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1 The Picard Theorems

This discussion is taken from the first few chapters of Steven Krantz’s Carus mono-
graph “Complex Analysis: The Geometric Viewpoint” [Kra90]. Krantz’s point is
that by applying simple geometric techniques, the nasty analytic proofs of the Picard
Theorems — which I’ve never been through — have elegant geometric analogues.
Unfortunately, I don’t have the time or expertise to put the proper motivation here.
(See the full exposition in [Kra90] for a start.)

As a computation tool, we introduce the operators on continuously differentiable
functions from R2 to itself:1

∂

∂z
=

1

2

( ∂

∂x
− i

∂

∂y

)

and
∂

∂z̄
=

1

2

( ∂

∂x
+ i

∂

∂y

)

.

1We are not requiring these functions to be holomorphic. In particular, we’ll want to apply these
to real-valued functions such as harmonic functions.
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Of course, here, we view R2 as the complex plane. The Cauchy-Riemann equa-
tions tell us that if D is a domian, then ∂

∂z̄
f = 0 on D if and only if f is holomorphic

on D. On the other hand, if f ∈ H(D), then ∂
∂z
f = f ′. These operators are linear

and obey the usual product rule. With a little bit of work, you can show that they
act on polynomials in z and z̄ exactly as you’d expect from the notation. But the
chain rule is surprisingly complicated.

Proposition 1.1 ([Kra90, Proposition 1.2.1]). Suppose that f and g are continuously
differentiable such that f ◦ g is well-defined on a domain D. Then for all z ∈ D,

∂

∂z
(f ◦ g)(z) = ∂f

∂z

(

g(z)
)∂g

∂z
(z) +

∂f

∂z̄

(

g(z)
)∂ḡ

∂z
(z)

and

∂

∂z̄
(f ◦ g)(z) = ∂f

∂z

(

g(z)
)∂g

∂z̄
(z) +

∂f

∂z̄

(

g(z)
)∂ḡ

∂z̄
(z).

Proof. As in [Kra90], we simply use ∂
∂z
(f ◦ g) = 1

2

(

∂
∂x

− i ∂
∂y
)(f ◦ g) and then simplify

using ∂
∂x

= ∂
∂z

+ ∂
∂z̄

and ∂
∂y

= i
(

∂
∂z

− ∂
∂z̄
).

Lemma 1.2. If either f or g is holomorphic, then

∂

∂z
(f ◦ g)(z) = ∂f

∂z

(

g(z)
)∂g

∂z
(z).

As an example of the utility of these operators, we note that the Laplace operator
satisfies

∆ :=
∂2

∂x2
+

∂2

∂y2
= 4

∂

∂z

∂

∂z̄
= 4

∂

∂z̄

∂

∂z
.

Remark 1.3 (Harmonic Functions). Recall that a twice continuously differentiable
function u : D → C is called harmonic if ∆(u) = 0.

Lemma 1.4. Suppose that h is holomorphic on D and f ◦ h is defined on D. Then

∆(f(h(z)) = ∆(f ◦ h)(z) = |h′(z)|2∆(f)
(

h(z)
)

.

Proof. Well, since h is holomorphic we can apply Lemma 1.2 to conclude that

∆(f ◦ h)(z) = 4
∂

∂z̄

∂

∂z
(f ◦ h)(z)

= 4
∂

∂z̄

(∂f

∂z
(h(z))h′(z)

)
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which, by the product rule, is

= 4
( ∂

∂z̄

(∂f

∂z
◦ h

)

(z)h′(z) +
∂f

∂z
(h(z))

∂h′

∂z̄
(z)

)

which, since h′ ∈ H(D), is

= 4
( ∂

∂z̄

(∂f

∂z
◦ h

)

(z)h′(z) + 0
)

which, using the chain rule formula for ∂
∂z̄
, is

= 4
(( ∂

∂z̄

∂

∂z
(h(z))

∂h

∂z̄
(z) +

∂

∂z̄

∂f

∂z
(h(z))

∂h̄

∂z̄
(z)

)

h′(z)
)

= 4
(

0 +
∂

∂z̄

∂f

∂z
(h(z))h′(z)

)

h′(z)
)

= ∆(f)(h(z))|h′(z)|2

1.1 Metrics and Curvature

We will refer to a nonzero real-valued function on a domain D as a metric on D.
(The motivation for this terminology is carefully explained in [Kra90].) Although
we don’t really need to know, the odd terminology comes from the following. Let
γ : [a, b] → D be a path in D. (Here as is usual in the subject, as path is denotes a
piecewise smooth function γ : [a, b] → D.) If σ is a metric on D, then we define

Lσ(γ) :=

∫ b

a

σ(γ(t))|γ′(t)| dt.

Thus if σ is the Euclidean metric σ ≡ 1, then Lσ(γ) = L(γ) is just the usual Euclidean
length of γ. To get a bona fide metric from our “metric” σ, we define

dσ(p, q) = inf{Lσ(γ) : γ is a path in D from p to q }.

It is an amusing exercise to see that in the case of the Euclidean metric, d(p, q) =
|p − q|. In general, computing dσ can be difficult as is the question of whether this
is a minimal path γ from p to q such that dσ(p, q) = Lσ(γ). Here we’ll just settle for
the observation that dσ is a metric on D.

If σ is a metric on D′ and f : D → D′ is continuously differentiable, then we
define the pull-back metric on D to be f ∗σ where

f ∗σ(z) = σ(f(z))
∣

∣

∣

∂f

∂z
(z)

∣

∣

∣
.
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If f : D → D′ is holomorphic, so that in particular ∂f

∂z
(z) = f ′(z), then a straightfor-

ward calculation shows that

Lf∗σ(γ) = Lσ(f ◦ γ).

Therefore,
dσ(f(p), f(q)) ≤ df∗σ(p, q).

Remark 1.5 (Be Carefull). Actually, f ∗σ is only a metric (that is, nonzero) on the
subset of D where ∂f

∂z
(z) 6= 0 and σ(f(z)) 6= 0.

We worry about zeros of our metrics because the key tool here is the curvature
of one of our metrics.

Definition 1.6. Let ρ be a metric on D. Then the curvature of ρ on D is given by

κ(D,ρ)(z) :=
−∆

(

ln(ρ)
)

(z)

ρ(z)2
.

Remark 1.7. It is not so easy to see the geometric significance of “curvature” as
defined above. Even Krantz punts on trying to motivate it. But as we shall see, it is
indeed a useful concept — especially for our purposes here.

Example 1.8. If ρ(z) = 1 for all z, then κρ(z) = 0 for all z. That is, Euclidean space
is not curved.

Lemma 1.9. Let D = Br(0) be the ball of radius r > 0 centered at the origin. Let

ρr(z) =
r

r2 − |z|2 .

Then ρr has constant curvature −4. In particular, the Poincaré metric

ρ(z) =
1

1− |z|2

on the unit disk has constant curvature −4.

Proof. We compute as follows:

−∆(ln(pr))(z) = ∆
(

ln(r2 − zz̄)
)

= 4
∂

∂z

∂

∂z̄

(

ln(r2 − zz̄)
)
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= 4
∂

∂z

( −z

r2 − zz̄

)

= 4
((−1)(r2 − zz̄)− (−z)(−z̄)

(r2 − zz̄)2

)

=
−4r2

(r2 − zz̄)2
.

The result follows (together with the observation that the Poincaré metric is ρ1).

It is not hard to check that if σ is the metric obtained from ρ by multiplication
by α, then κσ(z) = α2κρ(z). Hence, if A > 0, then we can get a metric of constant
curvature −A on D = Br(0) via

ρAr =
2r√

A(r2 − |z|2)
.

1.2 The Schwartz Lemma

The Schwartz Lemma that arises in most undergraduate courses says that if f : U →
U is holomorphic (where U = { z : |z| < 1 }) and f(0) = 0, then |f(z)| ≤ |z| for
z ∈ U and |f ′(0)| ≤ 1.

The genius of Ahlfors and the enlightening exposition of Krantz tells us the fol-
lowing is a generalization of the Schwartz Lemma. Furthermore, it is the key to the
proofs of the Picard theorems.

Theorem 1.10 ([Kra90, Theorem 2.1.4]). Suppose that D is domain equipped with a
metric σ whose curvature is bounded above by −B for some B > 0. If f : Br(0) → D
is holomorphic, then

f ∗σ(z) ≤
√
A√
B
ρAr (z) for all z ∈ Br(0).

Before proceeding with the proof and seeing why we would care about this result,
I’d like to take a moment to see what it is a generalization of the Schwartz Lemma.
We specialize to the case r = 1 and f : U → U is a holomorphic function from the
unit disk U = { z : |z| < 1 } to itself. We also let σ be the Poincare metric. Then the
conclusion of Theorem 1.10 is that

f ∗ρ(z) ≤ ρ(z) for all z ∈ U.
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Then plugging 0 into
|f ′(z)|

1− |f(z)|2 ≤ 1

1− |z|2 ,

gives us |f ′(0)| ≤ 1 even without the classical assumption that f(0) = 0. Fur-
thermore, as observed above, f must also be dρ-distance reducing. As I’ll show in
Section 1.7 on page 18,

dρ(0, z) =
1

2
ln
(1 + |z|
1− |z|

)

. (1.1)

Then, using f(0) = 0, we have dρ(0, f(z)) ≤ dρ(0, z). Since x 7→ ln(1+x
1−x

) is increasing,
we get |f(z)| ≤ |z|.2

For the proof of our genearlized Schwartz Lemma (Theorem 1.10), we do need
the observation in the next lemma.3 Note that it does require some nasty chain rule
calculations.

Lemma 1.11. Suppose that f : D → D′ is holomorphic and that ρ is a metric on
D′. Suppose that ρ ◦ f and f ′ never vanish on D. Then

κ(D,f∗ρ)(z) = κ(D′,ρ)(f(z)).

Proof. We simply calculate using ln(f ∗ρ(z)) = ln
(

ρ(f(z)
)

+ ln(|f ′(z)|),

κf∗ρ(z) =
−∆(ln(ρ(f(z))))−∆(ln(|f ′(z)|))

(

ρ(f(z))|f ′(z)|
)2

which, since ln(|f ′(z)|) is harmonic, is

=
−∆(ln(ρ(f(z))))

ρ(f(z))2|f ′(z)|2

which, by Lemma 1.4, is

=
−∆(ln(ρ))(f(z))

ρ(f(z))2

= κρ(f(z)).

2Note that if there is a z0 ∈ U such that |f(z0)| = |z0|, then the Maximum Modulus Theorem
implies that f is a rotation: f(z) = eiθz. (This is also usually part of the Schwartz Lemma in
undergraduate courses.) It’s also true that f is a rotation if |f ′(0)| = 1. But I don’t see how to
show that yet.

3If you believe the curvature really does measure the geometry, and your recall that holomorphic
maps are conformal on domains where their derivative doesn’t vanish, then the result is not very
surprising.
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Proof of Theorem 1.10. Let 0 < r′ < r and let

ν(z) =
f ∗σ(z)

ρAr′(z)
.

Then ν is continuous and ν(z) > 0 for z ∈ Br′(0). Since |ρAr′(z)| → ∞ as |z| ր r′, it
follows that ν(z) → 0 as |z| ր r′. Hence ν attains a maximum value, Mr′ at a point

τ ∈ Br′(0). If we can show that Mr′ ≤
√
A√
B
, then letting r′ ր r, we can conclude that

f∗σ

ρAr
≤

√
A√
B
and we’re done.

If f ∗σ(τ) = 0, then ν ≡ 0 and we have nothing to show. So we can assume that
f ∗σ(τ) > 0. Then κf∗σ is defined near τ . In particular, the hypotheses of Lemma 1.11
are met and so our hypotheses imply that

κf∗σ(τ) = κσ(f(τ)) ≤ −B.

On the other hand, z 7→ ln ν(z) has a maximum at τ . By the second derivative test,

0 ≥ ∆(ln(ν))(τ)

= ∆(ln(f ∗σ))(τ)−∆(ln(ρAr′))(τ)

= −κf∗σ(τ) · (f ∗σ(τ))2 + κρA
r′
(τ) · (ρAr′(τ))2

≥ B · (f ∗σ(τ))2 − A · (ρAr′(τ))2.

Hence

f ∗σ(τ) ≤
√
A√
B
ρAr′(τ).

Thus Mr′ ≤
√
A√
B
as required.

1.3 The Little Picard Theorem

To see what our Theorem 1.10 on page 5 has to do with entire functions, we have
the following.

Theorem 1.12. Let D be a domain that admits a metric σ with negative curvature
κσ bounded away from 0. (That is, κσ(z) ≤ −B < 0 for all z ∈ D.) Then any entire
function f with f(C) ⊂ D must be constant.
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Proof. Let σ be a metric on D with κσ(z) ≤ −B < 0 for all z ∈ D. Fix z ∈ C. Fix
r > |z| and consider f : Br(0) → D. Then for any A > 0, Theorem 1.10 implies that

f ∗σ(z) ≤
√
A√
B
ρAr (z) for all z ∈ Br(0).

But this holds for all r > |z| and limr→∞ ρAr (z) = 0, so f ∗σ(z) ≤ 0. But this just
means f ∗σ(z) = 0. But this only holds if f ′(z) = 0. But z was arbitrary. Hence f is
constant.

Of course if f where a bounded entire function, then its range would be included
in a disk D = BR(0). Since the latter admits metrics of constant negative curvature,
we see that the classic Liouville Theorem is a consequence of Theorem 1.12.

On the other hand, the exponential function z 7→ to = ez has range contained in
C \ {0}. So we can conclude that neither D = C \ {0} nor D = C admit a metric
with negative curvature bounded away from 0.

We now come to the crux of the matter.

Lemma 1.13. Let D be a domain whose complement in C contains at least two
points. Then D admits a metric σ such that

κσ(z) ≤ −B < 0 for all z ∈ D.

Remark 1.14. Of course, given such a µ, we can multiply µ by a positive scalar so
that we can take B as large as we like.

The proof is very unsatisfying. It consists of writing down a metric and checking
that its curvature is negative and bounded away from 0. However, once we do that,
we obtain our goal.

Theorem 1.15 (The Little Picard Theorem). Let f be an entire function whose
range omits at least two points. Then f is constant.

Ok, time to pay the piper.

Proof of Lemma 1.13. Let z1 and z2 be distinct points in the complement of D. Let
C0,1 := C \ {0, 1} and define f : D → C0,1 by

f(z) =
z − z1
z2 − z1

.

In view of Lemma 1.11, it will suffice to produce a metric µ on C0,1 such that
κµ ≤ −B < 0 and pull-back via f .
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Krantz gives some motivation for our choice of µ in a short remark on page 80 of
[Kra90], but here we’re just going to write it down and calculate. Let

µ(z) :=
((1 + |z| 13 ) 1

2

|z| 56
)

·
((1 + |z − 1| 13 ) 1

2

|z − 1| 56
)

.

Recall that u(z) = ln(|z|) is harmonic. Hence ∆(αu(z)) = ∆(ln(|z|α)) = 0 for
α > 0. Hence we can calculate

∆
(

ln
((1 + |z| 13 ) 1

2

|z| 56
))

=
1

2
∆
(

ln(1 + |z| 13 )
)

= 2
∂

∂z

∂

∂z̄

(

ln(1 + |z| 13 )
)

which, after some work, is

=
1

18

1

|z| 53 (1 + |z| 13 )2
.

Similarly,

∆
(

ln
((1 + |z − 1| 13 ) 1

2

|z − 1| 56
))

=
1

18

1

|z − 1| 53 (1 + |z − 1| 13 )2
Consequently,

κµ(z) =
−∆

(

ln(µ)
)

(z)

κµ(z)2

= − 1

18

( |z − 1| 53
(1 + |z| 13 )3(1 + |z − 1| 13 )

)

+
( |z| 53
(1 + |z| 13 )(1 + |z − 1| 13 )3

)

.

Now observe that

(a) κµ(z) < 0 for all z ∈ C0,1.

(b) lim
z→0

κµ(z) = − 1

36
.

(c) lim
z→1

κµ(z) = − 1

36
and

(d) lim
z→∞

κµ(z) = −∞.

In view of (b) and (c), we can view κµ as a continuous function on C. In view of (a)
and (d), the function must attain its minimum. Hence the result.
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1.4 Normal Families

While our goal is The Great Picard Theorem, this path takes us through normal
families. I’ll follow [Kra90] and say that a sequence {fk} of complex-valued functions
on a domain D converges normally to a function f on D if fk → f uniformly on all
compact subsets of D. The sequence {fk} is compactly divergent on D if fk diverges
to infinity uniformly on compact subsets of D.

Definition 1.16. Let D be a domain. A family F of complex-valued functions on
D is called a normal family on D if every sequence if F has a subsequence which is
either normally convergent or compactly divergent.

Remark 1.17. This isn’t quite the same as defined in, for example, [Rud87, Chap. 14]
— the option for compact divergence is not usually included. The current definition
will make it easier to work on the Riemann sphere, and will obviously be necessary
for our generalizations of Montel’s Theorem: compare Theorem 1.18, Remark 1.19
and Theorem 1.28 on page 15.

Normal families usually arise via Montel’s Theorem:

Theorem 1.18 (Montel — [Rud87, Theorem 14.6]). Suppose that D is a domain
and F ⊂ H(D). If F is uniformly bounded on compact subsets of D, then F is a
normal family.

Remark 1.19. Note that in this case, no subsequence of F can be compactly di-
vergent. Hence every sequence in F has a normally convergent subsequence. The
proof just amounts to a clever argument showing that F is equicontinuous. Since
F is obviously pointwise bounded, we can apply Arzela-Ascoli. For the details, see
Section 1.6 on page 16.

Now we want to introduce the Riemann sphere, C+, into the mix. Rather than
think ofC+ as S2, in these notesC+ is meant to denote the one-point compactification
ofC.4 Recall that a function on a domainD is calledmeromorphic if it is holomorphic
on D with the possible exception of poles (necessarily isolated). Clearly we can view
a meromorphic function on D as a function from D to C+.

4ThusC+ is the compact Hausforff spaceC∪{∞} whereC is open and U is an open neighborhood
of ∞ if and only if C+ \ U is compact in C.
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1.4.1 The Spherical Metric

When working with Meromorphic functions, it seems to be very useful to consider
the spherical metric on C is given by

τ(z) =
2

1 + |z|2 .

Remark 1.20. Although we don’t need it, I’ll show in Section 1.7 on page 18 that

dτ (z, w) = 2 arctan
( |z − w|
|1− z̄w|

)

. (1.2)

(I found it much harder to verify this than Krantz seems to suggest in the text.) I’ll
also verify that dτ (p, q) is the “great circle distance” from P ′ and Q′ on the Riemann
sphere where P ′ and Q′ are the images of p and q on the Riemann sphere, respectively.

I’d like to extend dτ to C+. We say that a path from z ∈ C to ∞ ∈ C+ is a
peicewise smooth function γ : [0, 1) → C such that γ(0) = z and limtր1 |γ(t)| = ∞.5

A path from ∞ to z is defined similarly. For example, if z ∈ C \ {0}, then let
γ(t) = z

1−t
. Then γ : [0, 1) → C is a path from z to ∞ and

dτ (z,∞) ≤ Lτ (γ) =

∫ 1

0

2|z|
(1− t)2 + |z|2 dt ≤

2

|z| .

Hence we can define dτ (∞, z) and dτ (z,∞) exactly as above. In particular, for
convenience down the road, we can allow paths that “pass through ∞” in the obvious
sense.6 It is fairly clear that dτ is finite on C+ and that it is a metric on C+.7

Notice that dτ (z, w) ≤ 2|z − w|. Hence the map z 7→ z from C ⊂ C+ to the
metric space (C+, dτ ) is continuous. But if zn → ∞ in C+, then by the above
dτ (zn,∞) ≤ 2

|zn| and it follows that the identity map from C+ to (C+, dτ ) is a
continuous bijection and hence a homeomorphism.

Definition 1.21. A family F of meromorphic functions on a domain D ⊂ C is
called a normal family if every sequence of elements from F has a subseqence which
is normally convergent in (C+, dτ ).

5Of course, we can use any half closed interval.
6Note that we need only consider curves that pass through ∞ or any other point at most once:

we are interested in distance minimizing curves and can clearly eliminate any loop.
7Using (1.2), we have

dτ (z,∞) = lim
w→∞

dτ (z, w) = 2 arctan(|z|−1).
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Comparing our two definitions of normal family — Definition 1.16 and Defini-
tion 1.21 — should cause annoyance. Nevertheless, we have the following which is
incredibly useful and nontrivial. Krantz does not truly justify it in the book — in
my humble opinion.

Proposition 1.22. Let F be a family of holomorphic functions on a domain D.
Then F is a normal family as in Definition 1.16 if and only if F is a normal family
considered as meromorphic functions as in Definition 1.21.

To prove Proposition 1.22, we’ll need some observations. The first is a classic
application of the Argument Principal.

Lemma 1.23 (Hurwitz’s Theorem). Suppose that fn is a sequence of holomorphic
functions converging normally to f on a domain D. If each fn is zero free, then
either f is zero free or identically zero.

The second is a strange artifact of dτ .
8

Lemma 1.24. With the usual conventions regarding 1/∞ and 1/0, we have

dτ (z, w) = dτ

(1

z
,
1

w

)

for all z, w ∈ C+.

Proof. Let γ be a path from z to w. We can assume that γ passes through 0 or ∞
at most once. Then w(t) = 1/γ(t) is a path and

Lτ (w) =

∫ 1

0

2

1 + |w(t)|2 |w
′(t)| dt =

∫ 1

0

2|γ(t)|2
1 + |γ(t)|2

∣

∣

∣

−1

γ(t)2
γ′(t)

∣

∣

∣ dt

=

∫ 1

0

2

1 + |γ(t)|2 |γ
′(t)| dt

= Lτ (γ).

The result follows.

Lemma 1.25. Let {fn} ⊂ H(D) and let f ∈ H(D). Then fn → f normally in C

with the usual metric if and only if fn → f normally in (C, dτ ).

8Of course, Lemma 1.24 follows from (1.2), but it is nice to have a proof without that overhead.
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Proof. Suppose that fn → f normally with respect to dτ . If the assertion were false,
then there is a compact set K ⊂ D such that fn 6→ f uniformly on K. Thus there is
an ǫ > 0 such that for all n there is a mn ≥ n and a zn ∈ K such that

|fmn
(zn)− f(zn)| ≥ ǫ. (1.3)

We can certainly arrange that mn ≤ mn+1. Since K is compact, we can also assume
that zn → z0 in K. But the uniform convergence of {fmn

} with respect to dτ
implies that fmn

(zn) → f(z0) with respect to dτ . Hence fmn
(zn) → f(z0) in C

which contradicts (1.3).
The other direction is immediate since dτ (z, w) ≤ 2|z − w|.

Lemma 1.26. A sequence {fn} diverges compactly on D if and only if fn → f
normally in (C+, dτ ) where f(z) = ∞ for all z ∈ D.

Proof. Suppose that {fn} diverges compactly. Let K ⊂ D be compact. If fn 6→ f
uniformly on K, then there is an ǫ > 0 such that for all n there is a mn ≥ n, and
zn ∈ K such that dτ (fmn

(zn),∞) ≥ ǫ. But we can assume that zn → z ∈ K and that
mn ≤ mn+1. Hence fmn

(zn) → infty in C. Hence fmn
(zn) → ∞ in (C+, dτ ). This is

contradiction.
Now suppose that fn → f normally and K ⊂ D is compact. If {fn} does not

diverge to infinity uniformly on K, then there is M > 0 such that for all n there is a
mn ≥ n and zn ∈ K such that |fmn

(zn)| ≤ M . But we can assume that zn → z ∈ K
and that mn ≤ mn+1. Hence fmn

(zn) → f(z) = ∞ in (C+, dτ ). But this means
fmn

(zn) → ∞ in C. This is a contradiction.

Proof of Proposition 1.22. Suppose that F is a normal family of holomorphic func-
tions. We want to see that F is a normal family of meromorphic functions. Let {fn}
be a sequence in F . Then {fn} has a subsequence {fnk

} that either converges nor-
mally to a function f ∈ H(D) or diverges compactly. In the first case, Lemma 1.25
implies that fnk

→ f normally in (C+, dτ ). Hence we need to see that if {fnk
} di-

verges compactly, then fnk
→ f normally in C+ where f is the function which is

identically infinite. This is Lemma 1.26.
For the converse, it will suffice to see that if {fn} ⊂ F converges normally to

f in (C+, dτ ) then either f is the constant function f(z) = ∞ and fn is compactly
divergent, or f is holomorphic and fn → f uniformly on K with respect to the usual
metric. In view of Lemma 1.25 on the preceding page, we only have to worry about
the case where f is not everywhere finite valued.

Suppose that f(z0) = ∞. Then f(z) 6= 0 in an open (connected) neighborhood
U of z0. By taking n ≥ N , there is no harm in assuming each fn is zero free in U .
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It follows from Lemma 1.24, then 1/fn → 1/f normally on U with respect to dτ .
Arguing as above, 1/fn → 1/f normally on U with respect to the usual metric. Since
the fn are holomorphic, 1/fn is zero free. Since 1/f has a zero, we see that 1/f is
identically zero in U . Hence the set where f takes the value ∞ is open. It is also
clearly closed. The result follows from Lemma 1.26 on the previous page.

If f is a meromorphic function on D, then we define

f ♯(z) =







2|f ′(z)|
1 + |f(z)|2 if z is not a pole, and

limw→z f
♯(w) otherwise.

Using the fact that if f has a pole at p, then f(z) = g(z)/(z − p)m for some m and
some holomorphic g with g(p) 6= 0, it follows that if f has a pole at p, then f ♯(p)
equals 0 if m ≥ 2 and 2/Res(f ; p) otherwise. In particular, f ♯ is always finite-valued
for any meromorphic function f .

Theorem 1.27 (Marty). Let F be a family of meromorphic functions on a domain
D. Then F is a normal family of meromorphic functions if and only if for each
compact subset K ⊂ D there is a constant MK such that

f ♯(z) ≤ MK for all z ∈ K and f ∈ F .

Proof. First, suppose that MK exist as in the statement of the result. Fix K ⊂ D.
By covering K with closed balls, we can assume that there is a compact set K ⊂ K ′

and δ > 0 so that Bδ(z) ⊂ K ′ for all z ∈ K. In particular, if z, w ∈ K and |z−w| < δ,
then the line segment [z, w] ⊂ K ′. Then f ◦ γ is a path from f(z) to f(w), and

dτ (f(z), f(w)) ≤ Lτ (f ◦ γ) =
∫ 1

0

2

1 + |f(γ(t))|2
∣

∣f ′(γ(t))γ′(t)
∣

∣ dt

=

∫ 1

0

|f ′(γ(t))|
1 + |f(γ(t))|2 |γ

′(t)|

≤ MK′

∫ 1

0

|γ′(t)|

= MK′L(γ) = MK′ |z − w|.

Since MK′ does not depend on f , we seem that F is an equicontinuous family of
functions fromK with the usual metric to the compact metric space (C+, dτ ). Hence a
variation of the usual Arzela-Ascoli Theorem applies — see Theorem 1.32 on page 17.
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Now for the converse, assume F is a normal family of meromorphic functions
on D. Suppose to the contrary, that there is a compact set K ⊂ D such that
{ f ♯ : f ∈ F } is unbounded. Let {fn} ⊂ F be such that ‖f ♯

n‖∞,K ր ∞. By
assumption on F , we can pass to a subsequence, relabel, and assume that there
is a function f such that fn → f normally on D. I claim that each point z ∈ K
has a neighborhood Uz such that f ♯

n → f ♯ normally on Uz. If f(z) 6= ∞, then let
Uz be such that f ∈ H(Uz). Then using basic complex analysis and the proof of
Proposition 1.22, we see that f ′

n → f ′ normally on Ux. The claim follows easily from
this. If f(z) = ∞, then we can choose Uz so that for large n, fn is nonzero. Then
1/fn is homomorphic and 1/fn → 1/f normally (using Lemma 1.24). Thus we can

assume that 1/f ∈ H(Uz). Hence by the above,
(

1
fn

)♯ →
(

1
f

)♯
. But (1

g
)♯ = g♯. This

proves the claim, and completes the proof.

Here is our big result on normal families — all due to Paul Montel.

Theorem 1.28 (Montel). Let D be a domain in C and F a family of meromorphic
functions on D whose ranges omit three distinct points P , Q and R in C+. Then F

is a normal family of meromorphic functions.

Proof. Applying a linear fractional transformation, we can assume P = 0, Q = 1 and
R = ∞. Thus, we assume the functions in F are holomorphic and take values in
C0,1 := C \ {0, 1}.

It will suffice to see that F is normal on any disk Br(z0).
9 There is no real harm

in assuming z0 = 0. (Just translate D by −z0.) Let µ be a metric on C0,1 such that
κµ ≤ −4 for all z ∈ C0,1 (multiply the metric from Lemma 1.13 by an appropriate
constant). Then Theorem 1.10 implies (letting A = B = 4) implies that

f ∗µ(z) ≤ ρ4r(z) for all z ∈ Br(0).

But if τ(z) = 2/(1 + |z|2), then τ(z)/µ(z) tends to 0 if z tends to either 0, 1 or ∞.
Thus there is a constant M > 0 such that

τ(z) ≤ M · µ(z) for all z ∈ C0,1.

Thus
f ♯ ≡ f ∗τ ≤ M · f ∗µ ≤ M · ρ4r for all z ∈ Br(0).

9If K is compact in D, then we can cover K by open balls Br(zi) such that B2r(zi) ⊂ D. Then K

is the union of the compact sets Ki = K ∩Br(zi). If {fn} ⊂ F , then pass to repeated subsequences
that converge uniformly on the Ki ⊂ B2r(zi).
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The constant M is independent of F and since ρ4r is continuous on Br(0), we have
shown that f ♯ is bounded on each compact set of Br(0) independent of f . Now we
apply Marty’s Theorem 1.27 to conclude that F is normal.

In the above proof, by virtue of Proposition 1.22, I’ve been sloppy with my use
of normal families for holomorphic functions vs. meromorphic functions.

Corollary 1.29. Let F be a family of holomorphic functions on a domain D whose
ranges omit two values. Then F is a normal family.

1.5 And Now Picard

Theorem 1.30. Let f be holomorphic in the punctured disk B′
r(0) and suppose that

f has an essential singularity at 0. Then f(B′
r(0)) is either all C or C \ {z0} for

some z0.

Proof. Replacing f by z 7→ f(z/r), we can assume D′ := B′
r(0) = B1(0). It will

suffice to show that if f(D′) ⊂ C0,1, then f has either a removable singularity at 0
or a pole at 0.

For z ∈ D′, let fn(z) = f(z/n) and let F = {fn}. Since F takes values in
C0,1, F is normal. Thus {fn} has a subsequence {fnk

} which converges normally to
g ∈ H(D′) or diverges compactly.

In the first case, we would have {fnk
} bounded on compact subsets of D′. In

particular, there is a M > 0 such that the |fnk
| is bounded by M on { z : |z| = 1

2
}.

This means f is bounded by M on the circles { z : |z| = 1
2nk

}. By the maximum

modulus principal, f is bounded on { z : 0 < |z| < 1/2n1 }. Then 0 is a removable
singularity.

In the second case, a similar argument implies that 1/f has a removable singularity
and a zero at 0. Thus, f has a pole at 0. This completes the proof.

Corollary 1.31 (The Great Picard Theorem). If f has an essential singularity at
z0, then with possibly one exception, f attains every complex value infinitely often in
every deleted neighborhood of z0.

1.6 A Generalized Arzela-Ascoli Theorem

No doubt there are numerous generalizations of Arzela-Ascoli out there. Here we’ll
settle for just enough for our purposes. I got the just of the argument from [Kna05,
Theorem 10.48].
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Theorem 1.32. Suppose that (X, ρ) and (M,d) are compact metric spaces and that
F ⊂ C(X,M) is equicontinuous. Then every sequence in F has a uniformly con-
vergent subsequence.

Proof. We assume that {fn} contains infinitely many distinct functions. (Otherwise,
the assertion is trivial.) By Tychonoff, C :=

∏

x∈X C is compact in the product
topology (a.k.a. the topology of pointwise convergence). Let S ⊂ C be the image of
{fn} in C. If S were closed in C, then On := { f ∈ C : f 6= fn } \S is an open subset
of C and {On} is an open cover of the compact space C with no finite subcover. This
is a contradiction. Hence there exists g ∈ S \ S.

I claim {g} ∪ {fn} is equicontinuous. (So, in particular, g is continuous.) To see
this, let ǫ > 0 and Ux,ǫ a neighborhood such that

d
(

f(y), f(x)
)

≤ ǫ if y ∈ Ux,ǫ and f ∈ F .

But C(y) := {h ∈ C : d
(

h(y), f(x)) ≤ ǫ
)

} is closed in C for any y ∈ X. Hence

F := {h ∈ C : d
(

h(y), f(x)
)

≤ ǫ for all y ∈ Ux,ǫ } =
⋂

y∈Ux,ǫ

C(y)

is closed in C and F ⊂ F . Therefore g ∈ F and

d
(

g(y)− g(x)
)

≤ 2ǫ if y ∈ Ux,ǫ.

The claim follows.
To complete the proof, it will suffice, given ǫ > 0 and k, to find N ≥ k such that

d
(

fN(x), g(x)
)

< ǫ for all x ∈ X.

But if x ∈ X, then there is a neighborhood Ux such that y ∈ Ux implies that

d
(

fn(y), fn(x)
)

<
ǫ

3
and d

(

g(y), g(x)
)

<
ǫ

3
.

Since X is compact, there are Ux1
, . . . , Uxn

which cover X. Then given y ∈ X, there
is a xj such that

d
(

fn(y), fn(xj)
)

<
ǫ

3
and d

(

g(y), g(xj)
)

<
ǫ

3
.

Since g ∈ S, there is an N ≥ k such that

d
(

fN(xk), g(xk)
)

< ǫ3 for k = 1, 2, . . . , n.

But then for the appropriate j,

d
(

fN(y), g(y)
)

≤ d
(

fN(y), fN(xj)
)

+ d
(

fN(xj), g(xj)
)

+ d
(

g(xj), g(y)
)

< ǫ.
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Corollary 1.33. Suppose that (X, ρ) is a second countable locally compact measure
space, that (C, d) a compact measure space and that F ⊂ C(X,M) is equicontinu-
ous. Then every sequence {fn} in F has a subsequence that converges uniformly on
compact subsets of X to a function f ∈ C(X,M).

Proof. We can let X =
⋃

Kn with Kn compact and Kn ⊂ Ko
n+1. Then every compact

subset of X is contained in some Ko
n. So it will suffice to produce a function g and a

subsequence converging uniformly to g on each Kn. We can use the previous theorem
to find a subsequence {g(1)n } such that g

(1)
n → g(1) uniformly on K1. Continuing

inductively, we can construct a subsequence {g(k)n } of {g(k−1)
n } such that g

(k)
n converges

uniformly to g(k) on Kk.
Clearly, g(k)(x) = g(k−1)(z) if z ∈ Kk−1. Hence we get g ∈ C(X,M) by defining

g(z) = g(k)(z) if z ∈ Kk. Let fnk
= g

(k)
k . Fix Kr. Then given ǫ > 0, there is a N ≥ r

such that n ≥ N implies

d
(

g(r)n (z), g(z)
)

< ǫ for all z ∈ Kr.

Then k ≥ N implies

d
(

fnk
(z), g(z)

)

< ǫ for all z ∈ Kr.

1.7 Metric Distances

It is comforting to be able to give explict formulas for dσ for standard choices of
the metric σ. Krantz dances around this, and it my mind, doesn’t give convincing
arguments. As we will see in detail below, often the key step is to establish the formula
for dα(0, r) with r > 0. This is done by proving that the straight line segment [0, r]
achieves the minimal distance. For the Poincare metric, Krantz outlines this in §1.1
of his book, but the argument is hardly tight. But we can easily tighten it up.

Suppose that 0 < r < 1 and that γ(t) = x(t) + iy(t) is a path from 0 to r. Then

Lρ(γ) =

∫ 1

0

√

x′(t)2 + y(t)2

1− x(t)2 − y′(t)2
dt

≥
∫ 1

0

|x′(t)|
1− x(t)2

dt

≥
∫ 1

0

x′(t)

1− x(t)2
dt

=
1

2
ln
(1 + r

1− r

)

.
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But this valued in attained by the straight line path from 0 to r. But it is not hard
to see that dρ(0, z) = dρ(0, e

iθz) for any θ. Hence

dρ(0, z) = dρ(0, |z|) =
1

2
ln
(1 + |z|
1− |z|

)

.

Krantz suggests the same approach should work for the spherical metric. I think
not! (At least I see no direct estimates such as the above, nor do I find any heuristic
arguments convincing in this case.) But eventually, I realized there was a general
principal at work.

Proposition 1.34. Let σ be any metric on a convex neighborhood D of the origin.
Then for any r ∈ R,

dσ(0, r) =

∫ r

0

σ(t) dt.

Remark 1.35 (Pay-off). In other words, for dσ(0, r), the distance is attained by
Lσ([0, r]). Thus ρ(z) = 1/(1− |z|2) is the Poincare metric on U , then

dρ(0, r) =
1

2
ln
(1 + r

1− r

)

as derived above. On the other hand, if τ(z) = 2/(1 + |z|2), then

dτ (0, r) = 2 arctan(r). (1.4)

This result also gives a proof (of the easily proved result) that in the Euclidean metric,
that the minimal distance is given by line segments.

Proof. To prove the Proposition, it suffices to see that the derivative of the function
r 7→ dσ(0, r) is σ(r).

Fix ǫ > 0. Observe that if h ∈ R, then

Lσ([r, r + h]) =

∫ r+h

r

σ(t) dt.

Since σ is continuous, there is a δ > 0 such that 0 < |h| < δ implies that r + h ∈ D
and that

− ǫ

2
<

1

h
Lσ([r, r + h])− σ(r) <

ǫ

2
.
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Suppose 0 < h < δ. Then we can find a contour γh from 0 to r such that

Lσ(γh)−
hǫ

2
< dσ(0, r).

Since γh + [r, r + h] is a path from 0 to r + h in D,

1

h

(

dσ(0, r + h)−dσ(0, r)
)

− σ(r)

<
1

h

(

Lσ(γh) + Lσ([r, r + h]− L(γσ) +
hǫ

2

)

− σ(r)

=
1

h
Lσ([r, r + h])− σ(r) +

ǫ

2
< ǫ.

On the other hand, we can find a contour γ′
h from 0 to r + h such that

Lσ(γ
′
h)−

hǫ

2
< dσ(0, r + h).

Then we have

1

h

(

dσ(0, r + h)−dσ(0, r)
)

− σ(r)

>
1

h

(

Lσ(γ
′
h)−

hǫ

2
− (Lσ(γ

′
h) + Lσ([r + h, r]))

)

− σ(r)

= −1

h
L([r + h, r])− σ(r)− ǫ

2
> −ǫ.

To summarize, if 0 < h < δ, then

∣

∣

1

h

(

dσ(0, r + h)− dσ(0, r)
)

− σ(r)
∣

∣ < ǫ. (1.5)

We argue similarly if −δ < h < 0. We pick a contour γh such that

Lσ(γh) +
hǫ

2
< dσ(0, r + h).

Then

1

h

(

dσ(0, r + h)−dσ(0, r)
)

− σ(r) =
1

−h

(

dσ(0, r)− dσ(0, r + h)
)
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<
1

−h

(

Lσ(γh) + Lσ([r + h, r])− Lσ(γh)−
hǫ

2

)

− σ(r)

= −1

h
Lσ([r + h, r])− σ(r) +

ǫ

2
< ǫ.

A similar computation gives −ǫ < 1
h

(

dσ(0, r + h)− dσ(0, r)
)

− σ(r).
Hence (1.5) holds for all 0 < |h| < δ. The result follows.

Now recall that a Möbius transformation is a linear fractional transformation of
the form

ha(z) =
z − a

1− āz
for some a ∈ U .

Since |z| = 1 implies |ha(z)| = 1, it follows from the maximum modulus principal
that ha maps to unit ball to itself. Since h−1

a = h−a, ha is a bijection of U onto itself.
Also,

h′
a(z) =

1− |a|2
(1− āz)2

.

If ρ is the Poincare metric, then

h∗
aρ(z) = ρ

(

ha(z)
)

|h′
a(z)|

=
1

1−
∣

∣

z−a
1−āz

∣

∣

2 · 1− |a|2
|1− āz|2

=
1− |a|2

|1− āz|2 + |z − a|2
= ρ(z).

Hence ha is dρ-distance reducing on U . But so is h−1
a = h−a. So each Möbius

transformation ha is Poincare distance preserving. This is the key to the following.

Corollary 1.36 ([Kra90, Proposition 2.4.2]). If ρ is the Poincare metric on U then

dρ(p, q) =
1

2
ln









1 +

∣

∣

∣

∣

p− q

1− p̄q

∣

∣

∣

∣

1−
∣

∣

∣

∣

p− q

1− p̄q

∣

∣

∣

∣









.
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Proof. As we have already observed, dρ(0, z) = dρ(0, e
iηz), and hence Re-

mark 1.35 on page 19 gives

dρ(0, z) =
1

2
ln
(1 + |z|
1− |z|

)

(1.6)

as claimed in (1.1).
But by the above discussion

dρ(p, q) = dρ
(

hp(p), hp(q)
)

= dρ

(

0,
q − p

1− p̄q

)

Now the assertion follows from (1.6).

Figure 1: The Poincare Triangle ∆(0.5, 0.9i, 0.6 + 0.6i)

Corollary 1.37. If τ is the spherical metric on C then

dτ (p, q) = 2 arctan
( |p− q|
|1 + p̄q|

)

.

Proof. Since Lτ (γ) = Lτ (e
iθ ·γ), dτ is invariant under simple rotations. In particular,

dτ (0, p) = dτ (0, |p|) = 2 arctan(|p|). (1.7)
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(a) In the Plane (b) On the Riemann Sphere

Figure 2: The Spherical Triangle ∆(−1, 3 + i, i) in the Plane and on the Sphere

Although I am not prepared to show this here, every rotation of the Riemann
sphere is given by a linear fractional transformation of the form

ϕa,b(z) =
az + b

−b̄z + ā
where |a|2 + |b|2 = 1.

A computation shows that10

ϕ∗
a,bτ = τ.

This gives dτ
(

ϕa,b(p), ϕa,b(q)
)

≤ dτ (p, q). But ϕ
−1
a,b = ϕā,−b is of the same type. Hence

any such ϕa,b is actually dτ -distance preserving.

10First, check that

ϕ′

a,b(z) =
1

(−b̄z + ā)2
.

Then

ϕ∗

a,bτ(z) = τ
(

ϕa,b(z)
)

|ϕ′

a,b(z)|

=
2

1 +
∣

∣

∣

az+b

−b̄z+ā

∣

∣

∣

· 1

| − b̄z + ā|2

=
2

| − b̄z + ā|2 + |az + b|2

=
2

1 + |z|2 .
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Next notice that

ϕ(z) =
z − p

p̄z + 1

is a rotation with a = 1/
√

1 + |p|2 and b = −p/
√

1 + |p|2.
Hence

dτ (p, q) = dτ
(

ϕ(p), ϕ(q)
)

= dτ

(

0,
q − p

p̄q + 1

)

= dτ

(

0,
∣

∣

∣

q − p

p̄q + 1

∣

∣

∣

)

.

The result follows from (1.7).

Remark 1.38. It is not obvious that there will be a minimal path from p to q in D for
a given metric σ on D. As Krantz tells us, such paths always exist for many metrics
and in particular, for the Poincare Metric. Given p, q ∈ U , let ϕ be a Möbius transfor-
mation taking p to 0. Then as we noted above, dρ(p, q) = dρ(0, ϕ(q)). Furthermore,
the later value is attained by the line segment [0, ϕ(q)] which is parameterized by
γ(t) = tϕ(q) for t ∈ [0, 1]. Hence the shortest path from p to q is given Γρ parame-
terized by t 7→ ϕ−1(tϕ(q)). That is,

Γρ(t) =
t q−p

1−qp̄
+ p

1 + tp̄ q−p

1−qp̄

I used this to make the “Poincare Triangle” in Figure 1 on page 22.
A similar analysis can be used to find minimal curves in the spherical metric. In

this case the minimal distance from p to q is given by

Γτ (t) =
t q−p

1+qp̄
+ p

1− tp̄ q−p

1+qp̄

This can used to draw the “Spherical Triangle” in Figure 2a on the previous page.
If the shape is surprising, as we’ll see in Remark 1.39, dτ is the distance between
the appropriate points on the Riemann sphere. (Thus the “size” of the interior of
the unit circle and the exterior are the same!) I’ve drawn the same triangle on the
Riemann Sphere in Figure 2b.

Remark 1.39 (Spherical Distance on the Riemann Sphere). Recall that the stero-
graphic projection

S(x+ iy) =
( 2x

x2 + y2 + 1
,

2y

x2 + y2 + 1
,
x2 + y2 − 1

x2 + y2 + 1

)
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is a map of C onto the sphere S2 := { (x, y, z) ∈ R3 : x2 + y2 + z2 = 1 } minus
the north pole (1, 0, 0). I want to argue here that the spherical distance dτ (p, q) is
just the “great circle distance” from S(p) to S(q) on S2. Since both distances are
invariant under rotations of S2, it suffices to check this for dτ (0, r).

11

But S(0) = (0, 0,−1) and S(r) =
(

2r
1+r2

, 0, r
2−1

r2+1

)

. However the great circle distance
from S(0) to S(r) is just the central angle θ they determine. But using the dot
product,

cos(θ) =
1− r2

1 + r2
.

We want to compare this with (1.4), but we have to be careful. At the moment
θ ∈ [0, π] and may not play nice with arctan. But

cos
(θ

2

)

=

√

1 + cos θ

2
=

√

1 + 1−r2

1+r2

2
=

√

1

1 + r2
.

But then

tan
(θ

2

)

=

√

1− 1
1+r2

√

1
1+r2

= r

Now it follows that the distance, θ, is 2 arctan(r) as required.

11Ok, I never proved the maps ϕa,b used above are rotations of S2. Maybe later.
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MA, 2005. Along with a companion volume Advanced real analysis.

[Kra90] Steven G. Krantz, Complex analysis: the geometric viewpoint, Carus Mathematical Mono-
graphs, vol. 23, Mathematical Association of America, Washington, DC, 1990.

[Rud87] Walter Rudin, Real and complex analysis, McGraw-Hill, New York, 1987.

26


	The Picard Theorems
	Metrics and Curvature
	The Schwartz Lemma
	The Little Picard Theorem
	Normal Families
	The Spherical Metric

	And Now Picard
	A Generalized Arzela-Ascoli Theorem
	Metric Distances


