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1. AN INTRODUCTION TOMODEL THEORY

Asher Auel

1.1. First Order Predicate Calculus.

Definition 1. Given index setsI andJ , families of natural numbersµ = (µi)i∈I andν =
(νj)j∈J , and a setK, afirst order languageor languageL = (µ, ν,K) is the free semigroup
generated by the following elements

• variable symbolsX1, X2, . . .
• constant symbols, i.e. the elements ofK
• for eachi ∈ I, aµi-ary relationsymbolRi

• the binary relation symbol= calledequals
• for eachj ∈ J , aνj-ary function symbolFj

• the logical symbols∀,∃,¬,∧,∨,→,↔, called theuniversal quantifier, existential
quantifier, negation, and (or disjunction), or (or conjunction), implication, anddou-
ble implicationsymbols, respectively

• the parentheses(, ) and bracket[, ] symbols.

Words ofL are calledstrings. The natural numbersµi andνj are called thearity of Ri and
Fj, respectively.

Remark2. One need not include all the above logical symbols as independent symbols of
the languageL, since for the purposes of first order logic, some of them can be defined in
terms of the others. For example, the convention in [3] is to include only¬, ∨ and∃, since
for any stringsϕ, ψ ∈ L we may define,

• ϕ ∧ ψ as¬[¬ϕ ∨ ¬ψ]
• ϕ→ ψ as¬ϕ ∨ ψ
• ϕ↔ ψ as[ϕ→ ψ] ∧ [ψ → ϕ]
• (∀Xl)[φ] as¬(∃Xl)[¬φ].

Being even more clever, one needs in fact only define the logical symbol| calledalternative
denialand then define

• ¬ϕ asϕ|ϕ
• ϕ ∨ ψ as¬ϕ|¬ψ.

Intuitively, ϕ|ψ means “¬[ϕ ∧ ψ].” Similarly, one need only take the “xor” symbol. Thus
it’s sufficient to take| and∃ as the only logical symbols for our language, though we’ll stick
with the convention of [3].

We now define several distinguished subsets ofL:

terms: The subsetterms ⊂ L of terms is the smallest subset containing the vari-
able and constant symbols and closed under function symbols, i.e.terms contains
{Xn}n∈N ∪K and satisfies

Fj(t1, . . . , tνj
) ∈ terms, for all t1, . . . , tνj

∈ terms, j ∈ J.
1
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atomic formulae: The subsetatoms ⊂ L of atomic formulaeis the set of all relations
among terms, i.e. the set

{t = t′, Ri(t1, . . . , tµi
) : t, t′, t1, . . . , tµi

∈ terms, i ∈ I}.

formulae: Finally, the subsetformulas ⊂ L of formulais the smallest subset contain-
ing atoms and satisfying

f1: ¬φ ∈ formulas for everyφ ∈ formulas

f2: ϕ ∨ ϕ′ ∈ formulas for everyϕ, ϕ′ ∈ formulas

f3: (∃Xl)[φ] ∈ formulas for everyφ ∈ formulas

Example 3. The first order language of groupsLgrp is generated by a single binary function
symbol·, where we usually write·(t, t′) as(t · t′) for termst, t′, and constant symbole. We
also define the language of ringsLring, which is generated by two binary operations usually
denoted by+ and ·, and two constant symbols0 and1. We might as well also define the
language of ordered ringsLordring by adding a single additional binary relation≤ to Lrign.
The following are example of strings, terms, atomic formula, and formula inLordring:

• )¬((1 ∨X10 ≤ [0 · 111]∃0X3 → 111(
• (1 · (1 + 1)) · (0 · (1 + (0 + 1)))
• 1 ≤ (0 · (1 + 0))
• (∃X1)[X1 · (1 + 1) = X2] → (∃X3)[X3 · (1 + 1 + 1) = X2].

A languages is just a set of strings of symbols.

In fact, we can write any formulaϕ(X1, . . . , Xm) of a languageL in prenex disjunctive
normal form

(Q1Y1) . . . (QnYn) [∨i ∧j Aij]

where eachQi is a quantifier (∃ or ∀), and eachAij is an atomic formula, and where “write”
we mean the two formulae are “logically equivalent,” where we’ll find out later on what that
means.

Remark4. By the recursive construction of the set of formulas, we may prove properties
of formulas by aninduction on structureor induction of formulas. Given a propertyP of
strings, we first proveP holds for all atomic formula and then supposing it holds for formula
ϕ andϕ′ we show thatP holds for¬ϕ, ϕ ∨ ϕ′ and(∃Xl)[ϕ] for all l ∈ N.

Definition 5. LetL be a language andX a variable symbol. Then we’ll define the notion of
a free occurrenceof a variableX in a formula by induction on structure. We’ll say that

• any occurrence ofX in any atomic formula is free
• if an occurrence ofX in a formulaϕ is free then this occurrence is

– also free in¬ϕ
– also free inϕ ∨ ϕ′ for any formulaϕ′

– also free in(∃X ′)[ϕ] for any variable symbolX ′ distinct fromX and not free in
(∃X)[ϕ].

Any occurrence ofX in ϕ that is not free is calledbound. If X has a free occurrence in
a formulaϕ, thenX is called afree variableof ϕ, and we’ll writeϕ asϕ(X1, . . . , Xm) to
indicate thatX1, . . . , Xm include all free variables ofϕ. We’ll call a formula without free
variables asentenceof L, and denote bysents the set of sentences ofL.
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1.2. Structures.
Though a language is a completely formal object, we usually “interpret” a language

through a structure, and usually don’t even realize there is an ambient language. Unless
otherwise stated, letL = (µ, ν,K) be a fixed language.

Definition 6. A structureA forL (or anL-structure) is a4-tupleA = (A, φ, (RA
i )i∈I , (F

A
j )j∈J),

where
• φ : K → A is a map of sets
• RA

i ⊂ Aµi is aµi-ary relation onA
• FA

j : Aνi → A is aµi-ary operation onA

and where the elements ofφ(K) ⊂ A are calledconstantsand the setA is called thedomain
of A..

We “see” or “interpret” languages through their structures via substitutions.

Definition 7. Let A be anL-structure, then asubstitutionfrom L into A is a functionf :
terms→ A defined by images

• f : Xi 7→ xi ∈ A for all variablesXi, i ∈ N
• f : k 7→ φ(k) ∈ A for all constant symbolsk ∈ K ⊂ terms

such that for eachj ∈ J the following diagram commute

termsνj
Fj−→ terms

f ↓ ↓ f

Aνj
FAj−→ A

i.e.f(Fj(t1, . . . , tνj
)) = FA

j (f(t1), . . . , f(tνj
)) for all termst1, . . . , tνj

of L.

Definition 8. Let A be anL-structure. Then we’ll define thetruth valueof a formulaϕ
under a substitutionf or thef -truth of ϕ by induction on structure:

• t = t′ is true iff(t) = f(t′) ∈ A
• Ri(t1, . . . , tµi

) is true if (f(t1), . . . , f(tµi
)) ∈ RA

i

• and supposing that formulasϕ, ϕ′ have a true value under every substitution then
– ¬ϕ is true ifϕ is false
– ϕ ∨ ϕ′ is true ifϕ is true and/or ifϕ′ is true
– (∃X)[ϕ] is true if there existsx ∈ A such thatϕ is true under the modified

substitutionfX 7→x defined byX 7→ x andX ′ 7→ f(X ′) for all variablesX ′

distinct fromX.
It’s clear that thef -truth of a formulaϕ = ϕ(X1, . . . , Xm) only depends on the images of
f : Xi 7→ xi, and so ifϕ is f -true then we’ll write

A |=f ϕ or A |= ϕ(x1, . . . , xm).

In particular, ifϕ is a sentence, then the truth value ofϕ is independent of the substitutionf
and so we’ll write simplyA |= ϕ if ϕ is f -true for any substitutionf of L intoA.

Remark9. The standard truth tables hold for the composite logical symbols∧,→,↔,∀, as
expected.

Example 10. How could you tell the structuresN,Z, andZ/3 apart as structures of the
languageLgrp?
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1.3. Models.
Models are structures for a language satisfying axioms. They are what we’re used to

calling groups, rings, fields, etc.
Definition 11.

• A theoryof L or anL-theoryis a subsetT ⊂ sents of sentences ofL.
• An L-structureA is called amodelof a theoryT if

A |= ϕ for everyϕ ∈ T,
and in this case we’ll writeA |= T .

• If T ′ is anotherL-theory, then we’ll writeT ′ |= T if

A |= T ′ ⇒ A |= T.

• If Π is anL-theory and

T = {ϕ ∈ sents : Π |= ϕ},
then we’ll say thatΠ is a set ofaxiomsfor T .

• Denote byMod(T ) the class of all models of a theoryT . If A is anL-structure,
denote byTh(A,L) the set of all sentences ofL that are true inA, called thetheory
ofA.

For anL-structureA, we’ll denote byL(A) the languageL(µ, ν,K tA) gotten by adding
a constant symbol for each element ofA.

Example 12. We write the standard axioms for the algebraic objects we know and love.

• Axioms for a group: inLgrp we have the following setΠ of axioms for the theoryT
of groups,

(∀X)(∀Y )(∀Z)[(X · Y ) · Z = X · (Y · Z)]

(∀X)[e ·X = X · e = X]

(∀X)(∃Y )[X · Y = Y ·X = e]

Then any modelG |= T is a group. Now for a given groupH, in the language
Lgrp(H) we can extendΠ by thepositive diagramof H, i.e. all sentencesa · b = c
for a, b, c ∈ H that are true inH. Denote this extension byΠ(H). Then a model of
Π(H) will be a groupG such that there’s a homomorphismH → G.

• Axioms for ordered groups: inLordgrp we extend the axioms for a group by the
following order axioms

(∀X)(∀Y )[(e ≤ X) ∧ (e ≤ Y ) → (e ≤ X · Y )]

(∀X)[((e ≤ X) ∧ (X ≤ e)) → (X = e)].

• Axioms for fields: inLring we can write the standard axioms for a field.
• Axioms for fields of a given characteristic: we extend the axioms for a field by the

sentencep = 0, where we’re thinking ofp = 1 + · · ·+ 1, if we want a characteristic
p field, and by the set{¬(p = 0) : p prime} if we want a characteristic zero field.

• Axioms for algebraically closed fields: we extend the axioms for a field by the sen-
tences

(∀A0 · · · ∀An−1)(∃X)[Xn + An−1X
n−1 + · · ·+ A0]

for eachn ≥ 1.
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1.4. Morphisms of structures.

Definition 13. Fix a languageL = (µ, ν,K) and letA = (A, (RA
i ), (FA

i ), φ) andB =
(B, (RB

i ), (FB
j ), φ′) beL-structures, then amorphismof structuresf : A → B is a set map

f : A→ B such that
• f(φ(k)) = f(φ′(k)) for all k ∈ K
• (a1, . . . , aµi

) ∈ RA
i ⇔ (f(ai), . . . , f(aµi

)) ∈ RB
i for eachi ∈ I

• f(FA
j (a1, . . . , aνi

)) = FB
j (f(ai), . . . , f(aνi

)), for all j ∈ J .

Thus the class of all structures of a languageL form the objects of a categoryStr(L). Call
a morphismf : A → B anembeddingof structures iff : A→ B is injective. We’ll note that
f : A → B is a categorical isomorphism ifff : A → B is bijective. CallA a substructure
of B (and writeA ⊂ B) if f : A → B is an embedding andf×µi(RA

i ) = f(A)×µi ∩ RB
i (as

opposed to just⊂ for an embedding).
1.5. Elementary equivalence.

Definition 14. Call twoL-structuresA andB elementarily equivalent(we’ll write A ≡L B
or justA ≡ B) if Th(A) = Th(B). We’ll say thatA is anelementary substructureof B or
thatB is anelementary extensionofA (we’ll write A ≺ B) if A ⊂ B andA ≡L(A) B as struc-
tures of the languageL(A), i.e. consideringA ⊂ B than for each formulaϕ(X1, . . . , Xm)
of L and for everya1, . . . , am ∈ A,

A |= ϕ(a1, . . . , am) ⇔ B |= ϕ(a1, . . . , am).

Concerning the freedom of choosing cardinalities of structures and elementary substruc-
tures we have the following pair of theorems.

Theorem 15(Downward Skolem-L̈owenhein). LetL be a countable language,B be anL-
structure, andA0 ⊂ B be countable. ThenB has a countable elementary substructureA
such thatA0 ⊂ A.

Proof. See [3] Prop. 7.4.2. �

Theorem 16(Upward Skolem-L̈owenhein). LetL be a language,A be an infiniteL-structure,
andκ be a cardinal such thatκ ≥ |A|, |L|. ThenA has an elementary extensionB with
κ = |B.

Proof. The proof involves taking high ultrapowers, which we’ll introduce shortly. �

2. ULTRAFILTERS AND ULTRAPRODUCTS

An ultrafilter on a setS is a collection of subsets ofS that we would like to consider as
being “big.”

Definition 17. Let S be a set, then afilter D on S is a nonempty collection of subset ofS
satisfying the following properties:

• ∅ /∈ D (andS ∈ D ensuresD is nonempty)
• A,B ∈ D ⇒ A ∩B ∈ D
• if A ⊂ B ⊂ S thenA ∈ D ⇒ B ∈ D

in addition,D is called anultrafilter onS if
• A ⊂ S ⇒ A ∈ D or S r A ∈ D.

If D is an ultrafilter we see that for everyA ⊂ S, bothA ∈ D andS rA ∈ D is impossible,
and thatD also satisfies
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• A ∪B ∈ D ⇒ A ∈ D orB ∈ D.

Note that the notion of a filter can be made on any poset (partially ordered set), here we’re
always using the powerset poset2S.
Example 18.

• The family of all cofinite sets ofS is a filter onS.
• Leta ∈ S, then the family of all subsets ofS containinga is an ultrafilter onS, called

aprincipal ultrafilter. Note that from the final property of ultrafilters, an ultrafilter is
principal iff it contains a finite set.

• If we did not assume∅ /∈ D, then we could have theimproperultrafilterD = 2S.
• LetD0 be a family of nonempty subsets ofS closed under finite intersections , then

the filterD1 generatedbyD0 is the family of all subsetsB ⊂ S which contain sets
of D0, indeedD1 is a filter onS.

Lemma 19. A filterD on a setS is an ultrafilter iff it’s maximal.

Proof. To “⇒.” By the final condition of an ultrafilter, it’s clear that it is maximal.
To “⇐.” Let D be a maximal filter onS and letA ⊂ S. If S r A ∈ D then we’re

done. So assumeS r A /∈ D. NowD′ = D ∪ {A ∩ D : D ∈ D} ∪ {A} is closed under
finite intersections and consists of all nonempty sets. Indeed, for anyD′, D′′ ∈ D, we have
D = D′ ∩D′ ∈ D and so(D′ ∩ A) ∩ (D′′ ∩ A) = (D′ ∩D′′) ∩ A = D ∩ A ∈ D′. Also, if
D∩A = ∅, thenD ⊂ SrA, so thatSrA ∈ D, a contradiction. Thus by the above remark,
there exists a filterD′′ containingD′ hence containingD, but by maximality ofD,D = D′′,
so in particularA ∈ D. ThusD is an ultrafilter. �
Corollary 20.

• Every family of subsets ofS closed under finite intersections is contained in an ul-
trafilter.

• LetD′ be a family of sets that satisfies the property that every finite intersections is
infinite, thenD′ is contained in an ultrafilter.

Proof. For the first statement, by Zorn’s lemma we can pick a maximal filter containing such
a family.

For the second statement, note that the stated family along with all cofinite sets ofS has
the finite intersection property. �

2.1. Regular ultrafilters.
Since we’re thinking of ultrafilters as the “big” sets of our setS, we say that an ultrafilter

is regular if it also doesn’t contain any “small” sets. The small sets have an axiomatization
dual to that of a filter.

Definition 21. Let S be a set, then a family ofsmall setsof S is a familyF of subsets ofS
satisfying the following properties:

• S /∈ F (and∅ ∈ F ensuresF is nonempty)
• A,B ∈ F ⇒ A ∪B ∈ F
• if A ⊂ B ⊂ S thenB ∈ F ⇒ A ∈ F

Note that in the general theory of posets, a family of small sets is also called anideal.

Example 22. The family of all finite sets ofS is a family of small sets.
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Fix a family of small setF of S, and forA,B ⊂ S we’ll say thatA is almost containedin
B if ArB ∈ F . If A andB are almost contained in each other, i.e.(ArB)∪ (BrA) ∈ F ,
then we’ll say they arealmost equal(we’ll write A ≈ B.

We’ll say that an ultrafilterD on S is F-regular (or just regular) if D ∩ F = ∅. In
particular, ifA ≈ B thenA ∈ D ⇒ B ∈ D. Note that nonprincipal ultrafilters are onS are
regular with respect to the family of finite sets ofS.

Lemma 23. LetS be a set andF a family of small sets ofS. Suppose that a familyD0 of
subsets ofS satisfiesA,A′ ∈ D0 ⇒ A∩A′ /∈ F . Then there exists a regular ultrafilterD on
S containingD0.
2.2. Ultraproducts.

Definition 24. Let L = (µ, ν,K) be a language andS a set together with an ultrafilterD.
For eachs ∈ S, letAs = (As, φs, (Ris)i∈I , (Fjs)j∈J) be anL-structure. We construct a new
L-structure called theultraproductA∗ = (A∗, φ∗, (R∗

i )i∈I , (F
∗
j )j∈J) of theAs as follows.

First, define an equivalence relation∼ on the direct product
∏

s∈S As by

a ∼ b⇐⇒ {s ∈ S : as = bs} ∈ D.

Then define

• the domain ofA∗ to be the setA∗ =
∏

s∈S As/ ∼,
• the relationsR∗

i ⊂ (A∗)µi, for i ∈ I, by

(a1, . . . , aµi
) ∈ R∗

i ⇐⇒ {s ∈ S : (a1s, . . . , aµis) ∈ Ris} ∈ D,

for any choice of representative(aks)s∈S of ak ∈ A∗, for 1 ≤ k ≤ µi,
• the set mapφ∗ : K → A∗ via the quotientφ : K →

∏
As →

∏
As/ ∼,

• the functionsF ∗
j : Aνj → A, for j ∈ J , by

F ∗
j (a1, . . . , aνj

) = (Fjs(a1s, . . . , aνjs))s∈S mod D,

for any choice of representative(aks)s∈S of ak ∈ A, for 1 ≤ k ≤ νj.

Then one checks that these are all well defined. We’ll sometimes denoteA∗ by
∏
As/D.

Note that in the above construction, we only require thatD be a filter (not necessarily an
ultrafilter). The resulting structure

∏
As/D is usually called thereduced productof the

structuresAs.

Example 25. Let a ∈ S andDa be the principal ultrafilter ata, then
∏
As/Da

∼= Aa.

The fundamental property of ultraproducts is that a sentence ofL is true in the ultraproduct
A iff it is true for almost allAs.

Theorem 26(Łoš). LetA∗ =
∏
As/D be an ultraproduct ofL-structures, indexed over a

setS. Letf be a substitution ofL intoA. Then for every formulaϕ ofL

A |=f ϕ⇐⇒ {s ∈ S : As |=fs ϕ} ∈ D,

where iff is defined byf : Xn 7→ xn, then choosing representatives(xns)s∈S for eachxn

moduloD, definefs byXn 7→ xns as a substitution ofL into As. In particular, if ϕ is a
sentence ofL then

A |= ϕ⇐⇒ {s ∈ S : As |= ϕ} ∈ D.
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Proof. We proceed by induction on structure. First we show that the statement of the theo-
rem follows for atomic formula. Before that, we note that for terms we have the following
fundamental

Lemma 27. Letf andfs be as in the statement of the theorem. Then for any termt ofL we
have

f(t) = (fs(t))s∈S mod D.

Proof of lemma.Note that the lemma holds for constants and for terms of the formF (X1, . . . , Xn),
for any function symbolF with arity n, by construction of the ultraproduct. Now suppose
thatt has the formt = F (t1, . . . , tn) where all termst1, . . . , tn satisfy the lemma, i.e. for all
1 ≤ k ≤ n,

f(tk) = (fs(tk))s∈S mod D ⇐⇒ {s ∈ S : f(tk)s = fs(tk)} ∈ D
⇐⇒ {s ∈ S : f(tk)s = fs(tk), for all 1 ≤ k ≤ n} ∈ D,

sinceD is closed under finite intersections. But then we have the following equalities modulo
D,

f(t) = f(F (t1, . . . , tn)) = F ∗(f(t1), . . . , f(tn)) = (Fs(f(t1)s, . . . , f(tn)s))s∈S

= (Fs(fs(t1), . . . , fs(tn)))s∈S = (fs(F (t1, . . . , tn)))s∈S

= (fs(t))s∈S mod D

i.e. the lemma holds fort. Thus by the recursive construction of the terms ofL, the lemma
holds for all terms. �

We proceed with our induction on structure. To show that the theorem holds for all atomic
formula, lett1, . . . , tn be terms ofL, andR be a relation symbol with arityn, then

A |=f R(t1, . . . , tn) ⇐⇒ (f(t1), . . . , f(tn)) ∈ R∗

⇐⇒ {s ∈ S : (f(t1)s, . . . , f(tn)s) ∈ Rs} ∈ D
⇐⇒ {s ∈ S : (fs(t1), . . . , fs(tn)) ∈ Rs} ∈ D
⇐⇒ {s ∈ S : As |=fs R(t1, . . . , tn)} ∈ D,

where the third equivalence above uses the lemma. Thus the theorem holds for atomic for-
mula.

Now suppose the theorem holds for a formulaϕ of L, then we show that it holds for¬ϕ.
Indeed,

A |=f ¬ϕ ⇐⇒ A 6|=f ϕ

⇐⇒ {s ∈ S : As |=fs ϕ} /∈ D
⇐⇒ {s ∈ S : As 6|=fs ϕ} ∈ D
⇐⇒ {s ∈ S : As |=fs ¬ϕ} ∈ D,

where the second equivalence is the induction hypothesis, and the third equivalence is by the
ultraproduct property, i.e. that for eachA ⊂ S exactly one ofA ∈ D or S r A ∈ D is true.
Note that this is the only place in the proof where we use the ultraproduct property.
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Now suppose the theorem holds for formulasvp andψ and that without loss of generality
we can assume bothA |=f ϕ andA |=f ψ by using the above. Then

A |=f ϕ ∨ ψ ⇐⇒ A |=f ϕ or A |=f ψ

⇐⇒ A |=f ϕ and A |=f ψ

⇐⇒ {s ∈ S : As |=fs ϕ} ∈ D and {s ∈ S : As |=fs ϕ} ∈ D
⇐⇒ {s ∈ S : As |=fs ϕ} ∩ {s ∈ S : As |=fs ϕ} ∈ D
⇐⇒ {s ∈ S : As |=fs ϕ ∧ ψ} = {s ∈ S : As |=fs ϕ ∨ ψ} ∈ D.

Finally, suppose the theorem holds for a formulaϕ, and letX be a variable ofL, then

A |=f (∃X)[ϕ] ⇐⇒ ∃ x ∈ A∗, A |=fX 7→x
ϕ

⇐⇒ ∃x ∈ A∗, {s ∈ S : As |=fs,X 7→xs
ϕ} ∈ D

⇐⇒ {s ∈ S : As |=fs (∃X)[ϕ]} ∈ D (WHY?)

Thus by induction on structure, the theorem holds for every formulaϕ of L. �

Corollary 28. The ultraproduct of models for a theoryT is also a model ofT , in particular,
the ultraproduct of groups is a group, the ultraproduct of rings is a ring, the ultraproduct of
fields is a field, etc.

Example 29. Let S = {p ∈ N : p is prime}, and choose any non-principal ultrafilterD
containing the comaximal filter onS. For each prime numberp ∈ S let Fp be the algebraic
closure of the finite fieldFp, thought of as anLring-structure. Then the ultra productF∗ =∏

p F p/D is a field. We claim it has characteristic zero. Indeed, for any prime numberp ∈ S
consider the sentence¬(p = 0), we have

{q ∈ S : Fq |= ¬(p = 0)} = S r {p} ∈ D,
sinceD contains the cofinite subsets ofS. Thus

F∗ |= ¬(p = 0) forallprimes p ∈ S,
i.e.F∗ has characteristic zero. Now also,F∗ is algebraically closed since it is the ultraproduct
of algebraically closed fields. Also, it’s not too hard to see thatF∗ has the cardinality of the
continuum. Thus in fact,F∗ ∼= C as fields.

Example 30. Prove that the ultraproduct of structures of finite bounded cardinality is itself
finite.

From the Łǒs theorem, we get another main result of model theory.

Theorem 31(Compactness Theorem). LetT be a theory in a first order languageL. If each
finite subset ofT has a model, thenT has a model.

Proof. LetF be the collection of all finite subsets ofT , then for eachΦ ∈ F letDΦ = {Φ′ ∈
F : Φ ⊂ Φ′}. ThenDΦ ∩ DΦ′ = DΦ∪Φ′, so that the familyD0 = {DΦ : Φ ∈ F} has is
closed under intersections. Thus there exists an ultrafilterD onF containingD0. Choosing
a modelMΦ for eachΦ ∈ F , thenM =

∏
MΦ/D is a model ofT , since for everyϕ ∈ T ,

{Φ ∈ F : MΦ |= ϕ} ⊃ D{ϕ}, so thatM |= ϕ. �

Example 32.We can show the existence of algebraically closed fields using the compactness
theorem. For eachn ≥ 1 let ϕn be the sentence

(∀A0 · · · ∀An−1)(∃X)[Xn + An−1X
n−1 + · · ·+ A0].
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and let
Fn = lim

−→
k

Fpkn! .

ThenFn is an algebraic extension ofFp which has no non-trivial extensions of degree≤ n.
Let Φ = {ϕn : n ≥ 1}. Then for any finite subset ofϕ ⊂ Φ lettingn = max{l : ϕl ∈ ϕ},
we have thatFn |= ϕ. SinceΦ together with the axioms of a field form a set of axioms
of the theory of algebraically closed fields, by the compactness theorem, there exists an
algebraically closed field. By the proof of the compactness theorem, the ultraproductF ∗ =∏
Fn/D is algebraically closed for any non-principal ultrafilter containing the cofinite sets

of Z+.

Another important result of model theory is the following. We’ll call a family of subsets
of S aBoolean algebra of setsif it’s closed under unions, intersections, and complements.

Proposition 33(Ax). LetS be a set,F a family of small subsets ofS,A a Boolean algebra
of subsets ofS containingF , andC ⊂ S withC /∈ A. The there exist two regular ultrafilters
D andD′ onS such thatD ∩A = D′ ∩ A butC ∈ D andC /∈ D′.

Proof. See [3] Prop. 7.6.2. �

Remark34. Denoting the set of all ultrafilters on a setS byUlt(S), we can topologizeUlt(S)
in the following way. For eachA ⊂ S defineDA = {D ∈ Ult(S) : A ∈ D}. Then in fact,
the above two theorems say that the collection{DA}A⊂S is a base for a compact Hausdorff
topology onUlt(S). This topology is in fact homeomorphic to the Stone-Čech compactifica-
tion of the discrete topology onS, (i.e. the unique up to homeomorphism topological space
Ŝ such that any continuous mapS → K to a compact Hausdorff topological space factors
throughŜ.)
2.3. Ultrapowers.

Definition 35. Let S be a set,D and ultrafilter onS, and structuresAs = A all equal to a
fixedL-structure. Then the ultraproduct

∏
As/D is called anultrapowerof A to S modulo

D (we’ll write AS/D or justA∗ as before.) Consider the diagonal embedding

A
∆→ AS → AS/D

a 7→ (a)s∈S → (a)s∈S mod D
and note that it’s injective. Thus we have a canonical diagonal embedding of structures
A → AS/D.

Proposition 36. If D is an ultrafilter on a setS andA is anL-structure, then the canonical
diagonal embeddingA → AS/D is an elementary extension.

Remark37. There is a powerful theorem of Saharon Shelah stating that for twoL-structures
A andB, we have thatA ≡ B iff there exists a setS and an ultrafilterD on S such that
AS/D ∼= BS/D.

2.4. Regular ultraproducts.
Let S be a set together with a family of small subsetsF , and for eachs ∈ S letAs be an

L-structure. Define thetruth setof a sentenceϕ of L by

A(ϕ) = {s ∈ S : As |= ϕ}.
Note that the mapϕ 7→ A(ϕ) : sents→ 2S preserves the Boolean operations:
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• A(ϕ ∨ ϕ′) = A(ϕ) ∪ A(ϕ′)
• A(ϕ ∧ ϕ′) = A(ϕ) ∩ A(ϕ′)
• A(¬ϕ) = S r A(ϕ).

Let T be the theory

T = {ϕ ∈ sents : As |= ϕ for almost alls ∈ S},
and call

∏
As/D a regular ultraproduct ifD is a regular ultraproduct ofS.

Proposition 38.
• Letϕ be a sentence inL, thenϕ ∈ T iff A |= ϕ for every regular ultrafilterA∗ =∏

As/D.
• Every model ofT is elementarily equivalent to a regular ultraproductA∗ =

∏
As/D.

Proof. To the first assertion. To “⇒,” note that by Łǒs’s Theorem, ifvp ∈ T thenϕ is true
for every regular ultraproduct of theAs.

To “⇐,” if ϕ /∈ T , thenA(¬ϕ) is not small, thus there exists a regular ultraproductD on
S which containsA(¬ϕ), so that

∏
As/D 6|= ϕ.

To the second assertion. LetA be a model ofT , then by the above remark, the family
D0 = {A(ϕ) : A |= ϕ} is closed under intersections. Note that noA(ϕ) ∈ D0 can be
small, since otherwise¬ϕ ∈ T so thatA |= ¬ϕ. By a previous lemma, there exists a regular
ultrafilterD onS containingD0, so by Łǒs’s Theorem,A ≡

∏
As/D. �

An application of this is a condition for when a theory isfinitely axiomatizable, i.e. if it
has a finite set of axioms.

Proposition 39. LetC be a class of models of a languageL. Then
• C is anelementary classof models (i.e.C = Mod(T ) for some theoryT of L) iff C

is closed under ultraproducts and elementary equivalences.
• C is a basic elementary classof models (i.e.C = Mod(ϕ) for a sentenceϕ of
L) iff bothC and it’s complement in the class of all models ofL are closed under
ultraproducts and elementary equivalences.

Proof. See [1] Theorem 4.1.12. �

Corollary 40. The theories of characteristic zero fields and algebraically closed fields are
not finitely axiomatizable.

Proof. We’ve already seen examples of an ultraproduct of finite characteristic fields being
characteristic zero and the ultraproduct of non algebraically closed fields being algebraically
closed. �
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