Alternating permutations

Richard Stanley
MIT
Friday, May 4, 2007
006 Kemeny Hall, 2:00 pm
(Note unusual time and place)

Abstract

A permutation $a_{1}, a_{2}, \ldots, a_{n}$ of $1,2, \ldots, n$ is alternating if $a_{1}>a_{2}<$ $a_{3}>a_{4}<\cdots$. The number of alternating permutations of $1,2, \ldots, n$ is denoted E_{n} and satisfies $$
\sum_{n \geq 0} E_{n} \frac{x^{n}}{n!}=\sec x+\tan x
$$

After a survey of the basic properties of alternating permutations and the subject of "combinatorial trigonometry," we will discuss recent work in two areas: (a) distribution of the length of the longest alternating subsequence of a permutation of $1,2, \ldots, n$, and (b) enumeration of various classes of alternating permutations of $1,2, \ldots, n$ (such as those that are involutions) using techniques from symmetric functions.

