujan–Petersson
conjecture was first made by Ramanujan for ∆ but later extended to all newforms. Ad-
ditionally, computation of the q-expansion coefficients of ∆, traditionally denoted by τ(n)
and known as Ramanujan’s τ function, is the subject of the monograph [40].
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• By the modularity theorem, newforms of weight 2 with rational coefficients correspond
to isogeny classes of elliptic curves over Q. The smallest level in which a weight 2 form
appears is 11, corresponding to the smallest conductor of an elliptic curve over Q. Here we
necessarily have trivial character and the label is 11.2.a.a; this form has q-expansion

q
∏
k≥1

(1− qk)2(1− q11k)2.

• The weight 2 newforms with CM by fields with the largest absolute discriminants in the
database are 2169.2.d.a with CM by Q(

√
−723), 8388.2.e.c and 2097.2.d.a with CM by

Q(
√
−699), 2061.2.c.c with CM by Q(

√
−687), and 7524.2.l.b with CM by Q(

√
−627)—the

last of these has 8 inner twists.

• The weight 2 newform 867.2.i.a with CM by Q(
√
−51) has 32 inner twists, and the weight 1

newform 3481.1.d.a with CM by Q(
√
−59) has 56 inner twists.

• The weight 3 newform 7.3.b.a has CM by Q(
√
−7), making it the first (by analytic conduc-

tor) newform of weight ≥ 3 with CM.

• Watkins [103, §9.1.3] discusses several examples of modular forms of analytic rank 2. The
query http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/?weight=4-&analytic_

rank=2- returns 130 forms of weight at least 4 and analytic rank at least 2, many of which
are mentioned by Watkins, including 2 of weight 8.

• Watkins also discusses modular forms of weight 2 with which are non-self-dual yet have
positive analytic rank, particularly examples with quadratic character, such as 122.2.b.a.
The query http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/?weight=2&char_

order=2&is_self_dual=no&analytic_rank=1- produces 567 such examples. In larger
weight we have 8.14.b.a which is non-self-dual and has analytic rank 1, as does 162.12.c.i.

• The index of the coefficient ring in the ring of integers of the coefficient field can get quite
large, as in the case of the newform 8.21.d.b where the index is at least 2153 · 315 · 54 · 72. In
weight 2, the largest index we computed was 226 · 34 for 2016.2.k.b and 4032.2.k.h.

• Many newforms in our database have very large Hecke orbits. For example, the newform
983.2.c.a has relative dimension 81 over its character field Q(ζ491) and Q-dimension 39 690.

10.5. Pictures. For every newform f , every nonempty newspace Snew
k (N,χ), and Snew

k (Γ1(N)) for
which we have all the newforms, we have created a portrait based on their trace forms, a total of
641 562 portraits. The picture is generated by plotting the absolute value of the trace form in the
Poincaré disk, obtained as the image of (1 − iz)/(z − i) in H, where the color hue represents the
absolute value modulo 1 (with blue being zero, and increasing through purple, red, orange, yellow,
. . . ). For example, as the trace form is always zero at ∞, the top center is always blue, see Figure
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10.5.1.

Figure 10.5.1: Portrait of 23.1.b.a

We deviated from the normal approach, used by complex plot in SageMath, of representing
magnitude by brightness (with zero being black and infinity being white) and the argument by hue,
as this often leads to an overexposed or underexposed picture, see Figure 10.5.2.

Figure 10.5.2: Portraits of 11.2.a.a and 1.12.a.a and their plots using complex plot in SageMath

Given the number of portraits needed, we limited ourselves to the first 100 Dirichlet coefficients
of the trace form, working with 200 bits of precision, evaluating it in a 300 × 300 grid in [−1, 1]2,
and storing the picture as a 184×184 PNG. Overall this consumed about 100 CPU days, and their
disk footprint is 45 GB. For aesthetic reasons, the portraits presented here were computed to a
higher quality, which creates some discrepancies with the online version, especially in higher weight
newforms.

Even though we opted for a plot with less information, it still captures some mathematically
interesting features. For example, the behavior on the edge of the disk is a good indicator for level
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and weight, see Figures 10.5.3 and 10.5.4.

Figure 10.5.3: The portraits for 11.2.a.a, 100.2.a.a, 1001.2.a.a, and 9996.2.a.a

Figure 10.5.4: The portraits for 7.3.b.a, 7.9.b.a, 7.27.b.a, and 7.81.b.a

The size of the blue spot on top center is inversely correlated with the growth of the trace form
away from ∞, thus for fixed weight this is a good indicator for the dimension, see Figures 10.5.5:
their dimensions are 1, 4, 33, and 120, respectively.

Figure 10.5.5: The portraits for 9359.2.a.a, 9359.2.a.e, 9359.2.a.k, and 9359.2.a.r
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Finally, one could also be tempted to infer the self-twists of a newform by comparing it with
other forms in Snew

k (Γ1(N)), see Figures 10.5.6 for Snew
1 (Γ1(164)).

Figure 10.5.6: The portraits for 164.1.d.a, 164.1.d.b, 164.1.j.a, and 164.1.l.a

Remark 10.5.7. These portraits differ from those now used in the LMFDB. Between writing and
publishing this article we chose to instead use the pure phase portraits describe in §2.2.5 of [61].

10.6. Features. In parallel to carrying out the computations described elsewhere in this paper, we
rewrote the user interface to the database. We highlight some of the more prominent new features
in this section, some of which are being extended to other sections of the LMFDB.

The search interface includes multiple modes for viewing results. After entering constraints
such as weight, level and dimension, there are four different search buttons available. In addition
to the standard list of results, a user can choose to go straight to a randomly chosen newform.
Alternatively, there are dimension tables available which display the dimension of the spaces of
newforms as a function of weight and level. Finally, a table of traces allows for searching on specific
Fourier coefficients, including specifying a particular class modulo an arbitrary integer. This feature
can be used to find modular forms matching geometric objects via point-counting.

All of these search modes are also available for newspaces. For newspaces, the list mode shows
the dimensions of the corresponding newforms as well as the Atkin-Lehner dimensions in the case
of trivial character. For both newforms and newspaces, users can customize the order of the search
results.

The homepage for an individual newform has also been completely restructured. Newforms can
be downloaded and reconstructed in Magma, allowing for further computations if desired. We
include complex eigenvalues for embedded modular forms even when exact Fourier coefficients are
not feasible to compute.

One of the key motivations for our extensive computations of (exact or inexact) Fourier coeffi-
cients of newforms is to allow their L-functions to be computed. In addition to providing additional
mathematical information about the newform, such as its analytic rank and special values, this al-
lows us to automatically connect newforms to other objects in the LMFDB. Examples include:

• The L-function L(256.2.a.e) lists both the Bianchi modular form 2.0.4.1-4096.1-b and the
Hilbert modular form 2.2.8.1-1024.1-m as origins (both arise as base changes of 256.2.a.e),
as well as the corresponding elliptic curve isogeny classes 2.0.4.1-4096.1-b over Q(i) and
2.2.8.1-1024.1-m over Q(

√
2).

• The L-function L(72.2.d.a) has (at least) three additional origins: the Hilbert modular
form 2.2.8.1-81.1-b, the elliptic curve isogeny class 2.2.8.1-81.1-b, and the isogeny
class 5184.a of the Jacobian of the genus 2 curve 5184.a.46656.1.

• The L-function L(1948.1.b.a) also arises as the L-function of (the Galois orbit of) the
icosahedral Artin representation 2.1948.24T576.1. The L-functions home page also lists
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the four conjugate Artin representations (and four embedded weight one newforms) whose
L-functions are primitive factors of this imprimitive L-function of degree 8.

11. Twisting

In this section, we discuss twists of modular forms and related computational issues. For back-
ground and further reading, we refer the reader to the foundational articles by Ribet [79, 80].

11.1. Definitions. We begin with definitions, followed by some examples. Throughout this section,
let f ∈ Snew

k (N,χ) be a newform of weight k ∈ Z≥1, level N ∈ Z≥1, and character χ, and let
Kf := Q({an(f)}n) ⊆ C be its coefficient field. Let ψ be a Dirichlet character of conductor
cond(ψ), and let ψ0 be the primitive Dirichlet character inducing ψ (with cond(ψ0) = cond(ψ)).
Then there is a unique newform g := f ⊗ ψ characterized by the property that

(11.1.1) an(g) = ψ0(n)an(f) for all n coprime to N cond(ψ);

we call g the twist of f by ψ. However, more is true: in fact, we have

(11.1.2) an(g) = ψ0(n)an(f) for all n coprime to cond(ψ)

including those n that are not necessarily coprime to N cond(ψ): see Atkin–Li [2, Theorem 3.2].
By the recurrence satisfied by the Hecke operators, (11.1.2) is equivalent to the condition

(11.1.3) ap(g) = ψ(p)ap(f) for all p - cond(ψ).

The newform g has character χψ2 (by (11.1.8) below) and level dividing lcm(N, cond(ψ) cond(χψ))
(by Lemma 11.2.1 below). We call the newform g the twist of f by ψ and say that g is a twist of f .

As above, the group Aut(C) acts on the set of newforms in Snew
k (N,χ), with an(σ(f)) = σ(an(f))

for all n ≥ 1. We have σ(f) ∈ Snew
k (N, σ(χ)), where σ(χ)(n) = σ(χ(n)) for all n ≥ 1. If g = f ⊗ψ,

then σ(g) = σ(f)⊗ σ(ψ) for all σ ∈ Aut(C). Accordingly, the set

(11.1.4) [f ]⊗ [ψ] := {f ′ ⊗ ψ′ : f ′ ∈ [f ], ψ′ ∈ [ψ]}
has an action of Aut(C) and so consists of finitely many Aut(C)-orbits (possibly more than one).
Accordingly, we say that [g] is a twist of [f ] by [ψ] if there exist f ′ ∈ [f ], ψ′ ∈ [ψ], g′ ∈ [g] such that
g′ = f ′ ⊗ ψ′, or equivalently, [g] ⊆ [f ]⊗ [ψ].

Example 11.1.5. The newform orbits 3380.1.v.e and 3380.1.v.g are both twists of 3380.1.g.c by
13.f (and by 260.bc).

With this Galois digression out of the way, we return to the treatment of twists of (embedded)
newforms.

Definition 11.1.6. Let ψ be a Dirichlet character and σ : Kf ↪→ C be a field embedding. We say
that f admits an inner twist by the pair (ψ, σ) if f ⊗ ψ = σ(f). In the special case that σ = id |Kf ,
we say that f admits a self-twist by ψ.

Let InnTw(f) denote the set of inner twists of f and SelfTw(f) ⊆ InnTw(f) the subset of self-
twists. Then projection onto the first component identifies SelfTw(f) with a subgroup of Dirichlet
characters. By (11.1.2), the form f has an inner twist by (ψ, σ) if and only if σ(an) = ψ(n)an for
almost all n. The twist is said to be inner because such twists stay “within” the Galois orbit of f
(a nontrivial inner twist is sometimes also referred to as an “extra twist”). Every newform has a
trivial self-twist by (1.a, id |Kf ).

Proposition 11.1.7 (Ribet [80], Momose [72]). The following statements hold.

(a) If (ψ, σ) ∈ InnTw(f), then
σ(χ) = χψ2;

so if ψ ∈ SelfTw(f) then ψ is quadratic.
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(b) If (ψ, σ) ∈ InnTw(f) then σ ∈ Aut(Kf ).

(c) InnTw(f) naturally forms a group under

(ψ, σ) · (ψ′, σ′) := (ψ σ(ψ′), σσ′).

(d) There is an exact sequence of groups

1→ SelfTw(f)→ InnTw(f)
π−→ Aut(Kf )

(ψ, σ) 7→ σ.

Let A := π(InnTw(f)). Then InnTw(f) ' SelfTw(f)×A is a direct product.

(e) The projection (ψ, σ) 7→ ψ from InnTw(f) to the set of Dirichlet characters is an injective
map of sets.

(f) The group A is abelian.

(g) Suppose SelfTw(f) is trivial. Then π is an isomorphism and the assignment σ 7→ ψσ if and
only if (ψσ, σ) ∈ InnTw(f) is a well-defined 1-cocycle, i.e.,

ψσσ′ = ψσσ(ψσ′).

Proof. These results originate with Ribet [80, §3] and Momose [72, Lemma (1.5)], but they work
under the hypothesis that f has no self-twists. For clarity, we repeat these arguments to show this
hypothesis is unnecessary. Let f(q) =

∑
n anq

n.
Part (a) follows by looking at (Nebentypus) characters using the Hecke recurrence (or the deter-

minant of the associated Galois representations). Explicitly, on the one hand, the character of σ(f)
is σ(χ); on the other, if ε is the character of f ⊗ ψ then for all good primes p the Hecke recurrence
reads

(11.1.8) ε(p)pk−1 = ap(f ⊗ ψ)2 − ap2(f ⊗ ψ)2 = ψ(p)2(ap(f)2 − ap2(f)) = ψ(p)2χ(p)pk−1

so ε = χψ2. Consequently, a self-twist by ψ gives χ = χψ2, so ψ2 is the trivial character.
For part (b), by (a) we have ψ2 = σ(χ)χ−1, and we claim ψ takes values in Q(χ): indeed, if

χ(n) = ζ is a primitive dth root of unity, then checking cases based on the parity of d reveals
that σ(ζ)/ζ ∈ 〈ζ2〉. Since Q(ψ) ⊆ Kf , we conclude σ(an) = ψ(n)an ∈ Kf for almost all n, so
σ(Kf ) ⊆ Kf as desired.

For part (c), we start with σ′(an) = ψ′(n)an and apply σ to get

(σσ′)(an) = σ(ψ′)(n)σ(an) = σ(ψ′)(n)ψ(n)an

for almost all n, so (ψσ(ψ′), σσ′) ∈ InnTw(f). This product is associative: the identity element in
InnTw(f) is (1.a, id |Kf ), and inverses are given by (ψ, σ)−1 = (σ−1(ψ), σ−1).

In part (d), the exact sequence is evident from (c). The group InnTw(f) visibly has the structure
of a semidirect product InnTw(f) ' SelfTw(f) oA via A→ Aut(SelfTw(f)) by σ 7→ (ψ 7→ σ(ψ)).
However, by (b) SelfTw(f) consists only of quadratic characters, so σ(ψ) = ψ for all σ so the
product is direct.

Part (e) follows from the fact that ψ uniquely determines σ.
Part (f) is claimed by Ribet [80, Proposition (3.3)]: we prove it as follows. As in (a), let χ(n) = ζ

and σ(χ)(n) = ζk. Then again ψ(n) = ζ(k−1)/2 (for some choice of square root of ζ). Write similarly

σ′(χ)(n) = ζk
′
. Then

σ′(ψ)

ψ
(n) =

ζk
′(k−1)/2

ζ(k−1)/2
= ζ(k−1)(k′−1)/2

is well-defined, and by symmetry this is equal to (σ(ψ)/ψ)(n), giving ψ σ(ψ′) = ψ′ σ′(ψ), and

similarly σ′(χ)(n) = ζk
′
. This calculation shows the projection of the products (ψ, σ)(ψ′, σ′) =

49



(ψσ(ψ′), σσ′) and (ψ′, σ′)(ψ, σ) = (ψ′σ′(ψ), σσ′) agree. By part (e), it follows that σσ′ = σ′σ and
A is abelian.

Finally, part (g) is immediate from (c). �

Example 11.1.9. Consider the (embedded) newform 180.1.m.a.107.2; it represents the unique
newform orbit in the space 180.1.m of weight 1 and level 180 with character orbit 180.m, whose
q-expansion begins

f(q) = q − ζ3
8q

2 − ζ2
8q

4 + ζ3
8q

5 − ζ8q
8 +O(q10),

where ζ8 = exp(2πi/8) = (1 + i)/
√

2 is the primitive eighth root of unity in the upper quadrant
and Kf = Q(ζ8).

The group SelfTw(f) of self-twists is of order 2 with nontrivial character 4.3, the quadratic
character of conductor 4 associated to the field Q(

√
−1). The group of inner twists has order

# InnTw(f) = 8, and we compute InnTw(f) ' (Z/2Z)3, generated by the elements

(4.3, id), (3.2, ζ8 7→ −ζ8), (5.3, ζ8 7→ ζ3
8 ).

The character ψ5 with label 5.3 has order 4, so letting σ3 ∈ Aut(Q(ζ8)) by σ3(ζ8) = ζ3
8 , we have

(ψ5, σ3)2 = (ψ5 σ3(ψ5), σ2
3) = (ψ5ψ

−1
5 , id) = 1.

The projection of InnTw(f) onto the set of characters yields characters with conductors 1, 3, 4,
5, 12, 15, 20, 60.

Example 11.1.10. For f with label 361.2.e.d and Kf = Q(ζ18), we have no nontrivial self-twists
and π : InnTw(f) → Aut(Kf ) is an isomorphism onto its image. In fact, we compute that π is
surjective, so InnTw(f) ' Z/6Z. More precisely, the elements of order 3 in InnTw(f) correspond
to the characters 19.7 and 19.11 of order 3, and in the character orbit 19.e there are three characters
whose elements match with automorphisms of order 2 and two of order 6.

Example 11.1.11. Among the forms of weight k = 2, trivial character, and dimension 2, we can
search for forms with inner twist, and we should see a table that matches Cremona [29, Table 3]
up to level N ≤ 300. The lists match with one exception: we found one form 169.2.a.a that was
missed by Cremona.

Newforms of weight k ≥ 2 that admit nontrivial self-twists are commonly said to have complex
multiplication, for reasons we now explain.

Proposition 11.1.12 (Ribet). The following statements hold.

(a) If k ≥ 2 and f has nontrivial self-twist by ψ, then ψ is associated to an imaginary quadratic
field and is unique, i.e., SelfTw(f) ' Z/2Z.

(b) If k = 1, then f has nontrivial self-twist by ψ if and only if f has dihedral projective image.
If so, then ψ may be real or imaginary and SelfTw(f) is a subgroup of (Z/2Z)2.

Proof. For part (a), see Ribet [79, Theorem (4.5)], a consequence of the theory of complex multi-
plication.

For part (b), we recall §12 and observe that f has self-twist by ψ if and only if ap(f) = 0 for all
p inert in Q(ψ) and by classification this happens if and only if the image of the projective Galois
representation is dihedral. In this case, let L be the fixed field of the kernel of the projective Galois
representation associated to f , so Gal(L |Q) ' Dn, the dihedral group of order 2n. Then for each
quadratic subfield F ⊆ L, the form f has self-twist by the character associated to F . Accordingly,
when n > 2 the subfield F and associated self-twist character are unique, and when n = 2 (so K
is biquadratic) there are three distinct subfields and corresponding characters and there is a real
quadratic subfield. �
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Example 12.5.1 shows that forms in Proposition 11.1.12(b) indeed occur. In light of Proposition
11.1.12, we make the following definition.

Definition 11.1.13. We say f has real multiplication (RM) if f has self-twist by a character attached
to a real quadratic field and complex multiplication (CM) if f has self-twist by a character attached
to an imaginary quadratic field.

Remark 11.1.14. It is common in the literature to just replace the term self-twist by complex
multiplication. By Proposition 11.1.12(a), there is no harm in this for weight k ≥ 2, but for
weight k = 1 we think this is potentially confusing, and we want to avoid saying “f has complex
multiplication by Q(

√
5).”

Example 11.1.15. As in the proof of Proposition 11.1.12(b), weight 1 forms can have RM or CM
or both. Forms with RM correspond precisely to ray class characters of real quadratic fields that
are of mixed signature (i.e., even at one real place and odd at another).

Example 11.1.16. CM modular forms may also have an inner twist that is not a self-twist: the
smallest example by analytic conductor is 52.1.j.a, having CM by Q(

√
−1) and two inner twists

that are not self-twists. This phenomenon is not restricted to weight 1, for example the same is
true of the form with label 20.2.e.a.

Continuing with the theme of working with newforms that have not yet been embedded, we
conclude this section by showing that the inner twist group is well-defined on the Galois orbit.

Lemma 11.1.17. For all τ ∈ Aut(C), we have an isomorphism of groups

(11.1.18)
InnTw(f)

∼−→ InnTw(τ(f))

(ψ, σ) 7→ (τψ, τστ−1).

Proof. From σ(an) = anψ(n) for almost all n we conclude

(τστ−1)(τ(an)) = τ(an)(τψ)(n)

for almost all n, and conversely. �

11.2. Detecting inner twists. With definitions out of the way, we now drill down to precisely
understand the level of twists. We keep notation from the previous section, in particular f(q) =∑

n an(f)qn ∈ Snew
k (N,χ) is a newform and ψ is a Dirichlet character of conductor cond(ψ).

Lemma 11.2.1. Let M be the level of f ⊗ ψ, so f ⊗ ψ ∈ Snew
k (M,χψ2). Then the following

statements hold:

(a) For all primes p, we have the inequality

ordp(M) ≤ max
(
ordp(N), ordp(cond(ψ) cond(χψ))

)
,

with equality if ordp(N) 6= ordp(cond(ψ) cond(χψ)). In particular, the level M divides
lcm(N, cond(ψ) cond(χψ)).

(b) For all primes p we have

ordp(cond(ψ)) ≤ ordp(cond(ψ) cond(χψ)) ≤ max(ordp(N), ordp(M)).

In particular, cond(ψ) cond(χψ) | lcm(M,N), and if M | N , then cond(ψ) cond(χψ) | N .

Proof. Statement (a) can be found in Booker–Lee–Strömbergsson [10, Lemma 1.4]: this improves
the upper bound of Shimura [90, Proposition 3.64] and Atkin–Li [2, Proposition 3.1] that

(11.2.2) M | lcm(N, cond(ψ)2, cond(χ) cond(ψ)),

which can be proven directly.
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For statement (b), we prove the contrapositive. Let p | cond(ψ) cond(χψ) and suppose that
ordp(cond(ψ) cond(χψ)) > ordp(N). Then by (b) we have

ordp(M) = ordp(cond(ψ) cond(χψ)) > ordp(N). �

Lemma 11.2.3. If ap(f) 6= 0 for some prime number p, then ordp(N) ∈ {1, ordp cond(χ)}.

Proof. If ordp(N) = 0, then ordp(cond(χ)) = 0; if ordp(N) = 1, also done (without using any
hypothesis). Finally, if ordp cond(χ) 6= ordp(N), i.e., χ is a character modulo N/p, then ap(f) 6= 0
implies ordp(N) = 1 by a result of Li [60, Theorem 3]. �

We recall by Proposition 11.1.7(b) that if (ψ, σ) ∈ InnTw(f), then σ ∈ Aut(Kf ). But since we
do not need this in the proof, we state the following theorem more generally.

Theorem 11.2.4. Let f(q) =
∑

n an(f)qn ∈ Snew
k (N,χ), and let σ ∈ Gal(K̃f |Q) where K̃f ⊆ C

is the Galois closure of Kf . Let ψ be a primitive Dirichlet character, and let ψ′ be the primitive
character that induces χψ. Then f ⊗ ψ = σ(f) if and only if all of the following conditions hold:

(i) cond(ψ) cond(ψ′) | N ;

(ii) χψ2 = σ(χ); and

(iii) σ(ap(f)) ∈
{
ap(f)ψ(p), ap(f)ψ′(p)

}
for all primes p ≤ Sturm(k,N).

Proof. Let f̄ ∈ Snew
k (N,χ) denote the dual of f , with coefficients an(f̄) = an(f). Thus f̄ = f ⊗ χ

(cf. Atkin–Li [2, Proposition 1.5] or Ribet [79, §1, p. 21]) and consequently f ⊗ ψ = f̄ ⊗ ψ′ as

an(f̄)ψ′(n) = an(f)χ̄(n)(χψ)(n) = an(f)ψ(n)

whenever gcd(n,N) = 1.
First we prove (⇒), and suppose that f ⊗ψ = σ(f). By Proposition 11.1.7 we have χψ2 = σ(χ).

Since cond(σ(f)) = cond(f) = N , we have cond(ψ) cond(ψ′) | N by Lemma 11.2.1(c). Let D :=
gcd(cond(ψ), cond(ψ′)). Then

(11.2.5) cond(χ) = cond(ψ′ψ) | lcm(cond(ψ), cond(ψ′)) = (cond(ψ) cond(ψ′)/D) | (N/D).

Let p be prime. If p - cond(ψ) then σ(ap(f)) = ap(f ⊗ ψ) = ap(f)ψ(p). Similarly, if p - cond(ψ′)

then σ(ap(f)) = ap(f̄ ⊗ ψ′) = ap(f)ψ′(p). Hence we may suppose that p | D, so by (11.2.5) we
have ordp(N) > max{1, ordp cond(χ)}. By Lemma 11.2.3, it follows that ap(f) = 0, and thus
σ(ap(f)) = ap(f)ψ(p).

Now we prove the converse (⇐), and suppose that conditions (i)–(iii) hold. Let M be the level
of f ⊗ ψ. Let Q denote the product of primes p | N such that either

• p -M , or

• ap(f) = 0 and ap(f ⊗ ψ) 6= 0.

Let ξ denote the trivial character modulo Q, and define

(11.2.6) g(q) :=

∞∑
n=1

an(f ⊗ ψ)ξ(n)qn.

We claim that conditions (i)–(ii) imply that g ∈ Sk(N,χψ2). By Atkin–Li [2, Proposition 3.1] it
suffices to show that

(11.2.7) lcm
(
M, cond(ψψ′)Q,Q2

)
| N.

By Lemma 11.2.1(a) and the fact that cond(ψ) cond(ψ′) | N , we have

cond(ψψ′) |M | lcm{N, cond(ψ) cond(ψ′)} = N,
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so to prove (11.2.7) it suffices to show that ordp(N) ≥ 1 + max{1, ordp cond(ψψ′)} for all primes
p | Q.

Let p be such a prime. Then either p - M or ap(f) = ap(f) = 0 and ap(f ⊗ ψ) = ap(f̄ ⊗ ψ′) 6=
0. In either case we must have p | gcd(cond(ψ), cond(ψ′)) and, by Lemma 11.2.3, ordp(M) ∈
{1, ordp cond(ψψ′)}. It follows that

max{1, ordp cond(ψψ′), ordp(M)} ≤ max{ordp cond(ψ), ordp cond(ψ′)}.
Since p | gcd(cond(ψ), cond(ψ′)), we have min{ordp cond(ψ), ordp cond(ψ′)} ≥ 1, and hence

ordp(cond(ψ) cond(ψ′)) ≥ 1 + max{1, ordp cond(ψψ′), ordp(M)}.
By Lemma 11.2.1(b) we have

ordp(N) = ordp(cond(ψ) cond(ψ′)) ≥ 1 + max{1, ordp cond(ψψ′)}.

This concludes the proof that g ∈ Sk(N,χψ2).
Next, we claim that an(g) = σ(an(f)) for all n ≤ Sturm(k,N). Since both sequences are

multiplicative and χψ2 = σ(χ), it suffices to verify this equality at primes, p. There are three cases
to consider:

• If p - N then ap(f)ψ(p) = ap(f)ψ′(p), so that σ(ap(f)) = ap(g).

• If p | N and ap(f) = 0 then ap(g) = 0 by construction, and σ(ap(f)) = 0.

• If p | N and ap(f) 6= 0 then 0 6= σ(ap(f)) ∈ {ap(f)ψ(p), ap(f)ψ′(p)}.
– If σ(ap(f)) = ap(f)ψ(p) then p - cond(ψ), so ap(f)ψ(p) = ap(f ⊗ ψ).

– If σ(ap(f)) = ap(f)ψ′(p) then p - cond(ψ′), so

ap(f)ψ′(p) = ap(f̄ ⊗ ψ′) = ap(f ⊗ ψ).

In either case, we conclude that σ(ap(f)) = ap(f ⊗ ψ) = ap(g).

By the Hecke–Sturm bound (Proposition 8.2.3), it follows that g = σ(f). Finally, since f is a
newform, σ(f) is as well, and thus σ(f) = g = f ⊗ ψ, by strong multiplicity one. �

We conclude with a variant, similarly useful for algorithmic purposes. We recall the notion of
distinguishing primes from §8.9.

Theorem 11.2.8. With the same hypotheses as in Theorem 11.2.4, we have f ⊗ ψ = σ(f) if and
only if conditions hold:

(i) cond(ψ) cond(χψ) | N ;

(ii) χψ2 = σ(χ);

(iii) σ(ap(f)) = ap(f)ψ(p) for all primes p ≤ Sturm(k,N) with p - N ; and

(iv) σ(ap(f)) = ap(f)ψ(p) for p in a set of distinguishing primes for f .

Proof. The implication (⇒) is clear, so we prove (⇐).
As in the proof of (⇐) of Theorem 11.2.4, we again consider the form g as in (11.2.6) with

ξ the trivial character modulo Q. Let Ng be the level of g. Then in the proof we showed that
Ng | N and h := g − σ(f) ∈ Sk(N, σ(χ)). By (iii) and Hecke recursion, we have an(h) = 0 for all
n ≤ Sturm(k,N) coprime to N .

If Ng = N , then by (iv), we have σ(f) = f ⊗ ψ. So we may assume that Ng is a proper divisor
of N . We now employ degeneracy operators to upgrade (iii). It is convenient to switch from
lower-triangular to upper-triangular matrices. Let

Γ1(N) :=

{
γ ∈ SL2(Z) : γ ≡

(
1 0
∗ 1

)
(mod N)

}
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and similarly Γ0(N), and define spaces of modular forms on these groups similarly. We refer to
Diamond–Shurman [39, §5.7] for the results we need. The groups Γ1(N) and Γ1(N) are conjugate by

the matrix

(
N 0
0 1

)
, giving an isomorphism ιN := Sk(Γ1(N))→ Sk(Γ

1(N)) whose effect on Fourier

expansions is
∑

n bnq
n 7→

∑
n bnq

n
N where qN := exp(2πiz/N). Moreover, this map preserves the

Nebentypus character. For any d | N , the trace operator defines a map

πd : Sk(Γ
1(N))→ Sk(Γd) ⊆ Sk(Γ1(N))

where Γd := Γ1(N) ∩ Γ0(N/d): its effect on Fourier expansions is

∞∑
n=1

bnq
n
N 7→

∞∑
n=1
d|n

bnq
n
N .

The operator πd is a projection operator, and for d, d′ | N with gcd(d, d′) = 1 we have πdπd′ = πd′πd.
Consider

h′ :=
∏
p|N

(1− πp)ιN (h) ∈ Sk(Γ0(N), χ).

By construction, multiplicativity, and (iii), we have an(h′) = 0 for all n ≤ Sturm(k,N). Then by
the Hecke–Sturm bound (Proposition 8.2.3), we conclude h′ = 0. Thus

(11.2.9) h(q) =
∞∑
n=1

gcd(n,N)6=1

an(h)qn.

We have realized h as a sum of oldforms. Turning this back to Γ1(N), we conclude that

(11.2.10) h(q) =
∑
p|N

hp(q
p)

with hp(q) ∈ Sk(Γp, σ(χ)p), as in the oldform theory of Atkin–Lehner [1, Theorem 1] and Li [60,
Corollary 1]; moreover, hp = 0 if and only if h is new at p.

We now show that h = 0. Let p | N . If χ is not a character modulo N/p, then Sk(Γp, σ(χ)p) = 0
so hp = 0. So suppose χ is a character modulo N/p.

• Suppose that ap(f) 6= 0. Then by Lemma 11.2.3, we have p ‖ N . Thus ordp(cond(χ)) = 0,
so by (i) we have ordp(N) ≥ 2 ordp(cond(ψ)). If ordp(cond(ψ)) = 0, then we have twisted
by a character trivial at p, so ordp(M) = ordp(N) by Lemma 11.2.1(b). Therefore f ⊗ ψ is
new at p, so g is new at p and ap(g) = ap(f ⊗ ψ) so hp = 0. If instead ordp(cond(ψ)) ≥ 1,
then p2 | N , a contradiction.

• Suppose ap(f) = 0. If ap(f ⊗ψ) 6= 0, then by construction, ap(g) = 0 so by multiplicativity
an(f) = an(g) for all p | n; therefore hp = 0.

We have shown that σ(f) = g. We then conclude as in the end of the proof of Theorem 11.2.4. �

Example 11.2.11. Consider the space 24.2.f.a. There are two Galois-conjugate newforms with
the same Nebentypus character. The Sturm bound is 8, but the smallest p - N where the Fourier
coefficients differ is 11. In particular, this shows that in the Hecke–Sturm bound (Proposition 8.2.3)
we cannot ignore the primes p | N .

The virtue of Theorems 11.2.4 and 11.2.8 is that they give explicit criteria to certify inner twists,
with care taken concerning primes dividing the level.
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11.3. Computing inner twists. We used Theorem 11.2.8 to compute the complete group of
inner twists for all the modular forms in our dataset. Specifically, we enumerate the finite set X of
Dirichlet characters ψ satisfying condition (i) of Theorem 11.2.8 for which χψ2 is conjugate to χ.
Note that the set X does not depend on f or its coefficient field, only the character χ and level N .

We then determine the subset of X that satisfy conditions (iii) and (iv) for some σ ∈ Gal(K̃f ) as
follows:

(1) We first remove from X all characters ψ for which there is a prime p ≤ Sturm(k,N) not
dividing N such that ap(f)ψ(p) is not conjugate to ap(f); this is accomplished by comparing
the minimal polynomials of ap(f)ψ(p) and ap(f).

(2) For all remaining ψ ∈ X, set T := Gal(K̃f ) and for successive primes p ≤ Sturm(k,N) with
p - N , replace T with {σ ∈ T : σ(ap(f)) = ap(f)ψ(p)}, stopping if T becomes empty. This
yields a list of candidate inner twists (ψ, σ) containing InnTw(f).

(3) Finally, for each candidate (ψ, σ) we check whether (iv) holds; if so then Theorem 11.2.8
implies that (ψ, σ) is an inner twist of f .

As shown by Example 11.2.11, the third step above is potentially necessary, but in our computa-
tion we never encountered a case where a candidate inner twist that survived step (2) was discarded
in step (3).

Remark 11.3.1. The Magma function InnerTwists implements a weaker form of Theorem 11.2.4.
It requires checking eigenvalues up to the Sturm bound for level lcm(N, cond(ψ)2, cond(ψ) cond(χ)),
and it performs eigenvalue comparisons using complex approximations that do not guarantee a
rigorous result. Indeed, even when the optional parameter Proof is set to True, Magma version
2.24-7 displays the following message:

WARNING: Even if Proof is True, the program does not prove that every twist

returned is in fact an inner twist (though they are up to precision 0.00001).

12. Weight one

Modular forms of weight one are of particular interest due to the connection with Artin repre-
sentations, provided by a theorem of Deligne and Serre [37]: one can associate to each weight one
newform f an odd irreducible 2-dimensional Galois representations ρf : GQ → GL2(C) for which
L(f, s) = L(ρf , s) (recall that a Galois representation is odd if complex conjugation has determi-
nant −1). Following the proof of Serre’s conjecture by Khare and Wintenberger [58], we now know
that the map f 7→ ρf is in fact a bijection. This connection allows one to attach several additional
arithmetic invariants to weight one newforms that we would like to compute, including:

• The projective image of ρf in PGL2(C), which by Klein’s classification is isomorphic to either
Dn (dihedral of order 2n, including D2 := Z/2Z× Z/2Z), or one of the exceptional groups
A4 (tetrahedral), S4 (octahedral), or A5 (icosahedral).

• The projective field of ρf : the fixed field of the kernel of GQ
ρf−→ GL2(C) � PGL2(C).

• The Artin image of ρf : the finite group ρf (GQ) ≤ GL2(C).

• The Artin field of ρf : the fixed field of ker ρf , with Galois group isomorphic to ρf (GQ).

One can also consider the projective representation ρ̄f : GQ → PGL2(C) induced by ρf as an
invariant in its own right: it uniquely determines the twist class of f . Two newforms f and g are
said to be twist equivalent if g = f ⊗ ψ for some Dirichlet character ψ, and in weight 1 this occurs
if and only if ρ̄f = ρ̄g.
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12.1. Computational observations. The Deligne–Serre theorem also has important computa-
tional implications. In the typical case where ρf is a dihedral representation (meaning that its
projective image is dihedral), the Artin L-function L(ρf , s) is also the Weber L-function L(ω, s) of
a ray class character ω of the quadratic field K fixed by the preimage of Cn ⊆ Dn ' ρ̄f (GQ). (For
n = 2 there are three choices for C2 ⊆ D2; we can use any one of the three.) The quadratic field
K and the ray class character ω necessarily satisfy

(12.1.1) |dK |Nm(cond(ω)) = cond(ρf ) = N,

where dK is the discriminant of K and N is the level of f . In order to obtain an odd representation
ρf we also require that if K is a real quadratic field then the modulus for ω should include exactly
one of the real places of K.

For any given level N , it is straightforward to enumerate all quadratic fields K of discriminant
dK | N , all OK-ideals of absolute norm dividing N/ |dK |, and all ray class characters ω of K for the
modulus with finite part I and infinite part compatible with an odd representation. This makes it
feasible to explicitly compute Fourier expansions of all dihedral newforms of level N to any desired
precision; to compute ap(f) for p - N this simply amounts to evaluating the corresponding ray class
character ω at the prime ideals of OK above p.

Pari/GP contains extensive support for computing with ray class characters that are particularly
efficient in the case of quadratic fields. We used this to compute all dihedral newforms of level
N ≤ 40 000 with Fourier coefficients an(f) computed for n ≤ 6000 (well past the Sturm bound).
This yielded a total of 572 462 dihedral newforms, corresponding to 14 634 052 embedded newforms.
The largest dimension we found was 2818, which arises for a dihedral newform of level 39473, and
the largest projective image we found was D2846 for a newform of level 39 851.

These computations go far beyond the extent of our database described in §10.1, which only
covers levels N ≤ 4000 in weight one. For comparison, the largest dimension arising for N ≤ 4000
is 232 and the largest projective image is D285. The reason for this discrepancy is that while it
is computationally very easy to compute dihedral newforms, to obtain a complete enumeration
of all the newforms in a given weight one newspace, one must also enumerate the tetrahedral,
octahedral, and icosahedral newforms, which is more difficult—particularly in the icosahedral case.
Interestingly, the main difficulty often lies not in enumerating these exceptional newforms, but in
verifying that one has actually found them all. In contrast to the case k > 1 where there are well
known dimension formulas, while there are computational tricks that work well in special cases, to
our knowledge no efficient method for computing dimSnew

1 (N) for general N is currently known.

12.2. Classifying the projective image. The Pari/GP function mfgaloistype can be used to
classify the projective image, but given that we actually computed the projective field in every case
(which of course determines the projective image), we did not exploit this feature.

Remark 12.2.1. Buzzard–Lauder [20] describe an approach to classifying the projective image by
computing projective orders of elements that they applied to all weight one newforms of level up to
1500. They note in their paper that their approach relies on the convenient fact that there are no
weight one newforms of level N ≤ 1500 with projective image A4 whose coefficient field contains
Q(
√

5). Five such examples arise in our dataset, the first of which is 2299.1.w.a.

12.3. Computing the projective field. Our strategy for computing the projective field is to
exhaustively compute a complete set of candidates and then rule out all but one. As noted in
§12.1, we can effectively determine all the dihedral forms at each level, so we know in advance
exactly which forms are dihedral (and the exact order of the projective image in each of these
cases). In cases where a dihedral image has moderate degree—less than 100, say—it is feasible to
use the ray class field functionality in Pari/GP to compute the projective field. This notably includes
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all of the dihedral projective fields whose distinguished quadratic subfield is real: the largest such
example in our database is 2605.1.bd.a with projective image D40.

The dihedral fields in which the distinguished subfield is imaginary quadratic can be much larger:
the largest example 3997.1.cz.a has projective image D285. In these cases, we exploit the fact that
every dihedral field whose distinguished quadratic subfield is imaginary can be realized as a subfield
of a ring class field that can be explicitly computed using the theory of complex multiplication.
There is a well-developed theory for efficiently computing these ring class fields, even in cases where
the degree may be in the millions, motivated by applications to cryptography and elliptic curve
primality proving (the CM method for constructing elliptic curves over finite fields).

Given a dihedral weight one newform f ∈ Snew
1 (N,χ) with dihedral image Dn and distinguished

imaginary quadratic field K, there is a finite set of possible suborders O of OK and conductors
c such that the projective field of f arises as a cyclic degree-n extension of K of conductor c
contained in the ring class field K of O. The enumeration of these dihedral fields was achieved
using an algorithm based on the techniques developed by Enge-Sutherland [44] and Sutherland
[96, 97] that will be described in a forthcoming paper.

Having enumerated a complete list of candidate fields L := Q[x]/(gL(x)), for successive primes
p - N we can compute the order of ρf (Frobp) in PGLs(C) by determining the positive integer n
for which ap(f)2/χ(p) = ζn + ζ−1

n + 2 and compare this to the inertia degree of the primes above
p in OL. This will eventually eliminate all but one candidate field, since the sequence of inertia
degrees uniquely determines a Galois number field, and in practice this happens very quickly. To
accelerate the computation we precompute defining polynomials for the real cyclotomic fields we
may encounter and use p coprime to the discriminants of the defining polynomials gL so that we
can compute the inertia degree as the degree of the irreducible factors of gL(x) in Fp[x].

For the non-dihedral projective images we used the methods of Cohen–Diaz y Diaz–Olivier
[23, 24] to enumerate all A4 and S4 fields unramified outside a given set of primes, and for the A5

fields we used existing tables of fields in the Jones–Roberts database and the LMFDB combined
with a targeted Hunter search for some missing cases, as described by Jones–Roberts [54]. This
allowed us to construct complete lists of candidate fields for each non-dihedral weight one form
from which we then ruled out all but one candidate by comparing orders of Frobenius elements
with inertia degrees as described above.

12.4. Computing the Artin image, the Artin field, and the associated Artin represen-
tation. As of January 2020 the LMFDB contained 5116 odd 2-dimensional Artin representations
of conductor N ≤ 4000, all of which we were able to uniquely match to a corresponding newform
of weight one. For each of these Artin representations the LMFDB provides the Artin image, the
Artin field, and a complete description of the Artin representation given values on each conjugacy
class of Frobenius elements. We were also able to compute the Artin image and Artin field for 833
additional weight one newforms that are twists of a weight one newform for which we know the
corresponding Artin representation by taking the compositum of the known Artin field with an
appropriate cyclotomic field.

There is work in progress to add as many of the Artin representations corresponding to the
remaining 14 190 weight one newforms as possible; these will be linked to the corresponding weight 1
newforms as they become available.

12.5. Interesting and extreme behavior. Weight one modular forms behave rather differently
than those of higher weight. As seen in §12, one important invariant of weight one forms is the
projective image of the associated Galois representation. We will discuss some forms with dihedral
projective image first.

Hecke also constructed weight one modular forms starting from imaginary quadratic fields with
odd class number at least 3. The first examples of such fields come from Q(

√
−23), Q(

√
−31),
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Q(
√
−39), and the corresponding modular forms are the three smallest level weight one newforms;

these have labels 23.1.b.a, 31.1.b.a and 39.1.d.a, respectively. [47]

Example 12.5.1. The last of these, 39.1.d.a, is the D2 form of lowest level and has CM by both
Q(
√
−3) and Q(

√
−39), and RM by Q(

√
13). This form appears in work of Darmon–Lauder–Rotger

[35, Example 2.5].

The first examples of newforms with RM but no CM occur in level 145 with 145.1.f.a (RM by
Q(
√

5), [35, Example 3.3], [34, Example 4.1]) and 145.1.h.a (RM by Q(
√

29), [36, Example 1.2]).
The problem of constructing weight one forms whose projective image is not dihedral was con-

sidered by Tate and Serre in the 1970s. These forms are sometimes called non-banal or exotic.
Such forms divide up into 3 cases based on their projective image, which can be one of A4, S4, A5:
the forms are then known as tetrahedral, octahedral and icosahedral, respectively.

Tate together with his students, Flath, Kottwitz, Tunnell, and Weisinger, and additionally Atkin,
exhibited a form of level 133, with projective image A4 described in a letter to Atkin [98, p. 713];
this form is 133.1.m.a in our database. The smallest level example is actually in level 124, given by
124.1.i.a.

In the octahedral case, the smallest level example is in level 4 · 37 = 148 with label 148.1.f.a; this
newform is discussed by Buzzard [19, §2.3] and Darmon–Lauder–Rotger [34, Example 5.6].

Many modular forms previously considered in the literature with interesting Galois representa-
tions can now be found in our database. Ogasawara [73] takes the mod-3 Galois representations
attached to certain elliptic curves and constructs a GL2(F3) Artin representation: for example, the
elliptic curve of conductor 11 with label 11.a3 is used and the corresponding octahedral modular
form of weight one over Q(

√
−2) is constructed. Using the q-expansion coefficients given there,

we can use the trace search functionality to locate a (unique) matching form in our database:
3267.1.b.d. We then verify that it has the right Artin field: a degree 8 extension over which 11.a3
gains 3-torsion.

Buhler [14, 15] constructs the icosahedral Galois representation of level 800, labeled 800.1.bh.a.
Kiming–Wang [57] gave several more instances of icosahedral newforms of weight one with char-
acters of order 2, showing their existence in order to verify the Artin conjecture in these cases.
The new database now contains all but one of these: 2083.1.b.b, 1948.1.b.a, 3004.1.b.a, 3548.1.d.a,
3676.1.c.a, 2336.1.c (two newforms). The only newspace discussed in loc. cit. with level outside our
range would have label 6176.1.b. The database also contains the icosahedral newforms 1376.1.r.a,
2416.1.p.a, 3184.1.t.a, 3556.1.ba.a and 3756.1.q.b which were all shown to satisfy Artin’s conjecture
by Buzzard–Stein [21]. The proof of Serre’s conjecture [58] established Artin’s conjecture for all
odd irreducible 2-dimensional representations, including all of the icosahedral cases. The smallest
level example of an icosahedral newform is 633.1.m.b.

Constructing exotic forms of prime level with specific projective image is also a much studied
problem. Such forms do not exist in the tetrahedral case [87, Theorem 7, p. 245], leaving only
octahedral and icosahedral forms with the possibility of prime level.

In the octahedral case the smallest prime level is 229, and the space of newforms 229.1.d splits
into two Galois orbits, (see Serre [87, p. 265]). The second smallest level is 283, where we have the
newform 283.1.b.b that appears also in work of Serre [88].

In the icosahedral case, we have seen above the first example of such a form: the one with level
2083 of Kiming–Wang. In fact the query for forms with projective image A5 shows that there are 4
such forms with prime level ≤ 4000: 2083.1.b.b, 2707.1.b.b, 3203.1.b.a, 3547.1.b.c. It is conjectured
that these forms are rare.

Conjecture 12.5.2. For any ε > 0, the number of exotic newforms of prime level N is Oε (N ε).

Bhargava–Ghate [5] have shown an averaged version of this conjecture in the octahedral case.
58

https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/23.1.b.a
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/31.1.b.a
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/39.1.d.a
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/39.1.d.a
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/145.1.f.a
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/145.1.h.a
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/133.1.m.a
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/124.1.i.a
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/148.1.f.a
https://www.lmfdb.org/EllipticCurve/Q/11/a/3
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/3267.1.b.d
https://www.lmfdb.org/EllipticCurve/Q/11/a/3
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/800.1.bh.a
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2083.1.b.b
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1948.1.b.a
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/3004.1.b.a
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/3548.1.d.a
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/3676.1.c.a
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2336.1.c
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/6176.1.b
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1376.1.r.a
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2416.1.p.a
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/3184.1.t.a
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/3556.1.ba.a
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/3756.1.q.b
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/633.1.m.b
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/229.1.d
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/283.1.b.b
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2083.1.b.b
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2707.1.b.b
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/3203.1.b.a
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/3547.1.b.c


References

[1] A. O. L. Atkin and Joseph Lehner, Hecke operators on Γ0(m), Math. Ann. 185 (1970), 134–160.
[2] A. O. L. Atkin and Wen-Ch’ing Winnie Li, Twists of newforms and pseudo-eigenvalues of W -operators, In-

vent. Math. 48 (1978), no. 3, 221–243.
[3] B. Banwait and J. Cremona, Tetrahedral elliptic curves and the local-to-global principle for isogenies, Algebra

& Number Theory 8 (2014), no. 5, 1201–1229.
[4] Karim Belabas and Henri Cohen, Modular forms in Pari/GP , Res. Math. Sci. 5 (2018), no. 3, Paper No. 37,

19 pp.
[5] Manjul Bhargava and Eknath Ghate, On the average number of octahedral newforms of prime level ,

Math. Ann. 344 (2009), no. 4, 749–768.
[6] B. J. Birch, Elliptic curves over Q: A progress report , 1969 Number Theory Institute (State Univ. New York,

Stony Brook, N.Y., 1969), Proc. Sympos. Pure Math., vol. 20, Amer. Math. Soc., Providence, 1971, 396–400.
[7] B. J. Birch, Hecke actions on classes of ternary quadratic forms, Computational number theory (Debrecen,

1989), de Gruyter, Berlin, 1991, 191–212.
[8] Jonathan Bober, mflib software library, available at https://github.com/jwbober/mflib, 2019.
[9] Jonathan W. Bober, Andrew R. Booker, Edgar Costa, Min Lee, David J. Platt, and Andrew Sutherland,

Computing motivic L-functions, in preparation.
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241–261.

[83] The Sage Developers, SageMath (version 8.8), available at https://www.sagemath.org, 2019.
[84] George J. Schaeffer, Hecke stability and weight 1 modular forms, Math. Z. 281 (2015), no. 1–2, 159–191.
[85] A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applica-

tions to Dirichlet series, J. Indian Math. Soc. (N.S.) 20 (1956), 47–87.
[86] Jean-Pierre Serre, A course in arithmetic, Grad. Texts in Math. 7, Springer-Verlag, New York, 1973.
[87] J. P. Serre, Modular forms of weight one and Galois representations, Algebraic number fields: L-functions and

Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975), ed. A. Fröhlich, Academic Press, London,
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