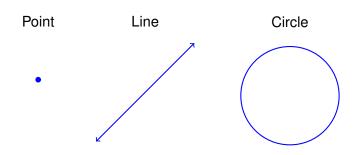
Points and conics

Asher Auel

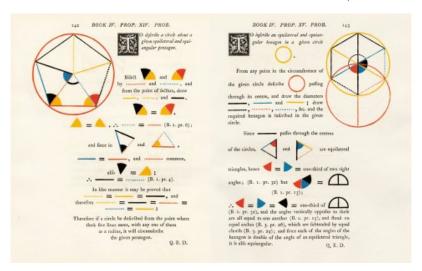
Department of Mathematics Yale University

University of Connecticut Math Club March 12th, 2014

Plane Geometry Euclid, -300

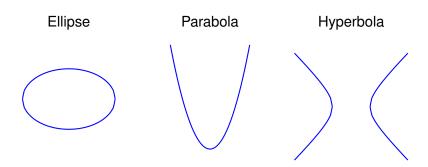


Plane Geometry Euclid. -300



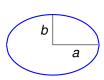
Oliver Byrne "The Elements of Euclid" 1847

Apollonius, -200



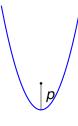
Apollonius, -200

Ellipse



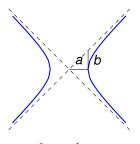
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Parabola



$$y=\frac{x^2}{4p}$$

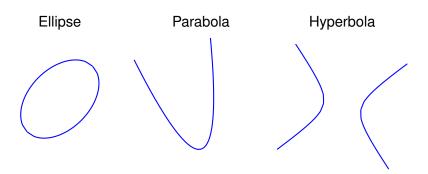
Hyperbola



$$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$$

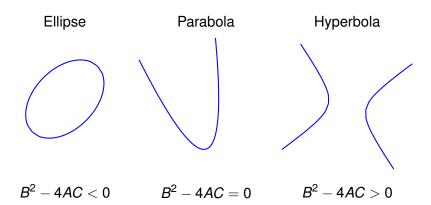
Canonical forms

Apollonius, -200



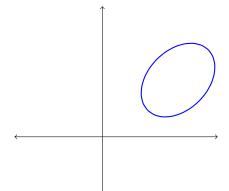
$$Ax^{2} + Bxy + Cy^{2} + Dx + Ey + F = 0$$

Apollonius, -200



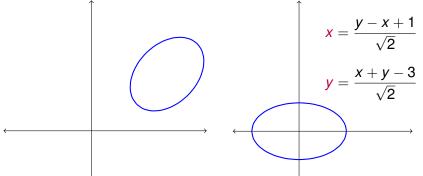
$$Ax^{2} + Bxy + Cy^{2} + Dx + Ey + F = 0$$

 $4x^2 - 2xy + 4y^2 - 14x - 4y + 15 = 0$



 $4x^{2}-2xy+4y^{2}-14x-4y+15 = 0 4x^{2}-2xy+4y^{2} = 1$ x = x-2 y = y-1

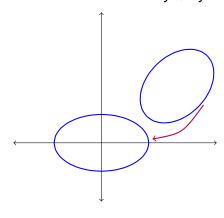
 $4x^2 - 2xy + 4y^2 - 14x - 4y + 15 = 0$ $3x^2 + 5y^2 = 1$



$$4x^2 - 2xy + 4y^2 - 14x - 4y + 15 = 0$$

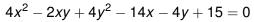
$$\longleftrightarrow$$

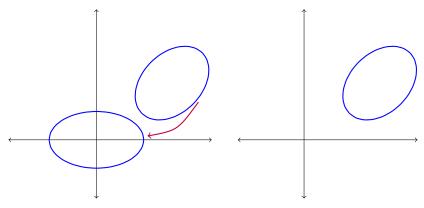
$$4x^2 - 2xy + 4y^2 - 14x - 4y + 15 = 0$$



$$3x^2 + 5y^2 = 1$$

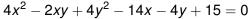
euclidean transformation

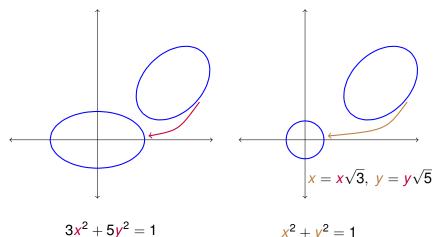




$$3x^2 + 5y^2 = 1$$

euclidean transformation





euclidean transformation general affine transformation

$$q(x,y) = Ax^{2} + Bxy + Cy^{2} + Dx + Ey + F$$

$$q'(x,y) = A'x^{2} + B'xy + C'y^{2} + D'x + E'y + F'$$

$$q(x,y) = Ax^{2} + Bxy + Cy^{2} + Dx + Ey + F$$

$$q'(x,y) = A'x^{2} + B'xy + C'y^{2} + D'x + E'y + F'$$

$$q(x,y) \approx q'(x,y)$$

$$\iff$$

$$q(x,y) = c \cdot q'(sx + ty + w, ux + vy + w')$$

$$q(x,y) = Ax^{2} + Bxy + Cy^{2} + Dx + Ey + F$$

$$q'(x,y) = A'x^{2} + B'xy + C'y^{2} + D'x + E'y + F'$$

$$q(x,y) \approx q'(x,y)$$

$$\iff$$

$$q(x,y) = \mathbf{c} \cdot q'(\mathbf{s}x + ty + \mathbf{w}, \mathbf{u}x + \mathbf{v}y + \mathbf{w}')$$

$$= \mathbf{c} \cdot q'\left(\begin{pmatrix} \mathbf{s} & t \\ \mathbf{u} & \mathbf{v} \end{pmatrix} \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix} + \begin{pmatrix} \mathbf{w} \\ \mathbf{w}' \end{pmatrix}\right)$$

$$q(x,y) = Ax^{2} + Bxy + Cy^{2} + Dx + Ey + F$$

$$q'(x,y) = A'x^{2} + B'xy + C'y^{2} + D'x + E'y + F'$$

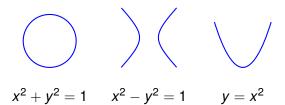
$$q(x,y) \approx q'(x,y)$$

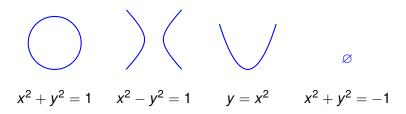
$$\iff$$

$$q(x,y) = \mathbf{c} \cdot q'(\mathbf{s}x + ty + \mathbf{w}, \mathbf{u}x + \mathbf{v}y + \mathbf{w}')$$

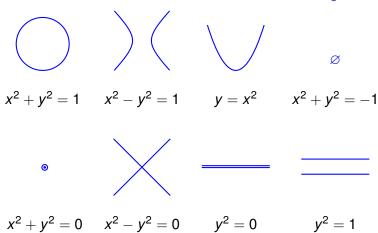
$$= \mathbf{c} \cdot q'\left(\begin{pmatrix} \mathbf{s} & t \\ \mathbf{u} & \mathbf{v} \end{pmatrix} \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix} + \begin{pmatrix} \mathbf{w} \\ \mathbf{w}' \end{pmatrix}\right)$$

Example: $4x^2 - 2xy + 4y^2 - 14x - 4y + 15 \approx x^2 + y^2 - 1$

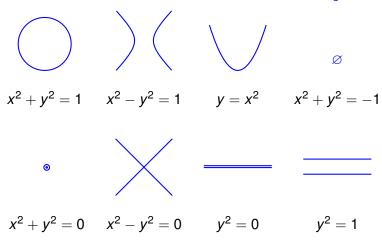




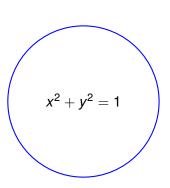
smooth/singular

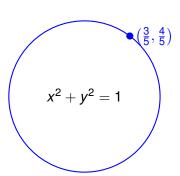


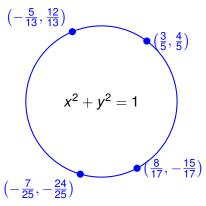
smooth/singular

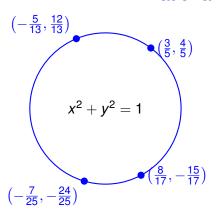


We'll focus on smooth conics.









Rational point
$$\left(\frac{3}{5}\right)^2 + \left(\frac{4}{5}\right)^2 = 1$$

 \iff

Pythagorean triple $3^2 + 4^2 = 5^2$

General Affine Equivalence over ${\mathbb Q}$

 $\mathbb{Q} = \left\{ \frac{a}{b} : a, b \text{ integers, } b \neq 0 \right\}$ set of rational numbers

$$q(x,y) \approx_{\mathbb{Q}} q'(x,y)$$

$$\iff$$

$$q(x,y) = \mathbf{c} \cdot q'(\mathbf{s}x + ty + \mathbf{w}, ux + vy + \mathbf{w}')$$

$$= \mathbf{c} \cdot q'\left(\begin{pmatrix} \mathbf{s} & t \\ u & v \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} \mathbf{w} \\ \mathbf{w}' \end{pmatrix}\right)$$

Where we only allow:

$$c \neq 0 \in \mathbb{Q}, \qquad \begin{pmatrix} s & t \\ u & v \end{pmatrix} \in \mathbf{GL}_2(\mathbb{Q}), \qquad \begin{pmatrix} w \\ w' \end{pmatrix} \in \mathbb{Q}^2$$

General Affine Equivalence over ${\mathbb Q}$

 $\mathbb{Q} = \left\{ \frac{a}{b} : a, b \text{ integers, } b \neq 0 \right\}$ set of rational numbers

$$q(x,y) \approx_{\mathbb{Q}} q'(x,y)$$

$$\iff$$

$$q(x,y) = \mathbf{c} \cdot q'(\mathbf{s}x + ty + \mathbf{w}, ux + vy + \mathbf{w}')$$

$$= \mathbf{c} \cdot q'\left(\begin{pmatrix} \mathbf{s} & t \\ u & v \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} \mathbf{w} \\ \mathbf{w}' \end{pmatrix}\right)$$

Where we only allow:

$$c \neq 0 \in \mathbb{Q}, \qquad \begin{pmatrix} s & t \\ u & v \end{pmatrix} \in \mathbf{GL}_2(\mathbb{Q}), \qquad \begin{pmatrix} w \\ w' \end{pmatrix} \in \mathbb{Q}^2$$

Main point: General affine equivalence over $\mathbb Q$ gives a bijection on the sets of rational points.

Example. $4x^2 - 2xy + 4y^2 - 14x - 4y + 15 \approx x^2 + y^2 - 1$

$$4x^2 - 2xy + 4y^2 - 14x - 4y + 15 \approx_{\mathbb{Q}} 4x^2 - 2xy + 4y^2 - 1$$

Remember $x = x - 2$, $y = y - 1$

$$4x^{2} - 2xy + 4y^{2} - 14x - 4y + 15 \approx_{\mathbb{Q}} 4x^{2} - 2xy + 4y^{2} - 1$$
$$\approx_{\mathbb{Q}} 6x^{2} + 10y^{2} - 1$$
$$x = \frac{1}{2}(y - x + 1), \quad y = \frac{1}{2}(x + y - 3)$$

$$4x^2 - 2xy + 4y^2 - 14x - 4y + 15 \approx_{\mathbb{Q}} 4x^2 - 2xy + 4y^2 - 1$$

 $\approx_{\mathbb{Q}} 6x^2 + 10y^2 - 1$

$$q(x, y) = Ax^2 + Bxy + Cy^2 + Dx + Ey + F$$

Discriminant $\Delta(q) = B^2 - 4AC$

Lemma. $q(x,y) \approx_{\mathbb{Q}} q'(x,y) \implies \Delta(q) = d^2\Delta(q')$ for $d \in \mathbb{Q}$.

$$4x^2 - 2xy + 4y^2 - 14x - 4y + 15 \approx_{\mathbb{Q}} 4x^2 - 2xy + 4y^2 - 1$$

 $\approx_{\mathbb{Q}} 6x^2 + 10y^2 - 1$

$$q(x, y) = Ax^2 + Bxy + Cy^2 + Dx + Ey + F$$

Discriminant $\Delta(q) = B^2 - 4AC$

Lemma. $q(x,y) \approx_{\mathbb{Q}} q'(x,y) \implies \Delta(q) = d^2\Delta(q')$ for $d \in \mathbb{Q}$.

Corollary.
$$4x^2 - 2xy + 4y^2 - 14x - 4y + 15 \approx_{\mathbb{Q}} x^2 + y^2 - 1$$

compare $\Delta - 60 \neq -4d^2$

 $\sqrt{15}$ irrational

Example. $x^2+y^2+1 \not\approx_{\mathbb{Q}} x^2+y^2-1$ yet both have $\Delta=4$.

 $x^2 + y^2 = -1$ has no rational solutions $x^2 + y^2 = 1$ has many rational solutions

Example. $x^2 + y^2 + 1 \not\approx_{\mathbb{Q}} x^2 + y^2 - 1$ yet both have $\Delta = 4$.

 $x^2 + y^2 = -1$ has no rational solutions $x^2 + y^2 = 1$ has many rational solutions

Conclusion. The discriminant Δ does not necessarily distinguish between general affine equivalence classes over \mathbb{Q} .

Diagonalization

Theorem. Every smooth conic over \mathbb{Q} is equivalent to:

$$y = x^2$$
 or $ax^2 + by^2 = 1$, for some $a, b \in \mathbb{Q}$

Diagonalization

Theorem. Every smooth conic over \mathbb{Q} is equivalent to:

$$y = x^2$$
 or $ax^2 + by^2 = 1$, for some $a, b \in \mathbb{Q}$

Proof. Case $\Delta \neq 0$ (not a parabola).

$$a(x, y) = Ax^2 + Bxy + Cy^2 + Dx + Ey + F$$

Can always clear away the linear terms with a translation by solutions to the system of linear equations:

$$\frac{\partial}{\partial x}q(x,y) = \frac{\partial}{\partial y}q(x,y) = 0 \Leftrightarrow \begin{cases} 2Ax + By = -D \\ Bx + 2Cy = -E \end{cases}$$

$$q(x,y) \approx_{\mathbb{Q}} A x^{2} + B xy + C y^{2} + F'$$

$$= \frac{\begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} A & B/2 \\ B/2 & C \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}}{C} + F$$

$$\approx_{\mathbb{Q}} \frac{\begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} s & t \\ u & v \end{pmatrix} \begin{pmatrix} s & t \\ B/2 & C \end{pmatrix} \begin{pmatrix} s & t \\ u & v \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}}{C} + F$$

Diagonalization

Theorem. Every smooth conic over \mathbb{Q} is equivalent to:

$$y = x^2$$
 or $ax^2 + by^2 = 1$, for some $a, b \in \mathbb{Q}$

Proof.

$$q(x,y) \approx_{\mathbb{Q}} {\begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} s & t \\ u & v \end{pmatrix}}^{t} {\begin{pmatrix} A & B/2 \\ B/2 & C \end{pmatrix}} {\begin{pmatrix} s & t \\ u & v \end{pmatrix}} {\begin{pmatrix} x \\ y \end{pmatrix}} + F$$

A "diagonalization" problem. Over \mathbb{R} , this can be done by the spectral theorem in linear algebra "every real symmetric matrix can be diagonalized by an orthogonal matrix" (remember Q is orthogonal if $Q^t = Q^{-1}$). Over \mathbb{Q} this is the higher theory of "completing the square."

Clifford-Hasse-Witt symbol

Theorem. Every smooth conic over $\mathbb Q$ is equivalent to:

$$y = x^2$$
 or $ax^2 + by^2 = 1$, for some $a, b \in \mathbb{Q} \setminus \{0\}$

Clifford-Hasse-Witt symbol

Theorem. Every smooth conic over $\mathbb Q$ is equivalent to:

$$y = x^2$$
 or $ax^2 + by^2 = 1$, for some $a, b \in \mathbb{Q} \setminus \{0\}$

Clifford-Hasse-Witt symbol

$$q(x,y) \approx_{\mathbb{Q}} ax^2 + by^2 - 1 \quad \mapsto \quad [a,b]$$

 $q(x,y) \approx_{\mathbb{Q}} y - x^2 \quad \mapsto \quad [1,-1]$

(A priori depends on the choice of diagonalization.)

Clifford-Hasse-Witt symbol

Theorem. Every smooth conic over \mathbb{Q} is equivalent to:

$$y = x^2$$
 or $ax^2 + by^2 = 1$, for some $a, b \in \mathbb{Q} \setminus \{0\}$

Clifford-Hasse-Witt symbol

$$q(x,y) \approx_{\mathbb{Q}} ax^2 + by^2 - 1 \quad \mapsto \quad [a,b]$$

 $q(x,y) \approx_{\mathbb{Q}} y - x^2 \quad \mapsto \quad [1,-1]$

Properties:

•
$$[a,b] \approx_{\mathbb{Q}} [b,a]$$
 $(x,y) \mapsto (y,x)$

•
$$[a,b] \approx_{\mathbb{Q}} [a,bc^2]$$
 $(x,y) \mapsto (x,cy)$

•
$$[a, -a] \approx_{\mathbb{Q}} [1, -1]$$
 $\binom{x}{y} \mapsto \frac{1}{4} \binom{a+1}{a-1} \binom{a-1}{y} \binom{x}{y}$

•
$$[a, 1-a] \approx_{\mathbb{O}} [1, -1]$$

more tricky

Properties:

- $[a,b] \approx_{\mathbb{Q}} [b,a]$
- $[a, b] \approx_{\mathbb{Q}} [a, b c^2]$
- $[a, -a] \approx_{\mathbb{Q}} [1, -1]$
- $[a, 1-a] \approx_{\mathbb{Q}} [1, -1]$

Properties:

- $[a,b] \approx_{\mathbb{Q}} [b,a]$
- $[a, b] \approx_{\mathbb{Q}} [a, b c^2]$
- $[a, -a] \approx_{\mathbb{Q}} [1, -1]$
- $[a, 1-a] \approx_{\mathbb{Q}} [1, -1]$
- $[a, u^2 av^2] \approx_{\mathbb{Q}} [1, -1]$ for any $u, v \in \mathbb{Q}$ with $u^2 av^2 \neq 0$

Properties:

- $[a,b] \approx_{\mathbb{Q}} [b,a]$
- $[a, b] \approx_{\mathbb{Q}} [a, b c^2]$
- $[a, -a] \approx_{\mathbb{Q}} [1, -1]$
- $[a, 1-a] \approx_{\mathbb{Q}} [1, -1]$
- $[a, u^2 av^2] \approx_{\mathbb{Q}} [1, -1]$ for any $u, v \in \mathbb{Q}$ with $u^2 av^2 \neq 0$

$$S(\mathbb{Q}) = \{[a,b] : a,b \in \mathbb{Q} \setminus \{0\}\} / \approx_{\mathbb{Q}} \text{ properties}$$

Properties:

- $[a,b] \approx_{\mathbb{Q}} [b,a]$
- $[a, b] \approx_{\mathbb{Q}} [a, b c^2]$
- $[a, -a] \approx_{\mathbb{Q}} [1, -1]$
- $[a, 1-a] \approx_{\mathbb{Q}} [1, -1]$
- $[a, u^2 av^2] \approx_{\mathbb{Q}} [1, -1]$ for any $u, v \in \mathbb{Q}$ with $u^2 av^2 \neq 0$

$$S(\mathbb{Q}) = \{[a,b] : a,b \in \mathbb{Q} \setminus \{0\}\} / \approx_{\mathbb{Q}} \text{ properties}$$

Example. For any $a \in \mathbb{Q} \setminus \{0\}$ we have

$$[1,a] \approx_{\mathbb{Q}} [a,1] \approx_{\mathbb{Q}} [a,1^2 - a0^2] \approx_{\mathbb{Q}} [1,-1]$$

in $S(\mathbb{Q})$. The class of [1, -1] is called the trivial symbol.

Properties:

- $[a,b] \approx_{\mathbb{Q}} [b,a]$
- $[a,b] \approx_{\mathbb{Q}} [a,bc^2]$
- $[a, -a] \approx_{\mathbb{Q}} [1, -1]$
- $[a, 1-a] \approx_{\mathbb{Q}} [1, -1]$
- $[a, u^2 av^2] \approx_{\mathbb{Q}} [1, -1]$ for any $u, v \in \mathbb{Q}$ with $u^2 av^2 \neq 0$

$$\mathcal{S}(\mathbb{Q}) = \{[a,b] : a,b \in \mathbb{Q} \setminus \{0\}\} / \approx_{\mathbb{Q}} \text{ properties}$$

Lemma. The Clifford–Hasse–Witt symbol of q(x, y), taken in $S(\mathbb{Q})$, doesn't depend on the general affine equivalence class.

$$\{\operatorname{conics}\}/pprox_{\mathbb{Q}} \ \longrightarrow \ \mathcal{S}(\mathbb{Q})$$

Hasse-Minkowski Theorem

 $c,c'\in\mathbb{Q}$ are in the same square class if $c=d^2c'$ for $d\in\mathbb{Q}$

 $\Delta(\mathbb{Q})$ set of rational square classes (including 0)

 $\mathcal{S}(\mathbb{Q})$ set of symbols up to manipulations by properties

Hasse-Minkowski Theorem

 $c,c'\in\mathbb{Q}$ are in the same square class if $c=d^2c'$ for $d\in\mathbb{Q}$

 $\Delta(\mathbb{Q})$ set of rational square classes (including 0)

 $S(\mathbb{Q})$ set of symbols up to manipulations by properties

Theorem (Hasse–Minkowski). A conic over $\mathbb Q$ is uniquely determined, up to general affine equivalence, by its discriminant in $\Delta(\mathbb Q)$ and its Clifford–Hasse–Witt symbol in $S(\mathbb Q)$.

Hasse-Minkowski Theorem

 $c,c'\in\mathbb{Q}$ are in the same square class if $c=d^2c'$ for $d\in\mathbb{Q}$

 $\Delta(\mathbb{Q})$ set of rational square classes (including 0)

 $S(\mathbb{Q})$ set of symbols up to manipulations by properties

Theorem (Hasse–Minkowski). A conic over $\mathbb Q$ is uniquely determined, up to general affine equivalence, by its discriminant in $\Delta(\mathbb Q)$ and its Clifford–Hasse–Witt symbol in $S(\mathbb Q)$.

Recall. The trivial symbol is the class of [1,-1] in $S(\mathbb{Q})$.

Theorem. A conic over $\mathbb Q$ has a rational point if and only if its Clifford–Hasse–Witt symbol is trivial in $S(\mathbb Q)$.

Recall. The trivial symbol is the class of [1, -1] in $S(\mathbb{Q})$.

Theorem. A conic over \mathbb{Q} has a rational point if and only if its Clifford–Hasse–Witt symbol is trivial in $S(\mathbb{Q})$.

Recall. The trivial symbol is the class of [1,-1] in $S(\mathbb{Q})$.

Theorem. A conic over \mathbb{Q} has a rational point if and only if its Clifford–Hasse–Witt symbol is trivial in $S(\mathbb{Q})$.

Example. Does

$$q(x, y) = 4x^2 - 2xy + 4y^2 - 14x - 4y + 15 = 0$$

have a rational point?

To use the theorem, we already calculated

$$q(x,y) \approx_{\mathbb{Q}} 6x^2 + 10y^2 - 1 \mapsto [6,10]$$

Note that $10 = 4^2 - 6 \cdot 1^2$, so [6, 10] = [1, -1] is trivial in $S(\mathbb{Q})$. So g(x, y) = 0 has a rational point?

Recall. The trivial symbol is the class of [1, -1] in $S(\mathbb{Q})$.

Theorem. A conic over \mathbb{Q} has a rational point if and only if its Clifford–Hasse–Witt symbol is trivial in $S(\mathbb{Q})$.

Example. Does

$$q(x, y) = 4x^2 - 2xy + 4y^2 - 14x - 4y + 15 = 0$$

have a rational point?

To use the theorem, we already calculated

$$q(x,y) \approx_{\mathbb{Q}} 6x^2 + 10y^2 - 1 \mapsto [6,10]$$

Note that $10 = 4^2 - 6 \cdot 1^2$, so [6, 10] = [1, -1] is trivial in $S(\mathbb{Q})$. So q(x, y) = 0 has a rational point?

$$6\left(\frac{1}{4}\right)^2 + 10\left(\frac{1}{4}\right)^2 = 1$$

$$4 \cdot 2^2 - 2 \cdot 2 \cdot \frac{3}{2} + 4\left(\frac{3}{2}\right)^2 - 14 \cdot 2 - 4\frac{3}{2} + 15 = 0$$

Legendre's Theorem

$$ax^2 + by^2 = 1$$
 has a solution in rationals $x = \frac{X}{Z}$ and $y = \frac{Y}{Z}$ \iff

 $aX^2 + bY^2 = Z^2$ has a solution in integers X, Y, Z

Legendre's Theorem

$$ax^2 + by^2 = 1$$
 has a solution in rationals $x = \frac{X}{Z}$ and $y = \frac{Y}{Z}$
 \iff

$$aX^2 + bY^2 = Z^2$$
 has a solution in integers X, Y, Z

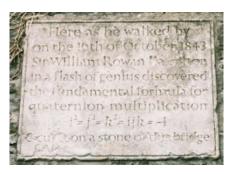
Theorem (Legendre's Theorem). Let *a* and *b* be positive squarefree integers. Then

$$aX^2 + bY^2 = Z^2$$

has a nontrivial solution if and only if a is a square modulo b and b is a square modulo a and $-\frac{ab}{d^2}$ is a square modulo d (here $d = \gcd(a, b)$).

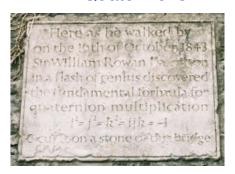
Here as he walked by on the 16th of October 1843 Sir William Rowan Hamilton in a flash of genius discovered the fundamental formula for quaternion multiplication

$$i^2 = j^2 = k^2 = ijk = -1$$



Here as he walked by on the 16th of October 1843 Sir William Rowan Hamilton in a flash of genius discovered the fundamental formula for quaternion multiplication

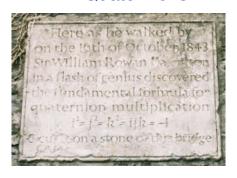
$$i^2 = j^2 = k^2 = ijk = -1$$



$$\mathbb{R} \longrightarrow \mathbb{C} = \mathbb{R} + i \mathbb{R}$$

Here as he walked by on the 16th of October 1843 Sir William Rowan Hamilton in a flash of genius discovered the fundamental formula for quaternion multiplication

$$i^2 = i^2 = k^2 = ijk = -1$$



$$\mathbb{R} \qquad \rightsquigarrow \qquad \mathbb{C} = \mathbb{R} + i \mathbb{R}$$

$$\mathbb{H} = \mathbb{R} + i \, \mathbb{R} + j \, \mathbb{R} + k \, \mathbb{R}$$

Here as he walked by on the 16th of October 1843 Sir William Rowan Hamilton in a flash of genius discovered the fundamental formula for quaternion multiplication

$$i^2 = j^2 = k^2 = ijk = -1$$

$$\mathbb{R}$$
 \longrightarrow $\mathbb{C} = \mathbb{R} + i \mathbb{R}$ not ordered

Here as he walked by on the 16th of October 1843 Sir William Rowan Hamilton in a flash of genius discovered the fundamental formula for quaternion multiplication

$$i^2 = i^2 = k^2 = ijk = -1$$

$$\mathbb{R}$$
 \longrightarrow $\mathbb{C} = \mathbb{R} + i \mathbb{R}$ not ordered

$$\mathbb{H} = \mathbb{R} + i \, \mathbb{R} + j \, \mathbb{R} + k \, \mathbb{R}$$
not commutative

Here as he walked by on the 16th of October 1843 Sir William Rowan Hamilton in a flash of genius discovered the fundamental formula for quaternion multiplication

$$i^2 = j^2 = k^2 = ijk = -1$$

$$\mathbb{R}$$
 \leadsto $\mathbb{C} = \mathbb{R} + i \mathbb{R}$ not ordered

on the 16th of October 1843
Sir William Rowan l'a often
in a flash of genius discovered
the Candamental formula for
quaternion multiplication
$$i^2 = j^2 = k^2 + ijk = -1$$
Excursion a stone of the bridge

$$ij = k$$
, $jk = i$, $ki = j$, $ij = -ji$, $ik = -ki$, $jk = -kj$

Skew-fields

Skew-field: \mathbb{F} set with operations + and \cdot satisfying:

• Associativity:
$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

 $x + (y + z) = (x + y) + z$

- Distributivity: $x \cdot (y + z) = x \cdot y + x \cdot z$
- Identity: 0 + x = x = x + 0 $1 \cdot x = x = x \cdot 1$
- Inverses: $\exists -x, \quad x + (-x) = (-x) + x = 0$ $x \neq 0 \Rightarrow \exists x^{-1}, \quad x \cdot x^{-1} = x^{-1} \cdot x = 1$
- Commutativity: x + y = y + x

Skew-fields

Skew-field: \mathbb{F} set with operations + and \cdot satisfying:

• Associativity:
$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

 $x + (y + z) = (x + y) + z$

- Distributivity: $x \cdot (y + z) = x \cdot y + x \cdot z$
- Identity: 0 + x = x = x + 0 $1 \cdot x = x = x \cdot 1$
- Inverses: $\exists -x, \quad x + (-x) = (-x) + x = 0$ $x \neq 0 \Rightarrow \exists x^{-1}, \quad x \cdot x^{-1} = x^{-1} \cdot x = 1$
- Commutativity: x + y = y + x $x \cdot y \neq y \cdot x$

$$(1+i+j)\left(\frac{1}{3}-\frac{1}{3}i-\frac{1}{3}j\right)=\frac{1}{3}+\frac{1}{3}+\frac{1}{3}+0=1$$

$$(1+i+j)\left(\frac{1}{3}-\frac{1}{3}i-\frac{1}{3}j\right)=\frac{1}{3}+\frac{1}{3}+\frac{1}{3}+0=1$$

$$(1+i+2j)\left(\frac{1}{6}-\frac{1}{6}i-\frac{1}{3}j\right)=\frac{1}{6}+\frac{1}{6}+\frac{2}{3}+0=1$$

$$(1+i+j)\left(\frac{1}{3}-\frac{1}{3}i-\frac{1}{3}j\right)=\frac{1}{3}+\frac{1}{3}+\frac{1}{3}+0=1$$

$$(1+i+2j)\left(\frac{1}{6}-\frac{1}{6}i-\frac{1}{3}j\right)=\frac{1}{6}+\frac{1}{6}+\frac{2}{3}+0=1$$

Quaternion conjugation:

$$(x + yi + zj + wk)(x - yi - zj - wk) = x^2 + y^2 + z^2 + w^2$$

$$(1+i+j)\left(\frac{1}{3}-\frac{1}{3}i-\frac{1}{3}j\right)=\frac{1}{3}+\frac{1}{3}+\frac{1}{3}+0=1$$

$$(1+i+2j)\left(\frac{1}{6}-\frac{1}{6}i-\frac{1}{3}j\right)=\frac{1}{6}+\frac{1}{6}+\frac{2}{3}+0=1$$

Quaternion conjugation:

$$(x + yi + zj + wk)(x - yi - zj - wk) = x^2 + y^2 + z^2 + w^2$$

$$(x + yi + zj + wk)^{-1} = \frac{x - yi - zj - wk}{x^2 + y^2 + z^2 + w^2}$$

$$x^2 + y^2 + z^2 + w^2 = 0$$
 \Leftrightarrow $x = y = z = w = 0$

Euclidean 3-space

Quantum Mechanics

Euclidean 3-space Imaginary quaternions

$$\mathbb{R}^3 \hookrightarrow \mathbb{H}$$

$$\vec{v} = (v_1, v_2, v_3) \mapsto v = v_1 i + v_2 j + v_3 k$$

Quantum Mechanics

Euclidean 3-space Imaginary quaternions

$$\mathbb{R}^{3} \hookrightarrow \mathbb{H}$$

$$\vec{v} = (v_1, v_2, v_3) \mapsto v = v_1 \, i + v_2 \, j + v_3 \, k$$

$$v \, w = -\vec{v} \cdot \vec{w} + \vec{v} \times \vec{w}$$

Quantum Mechanics

Euclidean 3-space Imaginary quaternions

$$\mathbb{R}^{3} \hookrightarrow \mathbb{H}$$

$$\vec{v} = (v_{1}, v_{2}, v_{3}) \mapsto v = v_{1} i + v_{2} j + v_{3} k$$

$$v w = -\vec{v} \cdot \vec{w} + \vec{v} \times \vec{w}$$

Quantum Mechanics Pauli matrices for fermionic spin (1920s):

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Euclidean 3-space Imaginary quaternions

$$\mathbb{R}^{3} \hookrightarrow \mathbb{H}$$

$$\vec{v} = (v_{1}, v_{2}, v_{3}) \mapsto v = v_{1} i + v_{2} j + v_{3} k$$

$$v w = -\vec{v} \cdot \vec{w} + \vec{v} \times \vec{w}$$

Quantum Mechanics Pauli matrices for fermionic spin (1920s):

$$\begin{split} \sigma_1 &= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \\ & i \leftrightarrow \sigma_1 \sigma_2, \quad j \leftrightarrow \sigma_3 \sigma_1, \quad k \leftrightarrow \sigma_2 \sigma_3 \\ & S^3 &= \{q \in \mathbb{H} \ : \ q \, \overline{q} = 1\} \to \textbf{SO}(3) \\ & q \mapsto v \mapsto q \, v \, q^{-1} \end{split}$$

Quaternions over $\mathbb Q$

Theorem (Frobenius 1877): \mathbb{F} a (skew-)field, $\mathbb{R} \subset \mathbb{F}$ center, then \mathbb{F} is either \mathbb{R} , \mathbb{C} , or \mathbb{H} .

Quaternions over $\mathbb Q$

Theorem (Frobenius 1877): $\mathbb F$ a (skew-)field, $\mathbb R\subset\mathbb F$ center, then $\mathbb F$ is either $\mathbb R$, $\mathbb C$, or $\mathbb H$.

Lots of different quaternion algebras over \mathbb{Q} .

Theorem (Frobenius 1877): $\mathbb F$ a (skew-)field, $\mathbb R\subset\mathbb F$ center, then $\mathbb F$ is either $\mathbb R$, $\mathbb C$, or $\mathbb H$.

Lots of different quaternion algebras over $\ensuremath{\mathbb{Q}}.$

$$\mathbb{H}_{\mathbb{Q}} = \{x + yi + zj + wk \in \mathbb{H} \ : \ x, y, z, w \in \mathbb{Q}\}$$

$$\mathbb{H}_{2,3} = \left\{ x + yi + zj + wk : \begin{array}{l} x, y, z, w \in \mathbb{Q} \\ i^2 = 2, j^2 = 3, k^2 = -6, ij = k, \dots \end{array} \right\}$$

Theorem (Frobenius 1877): \mathbb{F} a (skew-)field, $\mathbb{R} \subset \mathbb{F}$ center, then \mathbb{F} is either \mathbb{R} , \mathbb{C} , or \mathbb{H} .

Lots of different quaternion algebras over $\ensuremath{\mathbb{Q}}.$

$$\mathbb{H}_{\mathbb{Q}} = \{x + yi + zj + wk \in \mathbb{H} \ : \ x, y, z, w \in \mathbb{Q}\}$$

$$\mathbb{H}_{2,3} = \left\{ x + yi + zj + wk : \begin{array}{l} x, y, z, w \in \mathbb{Q} \\ i^2 = 2, j^2 = 3, k^2 = -6, ij = k, \dots \end{array} \right\}$$

$$(x + yi + zj + wk)(x - yi - zj - wk) = x^{2} - 2y^{2} - 3z^{2} + 6w^{2}$$
$$x^{2} - 2y^{2} - 3z^{2} + 6w^{2} \stackrel{?}{=} 0$$

Theorem (Frobenius 1877): \mathbb{F} a (skew-)field, $\mathbb{R} \subset \mathbb{F}$ center, then \mathbb{F} is either \mathbb{R} , \mathbb{C} , or \mathbb{H} .

Lots of different quaternion algebras over \mathbb{Q} .

$$\mathbb{H}_{\mathbb{Q}} = \{x + yi + zj + wk \in \mathbb{H} \ : \ x, y, z, w \in \mathbb{Q}\}$$

$$\mathbb{H}_{2,3} = \left\{ x + yi + zj + wk : \begin{array}{l} x, y, z, w \in \mathbb{Q} \\ i^2 = 2, j^2 = 3, k^2 = -6, ij = k, \dots \end{array} \right\}$$

Check invertibility:

$$(x + yi + zj + wk)(x - yi - zj - wk) = x^{2} - 2y^{2} - 3z^{2} + 6w^{2}$$
$$x^{2} - 2y^{2} - 3z^{2} + 6w^{2} = 0 \Leftrightarrow x = y = z = w = 0$$

Exercise!

Theorem (Frobenius 1877): \mathbb{F} a (skew-)field, $\mathbb{R} \subset \mathbb{F}$ center, then \mathbb{F} is either \mathbb{R} , \mathbb{C} , or \mathbb{H} .

Lots of different quaternion algebras over \mathbb{Q} .

$$\mathbb{H}_{\mathbb{Q}} = \{x + yi + zj + wk \in \mathbb{H} \ : \ x, y, z, w \in \mathbb{Q}\}$$

$$\mathbb{H}_{2,3} = \left\{ x + yi + zj + wk : \begin{array}{l} x, y, z, w \in \mathbb{Q} \\ i^2 = 2, j^2 = 3, k^2 = -6, ij = k, \dots \end{array} \right\}$$

$$(x + yi + zj + wk)(x - yi - zj - wk) = x^{2} - 2y^{2} - 3z^{2} + 6w^{2}$$
$$x^{2} - 2y^{2} - 3z^{2} + 6w^{2} = 0 \Leftrightarrow x = y = z = w = 0$$

Exercise! Hint
$$(x^2 - 2y^2) - 3(z^2 - 2w^2)$$

$$i^2 = a$$
, $j^2 = b$, $k^2 = -ab$, $ij = k$, $ij = -ji$,...

$$i^2 = a$$
, $j^2 = b$, $k^2 = -ab$, $ij = k$, $ij = -ji$,...

Is $\mathbb{H}_{a,b}$ a skew-field?

$$i^2 = a$$
, $j^2 = b$, $k^2 = -ab$, $ij = k$, $ij = -ji$,...

Is $\mathbb{H}_{a,b}$ a skew-field?

$$(x + yi + zj + wk)(x - yi - zj - wk) = x^2 - ay^2 - bz^2 + abw^2$$

$$i^2 = a$$
, $j^2 = b$, $k^2 = -ab$, $ij = k$, $ij = -ji$,...

Is $\mathbb{H}_{a,b}$ a skew-field?

$$(x + yi + zj + wk)(x - yi - zj - wk) = x^2 - ay^2 - bz^2 + abw^2$$

$$\mathbb{H}_{1,1}$$

$$i^2 = a$$
, $j^2 = b$, $k^2 = -ab$, $ij = k$, $ij = -ji$,...

Is $\mathbb{H}_{a,b}$ a skew-field?

$$(x + yi + zj + wk)(x - yi - zj - wk) = x^2 - ay^2 - bz^2 + abw^2$$

$$\mathbb{H}_{1,1}$$
 $x^2 - y^2 - z^2 + w^2 = 0$ often

$$i^2 = a$$
, $j^2 = b$, $k^2 = -ab$, $ij = k$, $ij = -ji$,...

Is $\mathbb{H}_{a,b}$ a skew-field?

$$(x + yi + zj + wk)(x - yi - zj - wk) = x^2 - ay^2 - bz^2 + abw^2$$

$$\mathbb{H}_{1,1}$$
 $x^2 - y^2 - z^2 + w^2 = 0$ often

$$\mathbb{H}_{2,-1}$$

$$i^2 = a$$
, $j^2 = b$, $k^2 = -ab$, $ij = k$, $ij = -ji$,...

Is $\mathbb{H}_{a,b}$ a skew-field?

$$(x + yi + zj + wk)(x - yi - zj - wk) = x^2 - ay^2 - bz^2 + abw^2$$

$$\mathbb{H}_{1,1}$$
 $x^2 - y^2 - z^2 + w^2 = 0$ often

$$\mathbb{H}_{2,-1}$$
 $x^2 - 2y^2 + z^2 - 2w^2 = 0$ often

Can $\mathbb{H}_{a,b}=\mathbb{H}_{c,d}$?

Can $\mathbb{H}_{a,b} = \mathbb{H}_{c,d}$?

Properties:

- $\mathbb{H}_{a,b} = \mathbb{H}_{b,a}$

 - $\mathbb{H}_{a,-a} = \mathbb{H}_{1,-1}$

Can $\mathbb{H}_{a,b} = \mathbb{H}_{c,d}$?

Properties:

- $\mathbb{H}_{a,b} = \mathbb{H}_{b,a}$
- $\mathbb{H}_{a,b} = \mathbb{H}_{a,bc^2}$
- $\mathbb{H}_{a,-a} = \mathbb{H}_{1,-1}$

Theorem (Minkowski 1896, Merkurjev 1982): Every skew-field over \mathbb{Q} is a Hilbert symbol $\mathbb{H}_{a,b}$.

Conics and Quaternions

Clifford–Hasse–Witt symbol [a, b] and Hilbert symbol $\mathbb{H}_{a,b}$.

$$q(x,y)\approx ax^2+by^2=1\mapsto [a,b]$$

Conics and Quaternions

Clifford–Hasse–Witt symbol [a, b] and Hilbert symbol $\mathbb{H}_{a,b}$.

$$q(x,y) \approx ax^2 + by^2 = 1 \mapsto [a,b]$$

Theorem: Conic sections and quaternion algebras over \mathbb{Q} determine each other:

$$[a,b] \approx [c,d] \qquad \Leftrightarrow \qquad \mathbb{H}_{a,b} = \mathbb{H}_{c,d} \quad \text{and} \quad ab = cd \cdot e^2$$

Conics and Quaternions

Clifford–Hasse–Witt symbol [a, b] and Hilbert symbol $\mathbb{H}_{a,b}$.

$$q(x,y)\approx ax^2+by^2=1\mapsto [a,b]$$

Theorem: Conic sections and quaternion algebras over \mathbb{Q} determine each other:

$$[a,b] \approx [c,d] \qquad \Leftrightarrow \qquad \mathbb{H}_{a,b} = \mathbb{H}_{c,d} \quad \text{and} \quad ab = cd \cdot e^2$$

Idea: Connection between 2-dimensional conic section

$$ax^2 + by^2 = 1$$

and 4-dimensional "quaternion invertibility" conic section

$$x^2 - ay^2 - bz^2 + abw^2 = 0$$