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Conic sections
Apollonius, -200

Ellipse Parabola Hyperbola

Ax®4+Bxy+Cy? +Dx+Ey+F=0
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4x°—2xy+4y°—14x—4y+15 =0 3x2 4+ 5y? — 1
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q(x,y) =Ax>+Bxy+Cy?+Dx+Ey+F
qJx.y)=AXP+Bxy+Cy*+Dx+Ey+F

a(x.y)=q(x,y)
<

q(x,y)=c-q(sx+ty+w,ux+vy+w)
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General Affine Equivalence

qx,y)=Ax>+Bxy+Cy? + Dx+Ey+F
G, y)=AXP+Bxy+Cy2+Dx+Ey+F

q(x,y) =~ q'(x,y)
<

qx,y) =c-q'(sx+1iy+w,ux+vy+w')
= ((50)() ()

Example: 4x2 —2xy +4y? —14x —4y +15 ~ x° + y® — 1



General Affine Classification
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General Affine Classification
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General Affine Classification

smooth/singular
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General Affine Classification

smooth/singular

\/ )
2 2

2_y2:1 y=x x+y2:—1

x2+y2=1 «x

X2+y2=0 x2-y2=0 y2=0 y2 =1

We'll focus on smooth conics.
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Rational Points

(_T75’ _%)

Rational point Pythagorean triple
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General Affine Equivalence over Q
Q= { g . a, b integers, b # 0} set of rational numbers

q(x,y) =g 9'(x,y)
<

qg(x,y)=c-q(sx+ty+w,ux+vy+w)

(006 (w)

Where we only allow:
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General Affine Equivalence over Q
Q= { g . a, b integers, b # O} set of rational numbers

q(x,y) =g 9'(x,y)
<

qx,y)=c-q'(sx+1iy+w,ux+vy+w')

e (50 G) ()

Where we only allow:
£0eQ, coLo@. () <@

Main point: General affine equivalence over Q gives a bijection
on the sets of rational points.
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Example. 4x2 —2xy + 4y2 — 14x — 4y + 15 éQ X2 4 y2 1

4x% —2xy +4y? —14x —4y +15 =g 4x% —2xy +4y? —1
Remember x=x-2, y=y -1



Example. 4x2 — 2xy +4y2 — 14x — 4y + 15 ;@ X2+ y2 1

Ax? = 2xy +4y® —14x — 4y +15 ~q 4x® —2xy +4y° — 1
~g 6x% +10y? — 1

(y —x+1), y:l(x+y—3)

X = 5

N —



Example. 4x2 — 2xy +4y? —14x — 4y + 15 ~g x2+y? 1

4x%2 —2xy +4y? —14x —4y +15 ~g 4x® —2xy +4y® -1
~g 6x%+10y? —1

qx,y) =Ax®> +Bxy + Cy? + Dx+Ey+F
Discriminant A(q) = B2 — 4AC

Lemma. q(x,y) ~g q'(x,y) = A(q) = d?A(q)ford € Q.



Example. 4x2 — 2xy +4y? —14x — 4y + 15 ~g x2+y? 1

4x% —2xy + 4y? —14x — 4y +15 =g 4x° —2xy + 4y° — 1
~g 6x7+10y% 1

qx,y) =Ax®> +Bxy + Cy? + Dx+Ey+F
Discriminant A(q) = B2 — 4AC

Lemma. q(x,y) ~g q'(x,y) = A(q) = d?A(q)ford € Q.

Corollary. 4x% — 2xy + 4y? —14x —4y +15 g X%+ y% —1
compare A — 60 # —4d?

v/15 irrational



Example. x?+y?+1 %g x®+y?—1 yetboth have A = 4.

x? 4+ y? = —1 has no rational solutions
x? + y? = 1 has many rational solutions



Example. x?+y?+1 %g x®+y?—1 yetboth have A = 4.
x? 4+ y? = —1 has no rational solutions

x? + y? = 1 has many rational solutions

Conclusion. The discriminant A does not necessarily
distinguish between general affine equivalence classes over Q.
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Theorem. Every smooth conic over Q is equivalent to:

y=x or ax’>+by?>=1, forsomeabecQ



Diagonalization
Theorem. Every smooth conic over Q is equivalent to:
y=x> or ax>+by?’=1, forsomeabeQ
Proof. Case A # 0 (not a parabola).
qx,y) =Ax®>+Bxy+Cy?+Dx+Ey+F

Can always clear away the linear terms with a translation by
solutions to the system of linear equations:

2Ax+ By =-D

9 qxy) = Laxy) =0
axq 7y_ayq 7y_ BX+20y:—E

q(x,y) ~g Ax® + Bxy + Cy> + F'

- o))

=) (o ) (G



Diagonalization

Theorem. Every smooth conic over Q is equivalent to:

y=x> or ax’?+by?>=1, forsomeabecQ

Proof.

qox.y) o Y )G ‘i)t (B//\z Bé2> (z £><;>+F

A “diagonalization” problem. Over R, this can be done by the
spectral theorem in linear algebra “every real symmetric matrix
can be diagonalized by an orthogonal matrix” (remember Q is
orthogonal if Q' = Q). Over Q this is the higher theory of
“completing the square.”



Clifford—Hasse—Witt symbol

Theorem. Every smooth conic over Q is equivalent to:

y=x or ax?4+by?=1, forsomea,be Q- {0}



Clifford—Hasse—Witt symbol

Theorem. Every smooth conic over Q is equivalent to:
y=x> or ax?+by?>=1, forsomea,bec Q- {0}
Clifford—Hasse—Witt symbol

q(x,y) ~g ax®> + by? -1 — |[a,b]
q(x,y) ~q y — x* = 1,1

(A priori depends on the choice of diagonalization.)



Clifford—Hasse—Witt symbol

Theorem. Every smooth conic over Q is equivalent to:

y=x> or ax’+by?=1,
Clifford—Hasse—Witt symbol

q(x,y) ~q ax?® + by® — 1
q(x,y) ~q y — x*

Properties:
® [av b] ~Q [bv a]

e [a,b] ~q [a,bc?]
e [a,—a] =g [1,—1]

° [371 —a] ~Q [1,—1]

for some a,b € Q \ {0}

—  [a,b]
= [1,—1]

(x,¥) = (¥, x)
(x,y) — (x,cy)
(3) = 23150 0)

more tricky



Manipulating symbols
Properties:
e [a,b] ~q [b, 4]

o [a,b] ~g [a,bc?]
° [a,—a] ~Q [1,—1]

° [a,1 —a] ~Q [1,—1]



Manipulating symbols
Properties:
e [a,b] ~q [b, 4]

e [a,b] ~g [a bc?]
° [a,—a] ~Q [1,—1]
° [371—8]%(@[1,—1]

o [a,u? — av?] =g [1,—1] forany u,v € Q with u® — av® £ 0



Manipulating symbols
Properties:
e [a,b] ~q [b, 4]

. (2,6~ [a,bc?
° [a,—a] ~Q [1,—1]
° [371—8]%(@[1,—1]

o [a,u? — av?] =g [1,—1] forany u,v € Q with u® — av® £ 0

S(Q)={[a,b] : abeQ~{0}}/ ~q properties



Manipulating symbols
Properties:
e [a,b] ~q [b, 4]

° [a7 b] ~Q [a,bC2]
° [a,—a] ~Q [17—1]
° [371—3]%(@[1,—1]

o [a,u? — av?] =g [1,—1] forany u,v € Q with u? — av® # 0
S(Q)={[a,b] : abecQ~{0}}/ =g properties

Example. Forany a € Q . {0} we have
[1,4] ~q [, 1] ~q [a. 1% — a0%] ~q [1, 1]
in S(Q). The class of [1, —1] is called the trivial symbol.



Manipulating symbols
Properties:
e [a,b] ~q [b, 4]

e [a,b] ~g [a bc?]
° [a,—a] ~Q [1,—1]
(] [371—8]%(@[1,—1]

o [a,u? — av?] =g [1,—1] forany u,v € Q with u® — av® £ 0
S(Q)={[a,b] : a,becQ~\ {0}}/ ~qg properties

Lemma. The Clifford-Hasse—Witt symbol of q(x, y), taken in
S(Q), doesn’t depend on the general affine equivalence class.

{conics}/ ~g — S(Q)



Hasse—Minkowski Theorem

¢, ¢’ € Q are in the same square class if ¢ = d?¢’ ford € Q
A(Q) set of rational square classes (including 0)

S(Q) set of symbols up to manipulations by properties



Hasse—Minkowski Theorem

¢, ¢’ € Q are in the same square class if ¢ = d?¢’ ford € Q
A(Q) set of rational square classes (including 0)
S(Q) set of symbols up to manipulations by properties

Theorem (Hasse—Minkowski). A conic over Q is uniquely
determined, up to general affine equivalence, by its discriminant
in A(Q) and its Clifford—Hasse—Witt symbol in S(Q).



Hasse—Minkowski Theorem

¢, ¢’ € Q are in the same square class if ¢ = d?¢’ for d € Q
A(Q) set of rational square classes (including 0)
S(Q) set of symbols up to manipulations by properties

Theorem (Hasse—Minkowski). A conic over Q is uniquely
determined, up to general affine equivalence, by its discriminant
in A(Q) and its Clifford—Hasse—Witt symbol in S(Q).

Recall. The trivial symbol is the class of [1, —1] in S(Q).

Theorem. A conic over Q has a rational point if and only if its
Clifford—Hasse-Witt symbol is trivial in S(Q).



Recall. The trivial symbol is the class of [1, —1] in S(Q).

Theorem. A conic over Q has a rational point if and only if its
Clifford—Hasse—Witt symbol is trivial in S(Q).



Recall. The trivial symbol is the class of [1, —1] in S(Q).

Theorem. A conic over Q has a rational point if and only if its
Clifford—Hasse—Witt symbol is trivial in S(Q).
Example. Does

q(x,y) = 4x* —2xy +4y? —14x —4y +15=0

have a rational point?
To use the theorem, we already calculated

q(x,y) ~qg 6x2+10y2 -1 — [6,10]

Note that 10 = 42 — 6 - 12, s0 [6,10] = [1, —1] is trivial in S(Q).
So q(x, y) = 0 has a rational point?



Recall. The trivial symbol is the class of [1, —1] in S(Q).

Theorem. A conic over Q has a rational point if and only if its
Clifford—Hasse—Witt symbol is trivial in S(Q).
Example. Does

q(x,y) = 4x* —2xy +4y? —14x —4y +15=0

have a rational point?
To use the theorem, we already calculated

q(x,y) ~qg 6x2+10y2 -1 — [6,10]

Note that 10 = 42 — 6 - 12, s0 [6,10] = [1, —1] is trivial in S(Q).
So q(x, y) = 0 has a rational point?

1 2 1 2
6<4> +1o<4> = 1
3 3

2
3
. 2— . . —_— _— —_— . —_— —_ f—
4.22-2.2 2+4<2) 14.2 42—1—15—0



Legendre’s Theorem

ax? + by? = 1 has a solution in rationals x = 5 and y = %
=

aX? + bY? = Z? has a solution in integers X, Y, Z



Legendre’s Theorem

ax? + by? = 1 has a solution in rationals x = 5 and y = %
=
aX? + bY? = Z? has a solution in integers X, Y, Z
Theorem (Legendre’s Theorem). Let a and b be positive
squarefree integers. Then
aX?+ bY? = 72

has a nontrivial solution if and only if a is a square modulo b
and b is a square modulo a and —3—2 is a square modulo d
(here d = gcd(a, b)).



Here as he walked by
on the 16th of October 1843
Sir William Rowan Hamilton
in a flash of genius discovered
the fundamental formula for
quaternion multiplication

2= =K =ik =—1

& cut it on a stone of this bridge.
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Here as he walked by
on the 16th of October 1843
Sir William Rowan Hamilton
in a flash of genius discovered
the fundamental formula for
quaternion multiplication

2:j2:k2:ijk:—

& cut it on a stone of this bridge.

R ~ C=R+IiR

Quaternions

% | rl @ ‘f"ln rn"ﬁr "JE".
g i

F"- B! -1-1..{*»‘.'1 e
|31 i of penius cise "r:d
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Quaternlons

Here as he walked by
on the 16th of October 1843 i
Sir William Rowan Hamilton 7 : o v‘ n ".1-. ity
in a flash of genius discovered < . ',—. 1 of penius discovene d
the fundamental formula for Bl e menal ferhala:for
quaternion multiplication tertern o muloplication
i2:j2:k2:ijk:_1 . '"-I==:';'- ik

NS SRONC O

& cut it on a stone of this bridge.

R ~ C=R+iR ~ H=R+iR+R+kR



Quaternions
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on the 16th of October 1843 2% 5
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Quaternions

Here as he walked by
on the 16th of October 1843
Sir William Rowan Hamilton el o \, ;
in a flash of genius discovered . ',—_ lieE is chise rwe-—.; Eal
the fundamental formula for B \ terp it L5 fon
quaternion multiplication tertern o muloplication

=P =k =jk=—

& cut it on a stone of this bridge.

R s C=R+iR ~ H=R+iR+jR+kR
not ordered not commutative



Quaternlons
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Here as he walked by
on the 16th of October 1843
Sir William Rowan Hamilton
in a flash of genius discovered
the fundamental formula for
quaternion multiplication

=P =k =jk=—

& cut it on a stone of this bridge.

% [:"‘]{" At

-'-.!._'. 371 [} [ (]
5

R s C=R+iR ~ H=R+iR+jR+kR
not ordered not commutative

=k, jk=i, ki=j, ij=—ji, ik=—ki, jk=—kK



Skew-fields

Skew-field: F set with operations + and - satisfying:

e Associativity: x-(y-z)=(x-y)-z
X+(y+z)=x+y)+z

Distributivity: x-(y+2)=x-y+x-Zz

e Identity: O+x=x=x+0
1.-x=x=x-1

e Inverses: I3-x, x+(—x)=(—x)+x=0
x#0 = 3Ix ', xxT=x"'x=

Commutativity: x+y =y + x



Skew-fields

Skew-field: F set with operations + and - satisfying:

e Associativity: x-(y-z)=(x-y)-z
X+(y+z)=x+y)+z

Distributivity: x-(y+2)=x-y+x-Zz

e Identity: O+x=x=x+0
1.-x=x=x-1

e Inverses: I3-x, x+(—x)=(—x)+x=0
x#0 = 3Ix ', xxT=x"'x=

Commutativity: x+y =y + x
X-y#y-Xx



Inverting Quaternions

1 1, 1 1 1
—I—j>—3+3+3+0—1



Inverting Quaternions

o (1 11, 1 1 1
(1+/+/)<3—3/—1):+++0:1

3 3 3

Ty =112 6y
l)=6T6 37"~



Inverting Quaternions

o (1T 11 1 1 1
(1+/+/)<—/—/)—3+3+3+0_1

A T P 11 2
(1+I+2j)<—l—j>—6+6+3+0—1

Quaternion conjugation:

(X+Yi+2zj+wk)(x —yi—z—wk) =x?+ y? + 22 + w?



Inverting Quaternions

o (1T 11 1 1 1
(1+/+1)<—/—/)—3+3+3+0_1

A T P 11 2
(1+I+2j)<—l—j>—6+6+3+0—1

Quaternion conjugation:

(X+Yi+2zj+wk)(x —yi—z—wk) =x?+ y? + 22 + w?

1 X—Yi—ZzZ —wk

L i k) —
(X + yi + zj + wk) Tyt 2w

XC+y?+224wP=0 & x=y=z=w=0
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Applications

Euclidean 3-space Imaginary quaternions
R® — H
V=(v1,Vo,3) > V=Vii+ Voj+ a3k

VW= —V-W+VXW
Quantum Mechanics Pauli matrices for fermionic spin (1920s):

0 1 0 —i 10
1=\ 0) 27\ o) T \o -1

i(—)0'10'2, j<—>0'30'1, k(—)020'3

S®={gecH : qgg=1} - SO(3)

g—Vv—qvg !



Quaternions over Q

Theorem (Frobenius 1877): T a (skew-)field, R C [ center,
then F is either R, C, or H.
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Quaternions over Q

Theorem (Frobenius 1877): T a (skew-)field, R C [ center,
then F is either R, C, or H.

Lots of different quaternion algebras over Q.

Ho ={x+yi+zi+wkeH : x,y,z,weQ}

Hp 3 = {x+yi+zj+wk Yo WeE Q }

P=22=3k =-86,jj=k,...



Quaternions over Q

Theorem (Frobenius 1877): T a (skew-)field, R C [ center,
then F is either R, C, or H.

Lots of different quaternion algebras over Q.

Ho ={x+yi+zi+wkeH : x,y,z,weQ}

_ . X, y,Z,weQ
Hp3 = {X—l—yl—l—Zj—l—Wk 22 2_3 K= _6,jj=k.... }
Check invertibility:
(X+yi+ 2z + wk)(x — yi — zj — wk) = x® —2y® — 32% + 6W?

x2-2y2 322 +6w2 <0



Quaternions over Q

Theorem (Frobenius 1877): T a (skew-)field, R C [ center,
then F is either R, C, or H.

Lots of different quaternion algebras over Q.

Ho ={x+yi+zi+wkeH : x,y,z,weQ}

o . : _X7.y727W€Q
H273_{x+y/+21+wk T R=2,2=3kK=6,j=k,... }

Check invertibility:
(X+yi+ 2z + wk)(x — yi — zj — wk) = x® —2y® — 32% + 6W?

x2—2y? -3224+6W? =0 x=y=z=w=0

Exercise!



Quaternions over Q

Theorem (Frobenius 1877): T a (skew-)field, R C [ center,
then F is either R, C, or H.

Lots of different quaternion algebras over Q.

Ho ={x+yi+zi+wkeH : x,y,z,weQ}

o . : _X7.y727W€Q
H273_{x+y/+21+wk T R=2,2=3kK=6,j=k,... }

Check invertibility:
(X+yi+ 2z + wk)(x — yi — zj — wk) = x® —2y® — 32% + 6W?

x2—2y? -3224+6W? =0 x=y=z=w=0

Exercise! Hint (x? — 2y?) — 3(z2 — 2w?)
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Hilbert symbol: H,p 4-dimensional algebra over Q:

i2

Is H, p a skew-field?
Check invertibility:

(X + yi + Zj + wk)(x — yi — zj — wk) = x® — ay? — bz? + abw?



Hilbert symbol: H,p 4-dimensional algebra over Q:

i2

Is H, p a skew-field?
Check invertibility:

(X + yi + Zj + wk)(x — yi — zj — wk) = x® — ay? — bz? + abw?

Hy 1



Hilbert symbol: H,p 4-dimensional algebra over Q:

i2

Is H, p a skew-field?
Check invertibility:

(X + yi + Zj + wk)(x — yi — zj — wk) = x® — ay? — bz? + abw?

Hiq x%—y?— 22+ w? =0 often
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Hilbert symbol: H,p 4-dimensional algebra over Q:

i2

Is H, p a skew-field?
Check invertibility:
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Hilbert symbol: H,p 4-dimensional algebra over Q:

i2

Is H, p a skew-field?
Check invertibility:

(X + yi + Zj + wk)(x — yi — zj — wk) = x® — ay? — bz? + abw?

Hiq x%—y?— 22+ w? =0 often

)

Hp 1 x2—2y2+ 2% —2w? = 0 often



Can H&b = Hc,d ?



Can H&b = Hc,d ?

Properties:
hd Ha,b = Hb,a
e Hyp = Ha,b02
o Ha_g=H;i 4



Can H&b = Hc,d ?

Properties:
b Ha,b = Hb,a
e Hyp = Ha,bc2
o Ha—a=H;y 1

Theorem (Minkowski 1896, Merkurjev 1982): Every
skew-field over Q is a Hilbert symbol H p.
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Conics and Quaternions
Clifford—Hasse-Witt symbol [a, b] and Hilbert symbol H p.

q(x,y) ~ ax® + by? =1+ [a, b]

Theorem: Conic sections and quaternion algebras over Q
determine each other:

[a, b] ~ [c, d] & Hap=Hcy and ab=cd-e€?
ldea: Connection between 2-dimensional conic section
ax? + by? =1
and 4-dimensional “quaternion invertibility” conic section

x? —ay? — bz? + abw?® =0



