Fröhlich twisting via orthogonal motives

Asher Auel

Department of Mathematics Emory University

2012 Spring Southeastern Section Meeting University of South Florida, Tampa, Florida Saturday 10 March 2012, 10:00–10:20 pm Hopf Algebras and Galois Module Theory

Trace forms

 K/\mathbb{Q} finite extension

The *trace form* $q_{L/k}: K \to \mathbb{Q}$

$$q_{K/\mathbb{Q}}(x) = \operatorname{Tr}_{K/\mathbb{Q}}(x^2)$$

 $(K, q_{K/\mathbb{Q}})$ nondegenerate quadratic form over \mathbb{Q}

Trace forms

 K/\mathbb{Q} finite extension

The *trace form* $q_{L/k}: K \to \mathbb{Q}$

$$q_{K/\mathbb{Q}}(x) = \operatorname{Tr}_{K/\mathbb{Q}}(x^2)$$

 $(K, q_{K/\mathbb{O}})$ nondegenerate quadratic form over \mathbb{Q}

Classical question. What about K/\mathbb{Q} is recovered from $q_{K/\mathbb{Q}}$?

k field of characteristic $\neq 2$ (V, q) nondegenerate quadratic form over k

Definition. The *dimension* $dim(q) = dim_k V$

k field of characteristic $\neq 2$ (V, q) nondegenerate quadratic form over k

Definition. The *dimension* $dim(q) = dim_k V$

 $b_a: V \times V \rightarrow k$ associated bilinear form

$$b_q(v, w) = \frac{1}{2}(q(v + w) - q(v) - q(w))$$

 $T(q) = (b_q(e_i, e_j))$ Gram matrix of q for basis $\{e_1, \ldots, e_n\}$ of V

Definition. The *discriminant* $\operatorname{disc}(q) = \det(T(q)) \in k^{\times}/k^{\times 2}$

 $\nu: k \hookrightarrow R$ embedding into a real closed field

$$q \otimes_{\nu} R \cong \langle \underbrace{1,\ldots,1}_{r}, \underbrace{-1,\ldots,-1}_{s} \rangle$$

Definition. The *signature* $sgn_{\nu}(q) = r - s$

 $\nu: k \hookrightarrow R$ embedding into a real closed field

$$q \otimes_{\nu} R \cong <\underbrace{1,\ldots,1}_{r},\underbrace{-1,\ldots,-1}_{s}>$$

Definition. The *signature* $sgn_{\nu}(q) = r - s$

$$q = \langle a_1, \dots, a_n \rangle$$
 diagonalization

Definition. The Hasse-Witt invariant

$$\mathsf{hw}_2(q) = \sum_{i < i} (a_i, a_j) \in {}_2\mathsf{Br}(k)$$

where (a, b) is the quaternion algebra over $k < x, v : x^2 = a, v^2 = b, xv = -vx >$

Classical invariants associated to a quadratic form (V, q) over k

- $\dim(q) \in \mathbb{N}$
- $\operatorname{disc}(q) \in k^{\times}/k^{\times 2}$
- $\operatorname{sgn}_{\nu}(q) \in \mathbb{Z}$
- $hw_2(q) \in {}_2Br(k)$

Theorem. (Hasse–Minkowski) Let *k* be a number field. The dimension, discriminant, signatures, and Hasse–Witt invariant give a complete set of invariants for nondegenerate quadratic forms over *k*.

Classical invariants of number fields

 K/\mathbb{Q} number field

Classical invariants:

- $\dim(q_{K/\mathbb{Q}}) = [K : \mathbb{Q}]$
- disc(q_{K/ℚ}) = [Δ_{K/ℚ}] ∈ ℚ[×]/ℚ^{×2}
 encodes certain ramified primes in K/ℚ

Classical invariants of number fields

 K/\mathbb{Q} number field

Classical invariants:

- $\dim(q_{K/\mathbb{Q}}) = [K : \mathbb{Q}]$
- disc(q_{K/ℚ}) = [Δ_{K/ℚ}] ∈ ℚ[×]/ℚ^{×2}
 encodes certain ramified primes in K/ℚ
- **Theorem.** (Hermite, Taussky 1968) $\operatorname{sgn}(q_{K/\mathbb{Q}}) = r_1$ the number of real embeddings

Classical invariants of number fields

 K/\mathbb{Q} number field

Classical invariants:

- $\dim(q_{K/\mathbb{Q}}) = [K : \mathbb{Q}]$
- disc(q_{K/ℚ}) = [Δ_{K/ℚ}] ∈ ℚ[×]/ℚ^{×2}
 encodes certain ramified primes in K/ℚ
- **Theorem.** (Hermite, Taussky 1968) $\operatorname{sgn}(q_{K/\mathbb{Q}}) = r_1$ the number of real embeddings
- Theorem. (Serre 1984)

$$\mathsf{hw}_2(q_{K/\mathbb{O}}) = (\mathsf{2}, \mathsf{disc}(q_{K/\mathbb{O}})) + \mathsf{sw}_2(\rho_{K/\mathbb{O}})$$

 $ho_{K/\mathbb{Q}}: \Gamma_{\mathbb{Q}} o S_n$ permutation Galois action on the embeddings $\operatorname{Hom}_{\mathbb{Q}}(K, \overline{\mathbb{Q}})$ sw₂ $(\rho_{K/\mathbb{Q}})$ the 2nd Stiefel–Whitney class

Central extension of S_n derived from the "pinor extension"

$$1 \longrightarrow \mathbb{Z}/2\mathbb{Z} \longrightarrow \mathsf{Pin}_n(\mathbb{R}) \longrightarrow \mathsf{O}_n(\mathbb{R}) \longrightarrow 1$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad$$

Central extension of S_n derived from the "pinor extension"

$$1 \longrightarrow \mathbb{Z}/2\mathbb{Z} \longrightarrow \mathsf{Pin}_n(\mathbb{R}) \longrightarrow \mathsf{O}_n(\mathbb{R}) \longrightarrow 1$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

Connecting homomorphism in Galois cohomology

$$\delta: H^1(\Gamma_{\mathbb{Q}}, \mathcal{S}_n) \to H^2(\Gamma_{\mathbb{Q}}, \mathbb{Z}/2\mathbb{Z}) \cong {}_2\mathsf{Br}(\mathbb{Q})$$

 $H^1(\Gamma_{\mathbb{Q}}, S_n) = \{ \text{ homomorphisms } \rho : \Gamma_{\mathbb{Q}} \to S_n \} / \text{conjugation}$

Central extension of S_n derived from the "pinor extension"

$$1 \longrightarrow \mathbb{Z}/2\mathbb{Z} \longrightarrow \mathsf{Pin}_n(\mathbb{R}) \longrightarrow \mathsf{O}_n(\mathbb{R}) \longrightarrow 1$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

Connecting homomorphism in Galois cohomology

$$\delta: H^1(\Gamma_{\mathbb{Q}}, \mathcal{S}_n) \to H^2(\Gamma_{\mathbb{Q}}, \mathbb{Z}/2\mathbb{Z}) \cong {}_{2}\mathsf{Br}(\mathbb{Q})$$

 $H^1(\Gamma_{\mathbb Q}, S_n) = \{ \text{ homomorphisms } \rho : \Gamma_{\mathbb Q} \to S_n \} / \text{conjugation}$

Definition. Let $\rho: \Gamma_{\mathbb{Q}} \to S_n$ be a homomorphism. The *2nd Stiefel–Whitney* class is $sw_2(\rho) = \delta([\rho])$.

 K/\mathbb{Q} Galois extension with group G

$$\rho_{K/\mathbb{Q}}:\Gamma_{\mathbb{Q}}\twoheadrightarrow G\hookrightarrow S_n$$

 K/\mathbb{Q} Galois extension with group G

$$\rho_{K/\mathbb{Q}}:\Gamma_{\mathbb{Q}}\twoheadrightarrow G\hookrightarrow S_n$$

Central extension of G derived from the "pinor extension"

$$1 \longrightarrow \mathbb{Z}/2\mathbb{Z} \longrightarrow \widetilde{S}_n \longrightarrow S_n \longrightarrow 1$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

 K/\mathbb{Q} Galois extension with group G

$$\rho_{K/\mathbb{Q}}:\Gamma_{\mathbb{Q}}\twoheadrightarrow G\hookrightarrow S_n$$

Central extension of G derived from the "pinor extension"

$$1 \longrightarrow \mathbb{Z}/2\mathbb{Z} \longrightarrow \widetilde{S}_n \longrightarrow S_n \longrightarrow 1$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$1 \longrightarrow \mathbb{Z}/2\mathbb{Z} \longrightarrow \widetilde{G} \longrightarrow G \longrightarrow 1$$

 K/\mathbb{Q} Galois extension with group G

$$\rho_{K/\mathbb{Q}}:\Gamma_{\mathbb{Q}}\twoheadrightarrow G\hookrightarrow S_n$$

Central extension of *G* derived from the "pinor extension"

Inverse Galois theoretic embedding problem:

 $sw_2(\rho_{K/\mathbb{Q}}) \in {}_2Br(\mathbb{Q})$ vanishes iff the G-Galois extension K/\mathbb{Q} fits into a tower $\widetilde{K}/K/\mathbb{Q}$ with \widetilde{K}/\mathbb{Q} a \widetilde{G} -Galois extension?

Example. Let $G = V_4$ Klein four group.

Then $\widetilde{G} = Q_8$ is the quaternion group:

$$0 \to \mathbb{Z}/2\mathbb{Z} \to \textit{Q}_8 \to \textit{V}_4 \to 0$$

Example. Let $G = V_4$ Klein four group.

Then $\widetilde{G} = Q_8$ is the quaternion group:

$$0 \to \mathbb{Z}/2\mathbb{Z} \to \textit{Q}_8 \to \textit{V}_4 \to 0$$

(Witt 1936) Let $K = \mathbb{Q}(\sqrt{a}, \sqrt{b})$. Then K/\mathbb{Q} fits into a tower $\widetilde{K}/K/\mathbb{Q}$ with \widetilde{K}/\mathbb{Q} a Q_8 -Galois extension if and only if

$$sw_2(\rho_{K/\mathbb{Q}}) = (a,b) + (ab,-1) = 0$$

Example. Let $G = V_4$ Klein four group.

Then $\widetilde{G} = Q_8$ is the quaternion group:

$$0 \to \mathbb{Z}/2\mathbb{Z} \to \textit{Q}_8 \to \textit{V}_4 \to 0$$

(Witt 1936) Let $K = \mathbb{Q}(\sqrt{a}, \sqrt{b})$. Then K/\mathbb{Q} fits into a tower $\widetilde{K}/K/\mathbb{Q}$ with \widetilde{K}/\mathbb{Q} a Q_8 -Galois extension if and only if

$$sw_2(\rho_{K/\mathbb{O}}) = (a,b) + (ab,-1) = 0$$

Using Serre's formula. Calculate $q_{K/\mathbb{O}} = \langle 4, 4a, 4b, 4ab \rangle$.

$$hw_2(q_{K/\mathbb{Q}}) = (a, b) + (a, ab) + (b, ab) = (a, b) + (ab, -1)$$

using bilinearity of the symbol and (a, a) = (a, -1)

 (\mathbb{Q}^n, q_n) sum-of-squares quadratic form

Consider the permutation Galois action $\rho_{K/\mathbb{Q}}: \Gamma_{\mathbb{Q}} \to S_n$ on $\mathbb{Q}^n = \operatorname{Hom}_{\mathbb{Q}}(K, \overline{\mathbb{Q}})$ as an orthogonal representation

$$ho_{K/\mathbb{Q}}: \Gamma_{\mathbb{Q}} o \mathbf{O}(q_n)(\overline{\mathbb{Q}})$$

 (\mathbb{Q}^n, q_n) sum-of-squares quadratic form

Consider the permutation Galois action $\rho_{K/\mathbb{Q}}: \Gamma_{\mathbb{Q}} \to S_n$ on $\mathbb{Q}^n = \operatorname{Hom}_{\mathbb{Q}}(K, \overline{\mathbb{Q}})$ as an orthogonal representation

$$ho_{K/\mathbb{Q}}: \Gamma_{\mathbb{Q}} o \mathbf{O}(q_n)(\overline{\mathbb{Q}})$$

New Galois action on $\mathbb{Q}^n \otimes_{\mathbb{Q}} \overline{\mathbb{Q}}$

$$\sigma(\mathbf{v}\otimes\alpha)=\rho_{\mathbf{K}/\mathbb{Q}}(\sigma)(\mathbf{v}\otimes\sigma(\alpha)),\quad \sigma\in\Gamma_{\mathbb{Q}},\ \mathbf{v}\in\mathbb{Q}^n,\ \alpha\in\overline{\mathbb{Q}}$$

Fröhlich's realization. $(K,q_{K/\mathbb{Q}}) = ((\mathbb{Q}^n \otimes_{\mathbb{Q}} \overline{\mathbb{Q}})^{\Gamma_{\mathbb{Q}}}, (q_n \otimes \mathrm{id}_{\overline{\mathbb{Q}}})^{\Gamma_{\mathbb{Q}}})$

(V,q) nondegenerate quadratic form

$$\rho: \Gamma_{\mathbb{Q}} \to \mathbf{O}(V,q)(\overline{\mathbb{Q}})$$
 orthogonal representation

New Galois action on $V \otimes_{\mathbb{Q}} \overline{\mathbb{Q}}$

$$\sigma(\mathbf{V}\otimes\alpha)=\rho(\sigma)(\mathbf{V}\otimes\sigma(\alpha)),\quad \sigma\in\Gamma_{\mathbb{Q}},\ \mathbf{V}\in\mathbf{V},\ \alpha\in\overline{\mathbb{Q}}$$

Fröhlich twist. $(V_{\rho}, q_{\rho}) := ((V \otimes_{\mathbb{Q}} \overline{\mathbb{Q}})^{\Gamma_{\mathbb{Q}}}, (q \otimes \operatorname{id}_{\overline{\mathbb{Q}}})^{\Gamma_{\mathbb{Q}}})$

(V, q) nondegenerate quadratic form

$$\rho: \Gamma_{\mathbb{Q}} \to \mathbf{O}(V,q)(\overline{\mathbb{Q}})$$
 orthogonal representation

New Galois action on $V \otimes_{\mathbb{Q}} \overline{\mathbb{Q}}$

$$\sigma(\mathbf{v}\otimes\alpha)=\rho(\sigma)(\mathbf{v}\otimes\sigma(\alpha)),\quad \sigma\in\Gamma_{\mathbb{Q}},\ \mathbf{v}\in\mathbf{V},\ \alpha\in\overline{\mathbb{Q}}$$

$$\textbf{Fr\"{o}hlich twist.} \; (\textit{V}_{\rho},\textit{q}_{\rho}) := \big((\textit{V} \otimes_{\mathbb{Q}} \overline{\mathbb{Q}})^{\mathsf{\Gamma}_{\mathbb{Q}}}, (\textit{q} \otimes \mathsf{id}_{\overline{\mathbb{Q}}})^{\mathsf{\Gamma}_{\mathbb{Q}}} \big)$$

Theorem. (Fröhlich 1985)

$$\mathsf{hw}_2(q_\rho) = \mathsf{hw}_2(q) + (\mathsf{disc}(q), \mathsf{det}(\rho)) + \mathsf{sw}_2(\rho) + \mathsf{sp}(\rho)$$

where $sp(\rho)$ is the *spinor class* of ρ

What is Fröhlich twisting?

- Fröhlich 1985
- Jardine 1989 (understand the spinor class)
- Esnault–Kahn–Viehweg 1993 (Serre's formula for finite tame odd covers of Dedekind schemes)
- Kahn 1994 (Serre's formula for arbitrary étale morphisms of schemes)
- Cassou-Noguès–Erez–Taylor 2000 (Serre's formula for finite tame odd covers of arbitrary schemes)
- Cassou-Noguès–Erez–Taylor 2004 (Fröhlich's formula for finite tame odd covers of arbitrary schemes)
- Cassou-Noguès-Chinburg-Morin-Taylor 2011 (Approach to Fröhlich's formula for torsors under finite flat group schemes over affine schemes)
- Saito 2011 (Conjectural Serre's formula for proper even dimensional morphisms of schemes)

Deligne. The category $\operatorname{Mot}_{\mathbb{Q}}^{A}$ of *Artin motives* (i.e. \mathbb{Q} -motives of weight 0) is equivalent to the category $\operatorname{Rep}_{\mathbb{Q}}$ of finite dimensional and finite image \mathbb{Q} -representations of $\Gamma_{\mathbb{Q}}$.

Deligne. The category $\operatorname{Mot}_{\mathbb{Q}}^{A}$ of *Artin motives* (i.e. \mathbb{Q} -motives of weight 0) is equivalent to the category $\operatorname{Rep}_{\mathbb{Q}}$ of finite dimensional and finite image \mathbb{Q} -representations of $\Gamma_{\mathbb{Q}}$.

Realization functors:

$$H_{\mathsf{B}}, H_{\mathsf{dR}} : \mathsf{Mot}^{\mathcal{A}}_{\mathbb{Q}} o \mathsf{Vect}_{\mathbb{Q}}, \quad H_{\ell} : \mathsf{Mot}^{\mathcal{A}}_{\mathbb{Q}} o \mathsf{Rep}_{\mathbb{Q}_{\ell}}$$

Definition. Rep $_{\mathbb{Q}}^{O}$ category of finite dimensional and finite image orthogonal representations $\rho : \Gamma_{\mathbb{Q}} \to \mathbf{O}(V,q)(\mathbb{Q})$

 $\mathsf{QF}_\mathbb{Q}$ category of nondegenerate quadratic forms over \mathbb{Q}

Theorem (A 2011)

 There's a commutative diagram of equivalences and forgetful maps:

 There are isomorphisms of functors, compatible with the above equivalence of categories:

Under these identifications, Fröhlich's formula is interpreted motivically as a Betti–de Rham– ℓ -adic comparison of invariants:

$$\frac{\mathsf{hw}(H_{\mathsf{dR}}(M))}{\mathsf{hw}(H_{\mathsf{B}}(M))} = \frac{\mathsf{sw}(H_{\ell}(M))}{\mathsf{sp}(H_{\ell}(M))}$$

This equation takes place in the truncated cohomology ring

$$H^*(\Gamma_{\mathbb{Q}}, \mathbb{Z}/2\mathbb{Z}) = 1 \oplus H^1(\Gamma_{\mathbb{Q}}, \mathbb{Z}/2\mathbb{Z}) \oplus H^2(\Gamma_{\mathbb{Q}}, \mathbb{Z}/2\mathbb{Z})$$

Serre	Saito
Q base field	base noetherian Q-scheme Y
finite extension K/\mathbb{Q} of	proper smooth $f: X \to Y$ of even
degree n	relative dimension d
trace form $q_{K/\mathbb{Q}}$ on K	de Rham cohomology sheaf
	$H^d_{dR}(X/Y) = R^d f_* \Omega^{ullet}_{X/Y}$ with cup
	product form $q_{X/Y}$
orthogonal Galois per-	orthogonal monodromy represen-
mutation representation	tation $ ho_{X/Y}:\pi_1(Y,\overline{y}) o \mathbf{O}(V_{\overline{y}},q_{\overline{y}})$
$ ho_{K/\mathbb{Q}}: \Gamma_{\mathbb{Q}} o \mathbf{O}_n(\overline{\mathbb{Q}})$	associated to the orthogonal ℓ -adic
, -	\mid sheaf $(V,q)=(R^df_*\mathbb{Q}_\ell(rac{d}{2}),\cup)$ and \mid
	geometric base point \overline{y} of Y
formula compar-	conjectural formula relating
ing $hw_2(q_{K/\mathbb{Q}})$ and	$hw_2(q_{X/Y})$ and $sw_2(ho_{X/Y})$
$sw_2(ho_{K/\mathbb{Q}})$	

Special case ($Y = \operatorname{Spec} \mathbb{Q}$): Let X be a smooth proper \mathbb{Q} -scheme of even dimension d,

$$H^{ullet}_{\mathsf{dR}}(X/\mathbb{Q}) = igoplus_{i=0}^{2d} H^i_{\mathsf{dR}}(X/\mathbb{Q})$$

the total de Rham colomology ring,

$$q_{X/\mathbb{O}}^{\bullet}: H^{\bullet}_{\mathsf{dB}}(X/\mathbb{Q}) \to H^{2d}_{\mathsf{dB}}(X/\mathbb{Q}) \cong \mathbb{Q}$$

the cup product quadratic form,

$$H_{\ell}^{ullet}(X,\mathbb{Q}_{\ell}) = \bigoplus_{i=0}^{2d} H_{\ell}^{i}(\overline{X},\mathbb{Q}_{\ell})(\frac{d}{2})$$

the total ℓ -adic cohomology ring, and

$$ho_{X/\mathbb{O}}^{ullet}: \Gamma_{\mathbb{Q}} o \mathbf{O}(H_{\ell}^{ullet}(X, \mathbb{Q}_{\ell}))$$

the orthogonal Galois monodromy representation.

Conjecture. (T. Saito 2011)

$$\mathsf{hw}_2(q_{X/\mathbb{Q}}^\bullet) = \mathsf{sw}_2(\rho_{X/\mathbb{Q}}^\bullet) + (2,\mathsf{disc}(q_{X/\mathbb{Q}}^\bullet)) + \xi\,\beta_{2,\ell}$$

where

$$\xi = \sum_{j < \frac{d}{2}} (-1)^j \left(\frac{n}{2} - j\right) \chi(X, \Omega^j_{X/\mathbb{Q}})$$

and $\beta_{2,\ell} \in {}_{2}Br(\mathbb{Q})$ is ramified at 2 and ℓ

Conjecture. (T. Saito 2011)

$$\mathsf{hw}_2(q_{X/\mathbb{Q}}^\bullet) = \mathsf{sw}_2(\rho_{X/\mathbb{Q}}^\bullet) + (2,\mathsf{disc}(q_{X/\mathbb{Q}}^\bullet)) + \xi\,\beta_{2,\ell}$$

where

$$\xi = \sum_{j < \frac{d}{2}} (-1)^j \left(\frac{n}{2} - j\right) \chi(X, \Omega^j_{X/\mathbb{Q}})$$

and $\beta_{2,\ell} \in {}_{2}\mathrm{Br}(\mathbb{Q})$ is ramified at 2 and ℓ

Theorem. (T. Saito) If $X \subset \mathbb{P}^{d+1}$ smooth hypersurface and $\ell > d+1$, then the conjecture is true.