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K/Q finite extension
The trace form q k- K — Q

Ak j0(X) = Try o (X?)
(K, gk @) nondegenerate quadratic form over Q

Classical question. What about K/Q is recovered from gk q?
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Classical invariants of quadratic forms

k field of characteristic # 2
(V, q) nondegenerate quadratic form over k

Definition. The dimension dim(q) = dim, V
by : V x V — k associated bilinear form
1
by(v,w) = 5(q(v+w) - q(v) — q(w))

T(q) = (bg(ei, 7)) Gram matrix of g for basis {e,..., e} of V

Definition. The discriminant disc(q) = det(T(q)) € k* /k*?
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Classical invariants of quadratic forms

v : k — R embedding into a real closed field

g, R=<1,...,1,—-1,...,—1>
r S

Definition. The signature sgn,(q) =r—s

g =(ay,...,an) diagonalization

Definition. The Hasse—W/itt invariant

hw2(q) =) (ai, a)) € 2Br(k)

i<j
where (a, b) is the quaternion algebra over k
<X,y :x>=a, y?=b, xy = —yx >



Classical invariants of quadratic forms

Classical invariants associated to a quadratic form (V, q) over k

dim(q) e N
disc(q) € k*/k*?
sgn,(q) € Z
hwz(q) € 2Br(k)

Theorem. (Hasse—Minkowski) Let k be a number field. The
dimension, discriminant, signatures, and Hasse—Witt
invariant give a complete set of invariants for
nondegenerate quadratic forms over k.
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Classical invariants of number fields
K /Q number field

Classical invariants:
e dim(qgk,q) = [K : Q]

o disc(qk/q) = [Ak/q] € Q*/Q*?
encodes certain ramified primes in K/Q

e Theorem. (Hermite, Taussky 1968) sgn(qx/q) = I
the number of real embeddings

e Theorem. (Serre 1984)

hwz(gk/q) = (2,disc(gk q)) + sWa(pk /q)

pk/o : Fo — Sp permutation Galois action on the
embeddings Homg (K, Q)
sw2(pk/q) the 2nd Stiefel-Whitney class



2nd Stiefel-Whitney class

Central extension of S, derived from the “pinor extension”

1 ——7Z/2Z — Pinp(R) — Op(R) —— 1

H J ]
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2nd Stiefel-Whitney class

Central extension of S, derived from the “pinor extension”

1 ——7Z/2Z — Pinp(R) — Op(R) —— 1

H J ]

1 —>7,/27 3, S, 1

Connecting homomorphism in Galois cohomology
§: H'(Tg, Sp) — H?(Tq,Z/2Z) = ,Br(Q)
H'(I'g, Sn) = { homomorphisms p : [y — S, } /conjugation

Definition. Letp: g — S, be a homomorphism. The
2nd Stiefel-Whitney class is swa(p) = o([p]).
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2nd Stiefel-Whitney class
K/Q Galois extension with group G

pK/Q:F@—»G%Sn

Central extension of G derived from the “pinor extension”

1 7.)27. 3, Sn 1
RN
1 /2. G G 1



2nd Stiefel-Whitney class
K/Q Galois extension with group G
pK/Q:F@—» G‘—>Sn

Central extension of G derived from the “pinor extension”

1 Z/2Z S, Sh 1
H
1 7|27 G J; 1
ﬁ
Mo

Inverse Galois theoretic embedding problem:

2
swa(pk /) € 2Br(Q) vanishes iff the G- K %
G

ga/ois exteniion K /~Q fits into a tower
K/K/Q with K/Q a G-Galois extension? Q



2nd Stiefel-Whitney class
Example. Let G = V4 Klein four group.

Then G = Qg is the quaternion group:
0—-7Z/2Z — Qg — V4 — 0
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2nd Stiefel-Whitney class
Example. Let G = V4 Klein four group.

Then G = Qg is the quaternion group:
0—-7Z/2Z — Qg — V4 — 0

(Witt 1936) Let K = Q(v/a, vb). Then K/Q fits into a tower
K/K/Q with K/Q a Qg-Galois extension if and only if

SWQ(pK/Q) - (a7 b) + (aba _1) =0
Using Serre’s formula. Calculate gx,q = (4,44, 4b,4ab).
hwz(gk /@) = (a b) + (a ab) + (b, ab) = (a, b) + (ab, 1)

using bilinearity of the symbol and (a, a) = (a, —1)
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Frohlich’s perspective

(Q", gn) sum-of-squares quadratic form

Consider the permutation Galois action pk g : F'q — Spon
Q" = Homg(K, Q) as an orthogonal representation

rk/g: To — O0(gn)(Q)
New Galois action on Q" ®¢g Q
o(vea)=pkiplo)(veo(a), oelg veQ” aecQ

Fréhlich’s realization. (K, gk /q) = ((Q"©qQ)'?, (gh®idg)"?)
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(V, q) nondegenerate quadratic form
p:To — O(V,q)(Q) orthogonal representation
New Galois action on V ®g Q
o(vea)=plo)(vao(a)), oc€lg veV,acQ

Frohlich twist. (V,, q,) == ((V ©q @)™, (q ®idg)™@)



Frohlich’s perspective

(V, q) nondegenerate quadratic form
p:To — O(V,q)(Q) orthogonal representation
New Galois action on V ®g Q

o(vea)=plo)(vao(a)), oc€lg veV,acQ
Frohlich twist. (V,, q,) := ((V ©q Q)'2, (g @ idg)"®)
Theorem. (Frohlich 1985)

hwz(q,) = hwa(q) + (disc(q), det(p)) + swa(p) + sp(p)

where sp(p) is the spinor class of p



What is Fréhlich twisting?

Frohlich 1985
Jardine 1989 (understand the spinor class)

Esnault—-Kahn—Viehweg 1993 (Serre’s formula for finite
tame odd covers of Dedekind schemes)

Kahn 1994 (Serre’s formula for arbitrary étale morphisms
of schemes)

Cassou-Nogues—Erez—Taylor 2000 (Serre’s formula for
finite tame odd covers of arbitrary schemes)
Cassou-Nogues—Erez—Taylor 2004 (Fréhlich’s formula for
finite tame odd covers of arbitrary schemes)
Cassou-Nogues—Chinburg—Morin—Taylor 2011 (Approach
to Fréhlich’s formula for torsors under finite flat group
schemes over affine schemes)

Saito 2011 (Conjectural Serre’s formula for proper even
dimensional morphisms of schemes)
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weight 0) is equivalent to the category Repy, of finite
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Orthogonal Artin motives

Deligne. The category Motg of Artin motives (i.e. Q-motives of
weight 0) is equivalent to the category Repy, of finite
dimensional and finite image Q-representations of g.

Realization functors:
Hg, Hyr : MO’[@ — VectQ, Hy - MOta — RepQZ

Definition. Repg category of finite dimensional and finite
image orthogonal representations p : g — O(V, g)(Q)

QFq category of nondegenerate quadratic forms over Q



Orthogonal Artin motives
Theorem (A 2011)

e There’s a commutative diagram of equivalences and
forgetful maps:

MotS* > Rep§

fl \Lf

Mot — Repg

e There are isomorphisms of functors, compatible with the
above equivalence of categories:

Motd* —~>Repy Motd* —~>Repy Mot9* > Rep3

P PN | k |e0



Orthogonal Artin motives

Under these identifications, Fréhlich’s formula is interpreted
motivically as a Betti-de Rham—/-adic comparison of invariants:
hw(Hor(M)) _ sw(H,(M))
hw(Hg(M))  sp(He(M))

This equation takes place in the truncated cohomology ring

H*(Tg,Z/2Z) =1 @ H'(Tq,Z/27) & H*(Tg, Z/2Z)



T. Saito’s generalization

| Serre

| Saito

Q base field

base noetherian Q-scheme Y

finite extension K/Q of
degree n

proper smooth f : X — Y of even
relative dimension d

trace form gy @ on K

de Rham cohomology sheaf
HSR(X/Y) = RILQ5,, with cup
product form qx vy

orthogonal Galois per-
mutation representation

pk/o : Fo — On(Q)

orthogonal monodromy represen-
tation PX/Y - 7l'1(Y,y) — O( Vy, qy,)
associated to the orthogonal ¢-adic
sheaf (V,q) = (RY£.Q,(£),U) and
geometric base point y of Y

formula compar-
ing hwg(qK/Q) and
swa(pk/q)

conjectural formula relating
hwa(qx,y) and swa(px,y)




T. Saito’s generalization

Special case (Y = Spec Q): Let X be a smooth proper
Q-scheme of even dimension d,

Har(X/Q) = EBHdR X/Q)

i=0
the total de Rham colomology ring,

Ax/q : HIR(X/Q) — HER(X/Q) = Q
the cup product quadratic form,
2d

Hp (X, Q) = @He (X, Q0)(9)

the total ¢-adic cohomology ring, and
Px/q - T — O(H; (X, Q)
the orthogonal Galois monodromy representation.



T. Saito’s generalization

Conjecture. (T. Saito 2011)

hwa(q% o) = sWa(pxq) + (2,disc(q q)) + & B2,

where
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and o, € 2Br(Q) is ramified at 2 and ¢



T. Saito’s generalization

Conjecture. (T. Saito 2011)

hwa(q% o) = sWa(pxq) + (2,disc(q q)) + & B2,

where

=2 (1) (5 ) XX )
<%

and o, € 2Br(Q) is ramified at 2 and ¢

Theorem. (T. Saito) If X ¢ P9+! smooth hypersurface and
¢ > d + 1, then the conjecture is true.
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