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1 Proper Actions and Equivalence

Scott LaLonde asked the following question. “If two second countable groupoids are
equivalent, must the space implementing the equivalence be second countable.” This
question is not addressed in the basic papers on the subject, although a “yes” answer
seems to have implicitly been assumed in a number of instances. Fortunately, the
answer is yes. This is a consequence of the following theorem.

Theorem 1.1. Suppose that G is a second countable, locally compact Hausdorff
groupoid acting freely and properly on a locally compact space P such that the or-
bit space G\P is second countable. Then P is second countable.

Remark 1.2 (Necessary Hypotheses). I am certain that we should be able to replace
“Hausdorff” with “locally Hausdorff”, but have not pursued that as yet. My gut
tells me that we also should be able to drop “free” and even “proper”, but the proof
below makes significant use of both. In fact, I had to work a bit to find even the
solution given here. Nevertheless, I feel that this is not “the right” proof. I would
most definitely appreciate seeing any “better” proofs — even in the special cases of
group actions or even for group extensions (see Corollaries 1.6 and 1.7).

Of course, we get an answer to Scott’s question as an immediate corollary.
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Corollary 1.3. Suppose that P implements an equivalence between two second count-
able groupoids. Then P is second countable.

We need some preliminaries. We’ll write π : P → G\P for the orbit map.

Lemma 1.4. If P is a free and proper G-space with G and G\P second countable,
then P is σ-compact. If fact, if U ⊂ G(0) is open, then r−1

P (U) is σ-compact.

Proof. It suffices to prove the second statement. Since G\P is second countable and
locally compact, it is σ-compact. Say G\P =

⋃

Cn with each Cn compact. Since
the orbit map is continuous and open, there is a compact set Kn ⊂ P such that
π(Kn) = Cn. Since G is σ-compact, so is r−1

G (U) ⊂ G. Hence,

r−1
P (U) =

⋃

r−1
G (U) ·Kn

is σ-compact as claimed.

The next lemma is key. Unfortunately, is strongly uses the properness and the
freeness of of the action. We’ll adopt Palais’s notation so that if K is a subset of P ,
then

(K,K) := {x ∈ G : x ·K ∩K 6= ∅ }.

Lemma 1.5. Given p ∈ P and a neighborhood V of r(p) in G, there is pre-comapct
open neighborhood W of p such that

(W,W ) ⊂ V.

Proof. If no such neighborhood exists, then for every pre-compact open neighborhood
W of p there is xW /∈ V and pW ∈ W such that xW · pW ∈ W . Clearly both the nets
{pW} and {xW · pW} converge to p. The freeness and properness of the action forces
xW → r(p).1 Of course, that leads to a contradiction as any limit of {xW} must lie
in the (closed) complement of V .

If X is a second countable, locally compact Hausdorff space, then we’ll call a
countable neighborhood basis {Bn}

∞

n=1 at x a regular neighborhood basis if each Bn

is open and precompact with Bn+1 ⊂ Bn. Of course, if β is a basis for the topology
on X, then β contains a regular neighborhood basis of each point in x.

1If K is a compact neighborhood of p, then eventually {xW } ⊂ (K,K). If the action is proper,
(K,K) is compact. Thus {xW } has a subnet converging to x. But x · p = p forces x = r(p). Now
every subnet of has a subnet converging to r(p), hence the assertion.
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Proof of Theorem 1.1. Let E be a countable collection of pre-compact open sets in G
consisting of those elements of a fixed basis for the topology on G that have nontrivial
intersection with G(0). Then E contains a regular neighborhood basis in G of every
u ∈ G(0). If V ∈ E and p ∈ r−1

P (V ∩ G(0)), then Lemma 1.5 implies there is a
pre-compact open neighborhood W of p such that (W,W ) ⊂ V . But Lemma 1.4
implies that r−1

P (V ∩G(0)) is σ-compact (hence Lindelöf).2 Thus there is a countable
collection DV of pre-compact open sets W that cover r−1

P (V ∩G(0)) with the property
that (W,W ) ⊂ V . Since E is countable, there is a countable collection D of pre-
compact open sets W in P such that given V ∈ E and p ∈ r−1

P (V ∩ G(0)) there is a
W ∈ D such that p ∈ W and (W,W ) ⊂ V . We can even assume that D is closed
under finite intersections.

Let β be a countable basis for G\P . We aim to show that the countable collection
of open sets

U = π−1(B) ∩W

with B ∈ β and W ∈ D is a basis for the topology on P .
To this end, let O be an open neighborhood of p in P . Let {Vn} ⊂ E be a regular

neighborhood basis of r(p) in G, and let {Bn} be a regular neighborhood basis of
π(p) in G\P . Let Wn ∈ D such that p ∈ Wn and (Wn,Wn) ⊂ Vn. Using finite
intersections, we can assume that Wn+1 ⊂ Wn.

Now let
Un := π−1(Bn) ∩Wn.

Note that Un+1 ⊂ Un. It will suffice to see that there is a n ∈ N such that p ∈ Un ⊂ O.
If not, then for each n ∈ N there is

qn ∈ Un \O.

Then {qn} is in the compact set W1. Then there must be a convergent subnet,3 say
{qni

}i∈I converging to q ∈ P \ O. Note that given n ∈ N, there is an i0 ∈ I such
that i ≥ i0 implies ni ≥ n. Hence π(q) ∈ Bn for all n. That forces π(q) = π(p).
Therefore q = x · p for some x 6= r(p) (since q 6= p). But then there is a m such that
x /∈ Vm. But as above, then qni

are eventually in Wm. Hence q ∈ Wm. But then
x ∈ (Wm,Wm) ⊂ Vm which is a contradiction.

2Recall that a space is called Lindelöf if every open cover has a countable subcover. Clearly,
σ-countable spaces are Lindelöf spaces.

3I haven’t bothered to show that P is first countable yet — hence the annoyance of using nets.
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1.1 Some Corollaries and Remaining Questions

Here are some immediate corollaries of Theorem 1.1.

Corollary 1.6. Suppose that G is a second countable, locally compact group acting
freely and properly on a locally compact space P with G\P second countable. Then
P is second countable.

For the definition of a short exact sequence of topological groups, see [Wil07,
Definition 1.51].

Corollary 1.7. Let
e // H // E // G // e (1.1)

be short exact sequence of locally compact groups. Then E is second countable if and
only if H and G are.

However, the assumption of local compactness is not necessary in Corollary 1.7.
We have the following.

Lemma 1.8 ([HR63, II.8.19]). Let (1.1) be an extension of topological groups.4 Then
E is second countable if and only if H and G are.

Proof. We can assume that H is a closed subgroup of E and that G = E/H. If E
is second countable, then H is. Since the quotient map π : E → E/H is continuous
and open, E/H is also second countable.

So assume H and E/H are second countable. It is fairly easy to see that E must
be separable: let {gi} be a set of representatives for a countable dense subset of E/H.
Then if {hi} is a countable dense set in H, consider {gihj}. Therefore to see that E
is second countable, it suffices to see that E is metrizable. But Theorem 2.2 implies
that it suffices to find a countable neighborhood basis for e in E.5

However, just as in the proof of Theorem 1.1, given any open set V in H, there
is a neighborhood W of e in E such that

(W,W ) := { g ∈ E : gW ∩W 6= ∅ } ⊂ V.

4I’m assuming the definition of topological group includes the fact that points are closed and
hence that the groups themselves are Hausdorff. See [Wil07, Definition1.1] and [Wil07, Lemma 1.13].

5The proof of Theorem 2.2 is much better than the standard reference [HR63, Theorem II.8.3]
as it constructs the metric in a very concrete way. The proof of Theorem 2.2 given here is due to
Moore. I took it from class notes.
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(If not, then for every neighborhood W , there is a gW ∈ E and hW /∈ V such that
gW and gWhW both belong to W . Clearly gW → e and gWhW → e. Hence hW → e,
leading to a contradiction.) Thus if {Vn} is a countable neighborhood basis for e in
H, then we can form neighborhoods Wn of e in E such that

(Wn,Wn) ⊂ Vn.

There is no harm in assuming that Vn+1 ⊂ Vn and Wn+1 ⊂ Wn. Now let {Bn} be a
similar neighborhood basis of eH in E/H.

Un := π−1(Bn) ∩Wn.

I claim {Un} is the desired basis of e in E. If not, then there is a neighborhood
U of e in E and a gn ∈ Un \ U for all n. Clearly, π(gn) → eH in E/H. Since π is
open, we can pass to a subnet, {gni

} and find hni
∈ H such that gni

hni
→ e in E.

Now fix n. We eventually have gni
hni

and gni
in Wn. Hence we eventually have

hni
∈ Vn. That is, hni

→ e. But then gni
→ e ∈ U . This is a contradiction and

completes the proof.

2 Separable Metric Groups and Completions

Remark 2.1. Now let (1.1) be a short exact sequence of topological groups with H
and G Polish. Must E be Polish? In [Bro71], Brown claims this is obvious. But
other than seeing that E is second countable and metrizable (by Lemma 1.8), I was
stuck. The purpose of this section is to provide a proof. The material is based on
Cal Moore’s course on topological groups I took back in the late 1970s. The lectures
no doubt were based on [Moo76] where the result appears as Proposition 3. Moore
does attribute the result to Brown.

This is Moore’s version of the standard result in Hewitt & Ross [HR63, Theo-
rem II.8.3]. It is considerably more concrete than their result. In so far as I know,
this construction does not appear in print.

Theorem 2.2. A topological group G is metrizable if and only if there is a countable
base for the topology at e. (Since G is a group, it has a countable base at e if and
only if it is first countable.)

Proof. If G is metrizable, then it is first countable and the result is clear.
Suppose that {Un} is a countable base at e. We can assume U−1

n = Un and that
U3
n+1 ⊂ Un. We let U0 = G.
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Then, for each g ∈ G, define

‖g‖ = inf{ 2−n : g ∈ Un }.

Note that ‖g‖ = 0 if and only if g = e (since
⋂

Un = e), and that ‖g‖ = 2−n if
g ∈ Un \ Un+1. Then let

|g| = inf
{

k
∑

i=1

‖gi‖ : g = g1g2 · · · gk
}

.

I claim that

|gh| ≤ |g|+ |h|, (2.1)

|g| ≤ ‖g‖ and (2.2)

‖g‖ ≤ 2|g|. (2.3)

Equations (2.1) and (2.2) are clear. To establish (2.3), it will suffice to show that
g = g1 · · · gk implies that ‖g‖ ≤ 2

∑k

i=1 ‖gi‖. Of course, we can assume that g 6= e.
This is easy if k = 1, so we proceed by induction. Let k > 1 and assume that the

result holds for products of k − 1 or fewer elements. Let

a :=
k

∑

i=1

‖gi‖.

Let l be the largest index such that
∑l

i=1 ‖gi‖ ≤ a/2. (Note: we could have l = 0 if
‖g1‖ > a/2.) Anyway, we have

a =
l

∑

i=1

‖gi‖+ ‖gl+1‖+
k

∑

i=l+2

‖gi‖.

Using the induction hypotheses,

∥

∥

l
∏

i=1

gi
∥

∥ ≤ 2
(

l
∑

i=1

‖gi‖
)

≤ a and
∥

∥

k
∏

i=l+2

gi
∥

∥ ≤ 2
(

k
∑

i=l+2

‖gi‖
)

≤ a.

Note that ‖h‖ ≤ a implies that h ∈ Un for all n with a ≤ 2−n. Let n be the largest
integer such that a ≤ 2−n. Then the above forces each of

∏l

i=1 gi, gl+1 and
∏k

i=l+2 gi
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to belong to Un. But U3
n ⊂ Un−1. Hence g =

(
∏l

i=1 gi
)

(gl+1)
(
∏k

i=l+2 gi
)

∈ Un−1.
Hence ‖g‖ ≤ 2a as was to be proved.

Now we define ρ(g, h) = |g−1h|. It is easy to see that ρ is a metric on G. Firstly,
in view of (2.3), ρ(g, h) = 0 implies that ‖g−1h‖ = 0 and that clearly implies g = h.
The triangle inequality follows from (2.1).

It only remains to see that the ρ-topology is the original topological group topol-
ogy. But consider the ρ-ball B := Bρ

2−n(e). If g ∈ Un, then ‖g‖ ≤ 2−n. But then
|g| ≤ 2−n and g ∈ B. But if g ∈ B, then ‖g‖ ≤ 2|g| < 2n−1 and g ∈ Un+1. That is,
Un+1 ⊂ B ⊂ Un and it follows that the topologies are the same.

Example 2.3. If G is discrete, then we can let Un = {e} for all n ≥ 1. Then we get
the “usual” discrete metric: ρ(x, y) = 1− δx,y.

Corollary 2.4. If a topological group G is metrizable, then it admits a left-invariant
(resp., right invariant) metric. With respect to any such metric, a sequence {gi} is
Cauchy if and only if given any neighborhood V of e in G there is a N such that
i, j ≥ N implies g−1

i gj ∈ V (resp., gig
−1
j ∈ V ).

Proof. The metric we construct in Theorem 2.2 is left-invariant. But if ρ is any left
invariant metric, then ρ(gi, gj) = ρ(e, g−1

i gj) and the rest follows from this. Pro-
ducing right invariant versions requires only the obvious alterations in the proof of
Theorem 2.2.

Remark 2.5. Note that the criteria mentioned in the above corollary applies to any
left (or right) invariant metric — not just the one we constructed. Furthermore, if
G is not abelain or compact, one can’t expect to always find a bi-invariant metric.6

See [HR63, II.8.18] for criteria for the existence of bi-invariant metrics.

For locally compact groups, the criteria for metrizability has another nice form.
The regularity is crucial — the result is apparently not true without something like
local compactness.

Corollary 2.6. A locally compact group admits a metric if and only if e is a Gδ

subset of G. (Because G is a group, this is equivalent to saying that points in G are
Gδ sets.)

6If G has a bi-invariant metric ρ, then given a neighborhood V of e in G, there is a neighborhood
M of e such that aMa−1 ⊂ V for all a ∈ G. But if G = GL2(R), then given any ǫ > 0 and R > 0,
there are B,A ∈ G such that ‖B − I‖ < ǫ and ‖ABA−1 − I‖ > R.
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Proof. Suppose that there are open sets On such that {e} =
⋂

On. (The other
direction being clear.) By regularity, we can find pre-compact open sets Un such that
e ∈ Un ⊂ Un ⊂ On. There is then no harm in assuming that Un+1 ⊂ Un. Then, in
view of Theorem 2.2, we just have to see that {Un} is a basis at e. Let U be any
neighborhood of e. If no Un is contained in U , then pick gn ∈ Un \U . Since all the gn
are in the compact set U1, we have a convergent subnet {gni

} converging to g /∈ U .
But the gni

are eventually in the closure of each Un. Hence g =
⋂

On = {e} which is
a contradiction.

Lemma 2.7. Let (G, ρ) be a metric group equipped with a left-invariant metric. If
{xi} and {yi} are Cauchy sequences, then so is {xiyi}.

Proof. Let V be a symmetric neighborhood of e. As in Corollary 2.4, we need to find
N such that i, j ≥ N implies y−1

i x−1
i xjyj ∈ V . Let U be a symmetric neighborhood

of e such that U3 ⊂ V . Let M be such that i, j ≥ M implies y−1
i yj ∈ U . We have

y−1
i x−1

i xjyj = (y−1
i yM)(y−1

M x−1
i xjyM)(y−1

M yj). (2.4)

Let M ′ be such that i, j ≥ M ′ implies x−1
i xj ∈ yMUy−1

M . Then if i, j ≥ N =
max{M,M ′ } we have the right-hand side of (2.4) in U3 ⊂ V as required.

Let ρ be a left-invariant metric. Unfortunately, examples show that if {gn} is
ρ-Cauchy, then {g−1

n } need not be ρ-Cauchy (see [Num80, Example 4]). Of course
that same is true for right invariant metrics λ.7 This means we’ll want to work
with symmetric metrics of the form σ = ρ + λ where ρ is left-invariant and λ is
right-invariant. Then we get the following as an easy consequence of Corollary 2.4.

Lemma 2.8. Let σ = ρ+ λ be the a symmetric metric on G. Then a sequence {gn}
is σ-Cauchy if and only if given a neighborhood V of e in G, there is a N such that
i, j ≥ N implies both g−1

i gj ∈ V and gig
−1
j ∈ V . In particular, if {gi} is σ-Cauchy,

then so is {g−1
i }.

At this point, we fix a symmetric metric σ = ρ+λ. Now we let (G, s) be the metric
space completion of (G, σ) (see [Wil70, Theorem 24.4]). Recall that the elements of
G are equivalence classes a = [an] of σ-Cauchy sequences (an) in G where (an) ∼ (bn)
if limn σ(an, bn) = 0. Then s(a, b) = limn σ(an, bn) is a well-defined complete metric
on G. (In particular, the limit exists.) There is an obvious topological embedding
k : G → G sending g ∈ G to the constant sequence. (In fact, the embedding is
isometric!) If g = (gn), then k(gn) → g in G.

7Of course, I got the notation backwards, but I’m not switching now.
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If V is a neighborhood of e in G, then let

DG
V := { (x, y) ∈ G×G : x−1y ∈ V and xy−1 ∈ V }.

A function f : G → H is said to be uniformly continuous with respect to the
symmetric metrics if given a neighborhood W of e in H, there is a neighborhood V
of e in G such that (x, y) ∈ DG

V implies
(

f(x), f(y)
)

∈ DH
W .

Theorem 2.9. Let G be the completion of G as above. Then G is a group with
respect to the operations a · b = [anbn] and (a)−1 = [a−1

n ]. Furthermore, G is dense
in G and if j : G → H is any homomorphism into a complete metric group which
is uniformly continuous with respect to the symmetric metrics on G and H, then
there is a unique continuous homomorphism j̄ : G → H extending j. In fact, if j is
any uniformly continuous function from G to H, then there is a unique continuous
extension j̄.

Lemma 2.10. The group operations are well defined.

Proof. The operations are well-defined once we observe that the product given by
Lemma 2.7 and the inverse given by Lemma 2.8 respect equivalence classes. (I didn’t
check this carefully.) �

Lemma 2.11. Multiplication is continuous on G.

Proof. Since a σ-Cauchy sequence is also ρ-Cauchy and λ-Cauchy, we can equally
well define ρ and λ. In fact, σ = ρ + λ. By symmetry, it will suffice to see that
multiplication is ρ continuous. Suppose that an → a and bn → b. We need to see
that

ρ(anbn, ab) = lim
k→∞

ρ(an,kbn,k, akbk)

tends to zero with n. Thus given any neighborhood V of e in G it will suffice to see
that there is a NV such that n ≥ NV implies that

b−1
n,ka

−1
n,kakbk (2.5)

is k-eventually in V .
Let U be a neighborhood of e in G such that U4 ⊂ V . Since {bk} is ρ-Cauchy,

there is a M such that k,m ≥ M implies that b−1
m bk ∈ U . Since bn → b, there is a

N1 such that n ≥ N1 implies that b−1
n,kbk is k-eventually in U . Similarly, there is N2

such that n ≥ N2 implies that a−1
n,kak is eventually in bMUb−1

M .
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Now if n ≥ N := max{N1, N2 }, then there is a K ≥ M such that k ≥ K implies
that

b−1
k bM , b−1

M bk, b
−1
n,kbk ∈ U and a−1

n,kak ∈ bMUb−1
M .

But then (2.5) is equal to

(b−1
n,kbk)(b

−1
k bM)(bMa−1

n,kakbM)(b−1
M bk) ∈ U4 ⊂ V.

This completes the proof.

Lemma 2.12. Inversion is continuous on G.

Proof. It is not hard to see that limn ρ(bn, b) = 0 if and only if limn λ(b
−1
n , b−1). This

suffices.

Proof of Theorem 2.9. We now have continuous well-defined operations. To see that
G is indeed a topological group, we proceed as follows. Note that the maps (x, y, z) 7→
(xy)z and (x, y, z) 7→ x(yz) agree on the dense set G×G×G. Hence they agree on
G×G×G. Similarly e[a] = [a]e = [a], etc.

We still need to see the universal property holds. Let j : G → H be a uniformly
continuous map into a complete metric group H. By Proposition 2.13, the symmetric
metric is complete on H. But if [an] ∈ G, then the uniform continuity of j implies
that {j(an)} is Cauchy in H with respect to any symmetric metric. Hence the limit,
limn j(an) exists. We simply define j̄([an]) = limn j(an). This map obviously extends
j and is a homomorphism if j is. We just have to prove continuity.

Suppose that gn → g in G. Let hn = j̄(gn) and h = j̄(g). It will suffice to
show that given a neighborhood U of e in H, there is a N such that n ≥ N implies
hnh−1 ∈ U . Let V be a neighborhood of e in H such that V 3 ⊂ U . Since j is
uniformly continuous there is a neighborhood W of e in G such that xy−1 ∈ W
implies that j(x)j(y)−1 ∈ V . Since, by assumption,

lim
n→∞

lim
k→∞

σ(gnk , gk) = 0,

there is aN such that n ≥ N implies there isKn such that k ≥ Kn implies gnkg
−1
k ∈ W .

Now if n ≥ N , we can find K ≥ Kn such that hnj(gnk ) ∈ V and j(gk)h
−1 ∈ V . But

then
hnh−1 =

(

hnj(gnk )
−1
)(

j(gnk )j(gk)
−1
)(

j(gk)h
−1
)

∈ V 3 ⊂ U.

This completes the proof once we prove the following assertion.

The key observation for the proof of Brown’s assertion that the extension of Polish
groups is Polish is the following. In fact, this in essence is [Moo76, Proposition 1].
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Proposition 2.13. If G is a polish group, then G is complete with respect to any
symmetric metric σ.

Remark 2.14. In other words, G admits a complete metric if and only if σ is already
complete. Moore introduces this8 at the very beginning of [Moo76] — it is the content
of his Proposition 1. However, as proof, he merely cites [Kel55, p. 211]. However,
if you bother to look up [Kel55, p. 211] there is just the statement without proof
(on page 212). Fortunately, Kelly cites [Kle52]. Unfortunately, Klee doesn’t actually
prove the statement Kelly gives. But Klee does prove something similar for bi-
invariant metrics; a responsible reference would say that Klee’s proof for bi-invariant
metrics carries over to symmetric metrics quite easily.

The proof relies on some basic topological category stuff. Note that any subset
of a first category subset of a space is itself of first category of the total space.

Lemma 2.15. Suppose that G is a second category topological group and that H is
a subgroup. Then the complement of H in G is either empty or of second category in
G. In particular, if H is a dense Gδ-subset of G, then H = G.

Proof. Let HC be the complement of H in G. Suppose there is a g ∈ HC . Then
gH ⊂ HC . Thus if HC is of first category in G, then so is gH. Hence H is of first
category as is G = H ∪HC . This proves the first assertion.

If H =
⋂

∞

i=1 Oi with each Oi dense and open, then G \ Oi is closed and nowhere
dense. But the complement of H is the union of these sets. Hence the complement
is of first category. Now the second assertion follows from the first.

Proof of Proposition 2.13. Let (G, s) be the completion of (G, σ). By Theorem 2.9,
we can view G is a metric group containing G as a dense subset. (The embedding of
G into G is isometric so G is homeomorphic to its image in G.) Since G is completely
metrizable, it is a Gδ subset of G by [Wil70, Theorem 24.12]. Hence Lemma 2.15
implies that G = G. This says that σ was complete to begin with.

Corollary 2.16. Let G and H be Polish groups and ϕ : H → G a continuous
injection. Then ϕ(H) is closed in G if and only if ϕ is a homeomorphism onto its
range. More generally, if ϕ : H → G is a homeomorphism onto its range and H is
Polish, then ϕ(H) is closed (even if G is not).

8To be precise, Moore defines a second countable group be Polish if σG is complete. His [Moo76,
Proposition 1] is just the statement that he could have used the usual definition.

11



Proof. If ϕ(H) is closed, then ϕ(H) is Polish. Hence ϕ is a Borel isomorphism (see
[Arv76, §3]), and ϕ−1 is a Borel homomorphism and therefore continuous [Wil07,
Theorem D.11].

Now it suffices to prove the second assertion. If ϕ is a homeomorphism onto
its range, then ϕ(H) is complete with respect to the metric inherited from H. But
Proposition 2.13, it is also complete in the symmetric metric σ = σϕ(H). Suppose
hn → g in G with each hn ∈ ϕ(H). Then {hn} is clearly Cauchy with respect to σ.
Hence g ∈ ϕ(H) and the latter is closed as required.

Remark 2.17. The second part of Corollary 2.16 asserts that Polish groups are what
used to be called absolutely closed (see [Num80] for more on this).

Theorem 2.18. Let

e // H i // E
j

// G // e

be a short exact sequence of topological groups. Then E is Polish if and only if H
and G are.

Proof. If E is Polish, then we can identify H with a closed subgroup of E. Hence H
is Polish. It turns out that showing E/G is Polish is actually hard. Moore attributes �
it to a preprint of Brown’s in [Moo76, Proposition 3]. Brown’s pre-print referenced
by Moore never made in into print as titled, but the result does seem to be implicit
in [Bro72]. However, as near as I can tell, Brown merely refers to an old result of
Hausdorff in [Hau34]. Sadly the paper is in German and no specific reference is given.
I’m told it says that if f : X → Y is a continuous, open, surjection of a completely
metrizable space onto a metrizable space, then the later is completely metrizable.
(Of course, that suffices. But I haven’t sorted the details out — far from it.) In
[Moo76, Proposition 3], Moore claims that if E is abelian and if d is a complete
metric on E, then one gets a complete metric on E/G via d̄(xH, yH) = d(xH, yH) =
inf{ d(x′, y′) : x′ ∈ xH and y′ ∈ yH }.9

Now assume H and G are Polish. We know from Lemma 1.8 that E is second
countable. Hence we can equip it with our symmetric metric and form its completion
E as above. Note that E is Polish.

Let k : E → E be the natural injection. Note that j : E → G is uniformly
continuous for the symmetric metrics: let V be a neighborhood of e in G. Let

9The only issue is completeness. It is not hard to see that d̄ is always a peudo-metric on G/H
— see [HR63, II.8.14] for the proof that the triangle inequality holds. To get a metric, it necessary
to assume that convergence in d implies convergence in the right-invariant metric λ on G. (This is
the case for us, as we can use the symmetric metric σ = ρ+λ.) Then if d̄(xH,H) = 0, we also have
λ(xH,H) = λ(x,H) =, and x ∈ H.
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DG
V = { (x, y) ∈ G × G : x−1y ∈ V and xy−1 ∈ V }. Let W = j−1(V ) and consider

DE
W = { (f, g) ∈ E × E : f−1g ∈ W and fg−1 ∈ W }. Clearly if (f, g) ∈ DE

W , then
(

j(f), j(g)
)

∈ DG
V . This shows j is uniformly continuous; hence j has an extension

j̄ : E → G.
Then we have a commutative diagram

E
j̄

''❖
❖

❖

❖

❖

❖

❖

❖

❖

❖

❖

❖

❖

❖

❖

e // H i //

i′

77

E

k

OO

j
// G // e,

where i′ := k ◦ i.
Let H = ker j̄. Suppose that h = [gn] ∈ ker j̄ = H. Then j(gn) → eG in G. Since

j is open, after passing to a subsequence and relabeling, there are kn ∈ E such that
kn → eE in E and j(kn) = j(gn). Then each k−1

n gn ∈ i(H) and k
(

k−1
n gn

)

→ h in E.
Thus i′(H) is dense in H. But i′ is a homeomorphism onto its range (since both i
and k are). Therefore i′(H) is closed in E by Corollary 2.16. Hence i′(H) = H. Now
if g ∈ E, there is a g ∈ E such that j(g) = j̄(g). Thus k(g)i′(h) = g for some h ∈ H.
But then k(gh) = g and k is onto. Thus E is complete.
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