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Topics in Algebra: Seminar in Model Theory and Forms

1. ANINTRODUCTION TOMODEL THEORY

Asher Auel

1.1. First Order Predicate Calculus.

Definition 1. Given index setd and./, families of natural numberg = (u;);c; andv =
(vj);es, and a sef{, afirst order languager languagel = (u, v, K) is the free semigroup
generated by the following elements

e variable symbolsY,, X5, . ..

e constant symbo]s.e. the elements ok’

e for eachi € I, ay;-aryrelation symbol R;

¢ the binary relation symbat calledequals

e for eachj € J, ay;-aryfunction symboF;

e the logical symbols/, 3, —, A, VvV, —, <, called theuniversal quantifier existential
guantifier, negation and (or disjunction, or (or conjunctior), implication anddou-
ble implicationsymbols, respectively

e the parenthesds) and brackef, | symbols.

Words of £ are calledstrings The natural numberg; andv; are called tharity of i; and
F}, respectively.

Remark2. One need not include all the above logical symbols as independent symbols of
the language’, since for the purposes of first order logic, some of them can be defined in
terms of the others. For example, the convention in [3] is to include enly andd, since

for any stringsp, v € £ we may define,

o p A as—[-pV )]

e p—Yas—pVy

o pvasfp— YA — ¢

o (VX)[¢] as=(3X:)[¢).
Being even more clever, one needs in fact only define the logical synchtedalternative
denialand then define

e ~pasply
e © Vi as—p[-y.
Intuitively, ¢[i» means “[¢ A ¢].” Similarly, one need only take the “xor” symbol. Thus

it's sufficient to takg andd as the only logical symbols for our language, though we’ll stick
with the convention of [3].

We now define several distinguished subsetsof

terms: The subseterms C L of termsis the smallest subset containing the vari-
able and constant symbols and closed under function symbolsgek@s contains
{ X, }nen U K and satisfies

Fy(ti,...,t,,) € terms, forallt,,...,t, € terms,j € J.
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atomic formulae: The subsettoms C £ of atomic formulads the set of all relations
among terms, i.e. the set

{t =t',Ri(ty,...,t,,) : t,t' ty,... 1, € terms,ic I}.

formulae: Finally, the subsetormulas C £ of formulais the smallest subset contain-
ing atoms and satisfying
fl: —¢ € formulas for every¢ € formulas
f2: ¢V ¢' € formulas for everyp, ¢’ € formulas
f3: (3X))[¢] € formulas for every¢ € formulas

Example 3. The first order language of grougs,, is generated by a single binary function
symbol-, where we usually write(t, t') as(¢ - t') for termst, ¢, and constant symbel We
also define the language of rings,,;, which is generated by two binary operations usually
denoted by+ and-, and two constant symbolsand1. We might as well also define the
language of ordered ringS,.4.ing DY adding a single additional binary relatighto L,g,,.
The following are example of strings, terms, atomic formula, and formulz, i, :

e )-((1V X,0<[0-111]30X5 — 111(

e (1-(1+1)-(0-(1+(0+1)))

e 1 <(0-(140))
A languages is just a set of strings of symbols.

In fact, we can write any formula(X1, ..., X,,) of a language’ in prenex disjunctive
normal form

(@Q1Y1) ... (QnYn) [Vi Aj Ayl

where eacld); is a quantifier § or ), and each,; is an atomic formula, and where “write”
we mean the two formulae are “logically equivalent,” where we’ll find out later on what that
means.

Remark4. By the recursive construction of the set of formulas, we may prove properties
of formulas by aninduction on structureor induction of formulas Given a property” of
strings, we first prové’ holds for all atomic formula and then supposing it holds for formula
¢ andy’ we show thatP holds for—, ¢ V ¢ and(3X;)[¢] forall I € N.

Definition 5. Let £ be a language and a variable symbol. Then we’ll define the notion of
afree occurrencef a variableX in a formula by induction on structure. We'll say that

e any occurrence ok in any atomic formula is free
e if an occurrence of in a formulay is free then this occurrence is
— also free i~y
— also free inp Vv ¢’ for any formulay’
— also free iN3X")[¢] for any variable symbaK’ distinct from X and not free in

(BX)[l.

Any occurrence ofX in ¢ that is not free is callethound If X has a free occurrence in
a formulayp, then X is called afree variableof ¢, and we’'ll write p asp(X;, ..., X,,) to
indicate thatXy, ..., X,, include all free variables ap. We’ll call a formula without free
variables ssentencef £, and denote bgents the set of sentences 6f



1.2. Structures.

Though a language is a completely formal object, we usually “interpret” a language
through a structure, and usually don’t even realize there is an ambient language. Unless
otherwise stated, lef = (u, v, K') be a fixed language.

Definition 6. A structureA for £ (or anL-structure is ad-tuple A = (A, ¢, (R)ier, (Fi')jer),
where

e ¢: K — Aisamap of sets

o R4 C AMiis aug-ary relation ond

° ij‘ : AY — Ais au,-ary operation o
and where the elements of K') C A are callecconstantsand the set! is called thedomain
of A..

We “see” or “interpret” languages through their structures via substitutions.

Definition 7. Let A be anL-structure, then gubstitutionfrom £ into A is a functionf :
terms — A defined by images

e f:X;,— x; € AforallvariablesX;,i € N

e f:k— ¢(k) € Aforall constant symbols € K C terms
such that for each € J the following diagram commute

) Fy
terms”” —— terms

fl L
FA

An o LA
ie. f(Fj(ty,... t,) = FA(f(t1),..., f(t,)) foralltermsty, ... ¢, of L.

Definition 8. Let .A be anL-structure. Then we’ll define theuth valueof a formulay
under a substitutiorf or the f-truth of ¢ by induction on structure:
ot =tistrueiff(t) = f(t') e A
o Ri(ty,... t,)istrueif (f(t1),..., f(t,)) € R:
e and supposing that formulas ' have a true value under every substitution then
— —pistrue if p is false
— pV ¢ istrue ify is true and/or ify’ is true
— (3X)[¢] is true if there existe € A such thaty is true under the modified
substitutionfx, ., defined byX — x and X’ — f(X’) for all variablesX”’
distinct from X.
It's clear that thef-truth of a formulay = ¢(Xy,..., X,,) only depends on the images of
f: X; — x;, and so ify is f-true then we’ll write

Alre o AEp(an,... o).
In particular, ifp is a sentence, then the truth valueois independent of the substitutigh
and so we’ll write simply4 = ¢ if ¢ is f-true for any substitutiorf of £ into A.

Remark9. The standard truth tables hold for the composite logical symbols, <, V, as
expected.

Example 10. How could you tell the structureN, Z, andZ/3 apart as structures of the
language’,,,,?



1.3. Models.
Models are structures for a language satisfying axioms. They are what we’re used to
calling groups, rings, fields, etc.
Definition 11.
e A theoryof £ or anL-theoryis a subsef’ C sents of sentences of.
e An L-structureA is called anodelof a theoryT' if

Al ¢ foreveryp eT,

and in this case we’'ll writed |= T
e If 7" is anotherC-theory, then we’ll writel” = T if

AET = AET.
e If IT is anL-theory and
T = {p € sents : II = ¢},

then we’ll say thall is a set ofaxiomsfor 7.

e Denote byMod(T') the class of all models of a theofly. If A is an L-structure,
denote byT'h(.A, £) the set of all sentences gfthat are true in4, called thetheory
of A.

For anC-structureA4, we’ll denote by (A) the language€ (1, v, K LI A) gotten by adding
a constant symbol for each elementAf

Example 12. We write the standard axioms for the algebraic objects we know and love.

e Axioms for a group: inC,,, we have the following sdil of axioms for the theory’
of groups,

(VX)e - X =X -e = X]
VX)EV)X Y =Y - X = ¢]

Then any modelz = T is a group. Now for a given groufd, in the language
L,.,(H) we can extendI by thepositive diagranof H, i.e. all sentences-b = ¢
for a,b,c € H that are true in{. Denote this extension biyf(# ). Then a model of
II(H) will be a groupG such that there’'s a homomorphigih— G.

e Axioms for ordered groups: if,.q., We extend the axioms for a group by the
following order axioms

VX)) (e S X)A(e<Y) — (e < X -Y)]
(VX)[((e < X)A (X <e)) = (X =¢)].

e Axioms for fields: inL,;,, we can write the standard axioms for a field.

e Axioms for fields of a given characteristic: we extend the axioms for a field by the
sentence = 0, where we’re thinking op = 1 + - - - + 1, if we want a characteristic
p field, and by the sef—(p = 0) : p prime} if we want a characteristic zero field.

e Axioms for algebraically closed fields: we extend the axioms for a field by the sen-
tences

(VX)(VY)VO)(X - Y)-Z =X - (V- Z)]

(VAg- VA, )BX) X"+ A, 1 X" 4.+ A
for eachn > 1.



1.4. Morphisms of structures.

Definition 13. Fix a languagel = (u,v, K) and letA = (4, (R}), (FA),¢) andB =
(B, (RF), (FF),¢') be L-structures, then morphismof structuresf : A — B is a set map
f: A — B such that

o [(6(k) = f(#'(k)) forall k € K

e (a1,...,a,,) € RA & (f(a),..., f(a,)) € RP foreachi € I

o f(FMa1,...,a,)) = FP(f(a;),..., f(ay,)), forallj e J.

Thus the class of all structures of a langu#gierm the objects of a categoBtr(L). Call

a morphismf : A — B anembeddingf structuresiff : A — B is injective. We’'ll note that
f : A — Bis a categorical isomorphism iff : A — B is bijective. CallA a substructure
of B (and writeA C B) if f: A — Bis an embedding anf*#i (R) = f(A)** N R (as
opposed to just for an embedding).
1.5. Elementary equivalence.

Definition 14. Call two £L-structures4 andB elementarily equivaler(ve’ll write A =, B

or justA = B) if Th(A) = Th(B). We'll say thatA is anelementary substructuef 5 or

thatB is anelementary extensiaf A (we’ll write A < B) if A C BandA =4 B as struc-
tures of the languagg(A), i.e. consideringd C B than for each formula (X1, ..., X,,)

of £ and for everyay, ..., a,, € A,

AEov(ar,...;an) & BEp(al, ... ay).

Concerning the freedom of choosing cardinalities of structures and elementary substruc-
tures we have the following pair of theorems.

Theorem 15(Downward Skolem-bwenhein) Let £ be a countable languag® be an.-
structure, and4, C B be countable. Thel# has a countable elementary substructute
such that4, C A.

Proof. See [3] Prop. 7.4.2. O

Theorem 16(Upward Skolem-bwenhein) Let £ be alanguaged be an infinite£-structure,
and x be a cardinal such that > |A|,|£|. ThenA has an elementary extensighwith
Kk = |B.

Proof. The proof involves taking high ultrapowers, which we’ll introduce shortly. [

2. ULTRAFILTERS AND ULTRAPRODUCTS

An ultrafilter on a setS is a collection of subsets d¢f that we would like to consider as
being “big.”
Definition 17. Let S be a set, then flter D on S is a nonempty collection of subset §f
satisfying the following properties:
e ) ¢ D (andS € D ensured is nonempty)
e ABeED=ANBeD
eif ACBCSthenAeD= BeD
in addition,D is called arultrafilter on S'if
e ACS=AcDorS~\AecD.

If D is an ultrafilter we see that for every C S, bothA € D andS \ A € D is impossible,
and thatD also satisfies



e AUBeceD=AcDorBecD.

Note that the notion of a filter can be made on any poset (partially ordered set), here we're
always using the powerset poget
Example 18.

e The family of all cofinite sets of is a filter onS.

e Leta € S, then the family of all subsets éfcontaininga is an ultrafilter onS, called
aprincipal ultrafilter. Note that from the final property of ultrafilters, an ultrafilter is
principal iff it contains a finite set.

o If we did not assumé@ ¢ D, then we could have thenproperultrafilter D = 2°.

e Let D, be a family of nonempty subsets 8fclosed under finite intersections , then
the filter D; generatedoy D, is the family of all subset® C S which contain sets
of Dy, indeedD; is a filter onS.

Lemma 19. A filter D on a setS is an ultrafilter iff it's maximal.

Proof. To “=-." By the final condition of an ultrafilter, it's clear that it is maximal.

To “«<. Let D be a maximal filter onS and letA C S. If S~ A € D then we're
done. Soassumg~ A ¢ D. NowD' =DU{AND : D e D} U{A} is closed under
finite intersections and consists of all nonempty sets. Indeed, fobany” € D, we have
D=D'NnD eDandsoD'NA)N(D"NA)=(D'ND"YNA=DnNAecD.Also, if
DNA=0,thenD C S\ A, sothatS \ A € D, acontradiction. Thus by the above remark,
there exists a filteD” containingD’ hence containin@, but by maximality ofD, D = D”,

so in particularA € D. ThusD is an ultrafilter. O
Corollary 20.
e Every family of subsets ¢f closed under finite intersections is contained in an ul-
trafilter.

e LetD’ be a family of sets that satisfies the property that every finite intersections is
infinite, thenD’ is contained in an ultrafilter.

Proof. For the first statement, by Zorn’s lemma we can pick a maximal filter containing such

a family.
For the second statement, note that the stated family along with all cofinite setsasf
the finite intersection property. O

2.1. Regular ultrafilters.

Since we're thinking of ultrafilters as the “big” sets of our Setwve say that an ultrafilter
is regular if it also doesn’t contain any “small” sets. The small sets have an axiomatization
dual to that of a filter.

Definition 21. Let S be a set, then a family aimall setf S is a family F of subsets o5
satisfying the following properties:

e S ¢ F (and) € F ensuresF is nonempty)
e ABeF=AUuBeF
eif ACBCSthenBe F=AecF

Note that in the general theory of posets, a family of small sets is also calidéain

Example 22. The family of all finite sets of' is a family of small sets.
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Fix a family of small setF of S, and forA, B C S we’ll say thatA is almost containedh
Bif AN B € F. If AandB are almost contained in each other, {4~ B)U(B~\ A) € F,
then we’ll say they aralmost equa(we’ll write A =~ B.

We'll say that an ultrafilterD on S is F-regular (or justregular) if DN F = (. In
particular, ifA ~ B thenA € D = B € D. Note that nonprincipal ultrafilters are ¢hare
regular with respect to the family of finite sets.®f

Lemma 23. Let S be a set andF a family of small sets of. Suppose that a famil®, of
subsets of satisfiesA, A’ € Dy = AN A’ ¢ F. Then there exists a regular ultrafilté on
S containingD,.

2.2. Ultraproducts.

Definition 24. Let £ = (i, v, K) be a language anfl a set together with an ultrafiltep.
For eachs € S, let A, = (As, ¢s, (Ris)ier, (Fs)jes) be anl-structure. We construct a new
L-structure called theltraproduct A* = (A", ¢*, (R} )ic1, (F})jes) Of the A as follows.
First, define an equivalence relatienon the direct produd], ¢ A, by

a~b<={se€S:a, =0} €D.

Then define

e the domain of4* to be the set\* =[], ¢
e the relationsk; C (A*)", fori € I, by

As/ ~,

(ai,...,a,) € Rf <= {s € S:(ais,...,a,;) € Ris} € D,
for any choice of representativey)cs of a;, € A*, for1 < k < u;,

e the set map* : K — A* viathe quotient) : K — [[ As — [[ 4s/ ~,
e the functionst : A" — A, for j € J, by

Fj*(ala-'-aauj) = (-Fjs(alsa"-vaujs»sés mod Da

for any choice of representative;)scs of a, € A, forl <k <w;.

Then one checks that these are all well defined. We’'ll sometimes detidbg [ [ .As/D.
Note that in the above construction, we only require thdbe a filter (not necessarily an
ultrafilter). The resulting structurg] .A,/D is usually called theeduced producbof the
structuresA,.

Example 25. Leta € S andD,, be the principal ultrafilter at, then] [ .A,/D, = A..

The fundamental property of ultraproducts is that a senten€asrue in the ultraproduct
A iff it is true for almost all.A,.

Theorem 26(LoS). Let A* = [[.As/D be an ultraproduct of-structures, indexed over a
setsS. Let f be a substitution of into .4. Then for every formula of £

A):f@:){SG;S':AS):fSQD}ED,

where if f is defined byf : X,, — z,, then choosing representativés,;).s for eachz,
moduloD, definef, by X,, — x,, as a substitution of into A,. In particular, if © is a
sentence of then

AEp<—={seS: A, E¢}eD.
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Proof. We proceed by induction on structure. First we show that the statement of the theo-
rem follows for atomic formula. Before that, we note that for terms we have the following
fundamental

Lemma 27. Let f and f, be as in the statement of the theorem. Then for any texhf we
have

f(t) = (fs(t))ses mod D.

Proof of lemma.Note that the lemma holds for constants and for terms of the fofy, . . ., X,,),
for any function symboF’ with arity n, by construction of the ultraproduct. Now suppose
thatt has the formt = F(t4,...,t,) where all terms., . . ., ¢, satisfy the lemma, i.e. for all
1<k <n,

f(tk) = (fs(tk))ses mod D < {3 €5: f(tk:)s = fs(tk)} €D
— {seS: f(tr)s = fs(ty), forall1 <k <n} €D,

sinceD is closed under finite intersections. But then we have the following equalities modulo
D,

f(t) = f(F<t17 s ’tn» - F*(f(tl)v LR f(tn)) - (Fs<f(t1>57 CI) f(tn>s))8€5'
= (Fs<fs(t1)7 SRR fs(tn>>)S€S = (fs(F(tlu <. 7tn))>s€S
(fs(t))sES mod D

i.e. the lemma holds far. Thus by the recursive construction of the termpthe lemma
holds for all terms. O

We proceed with our induction on structure. To show that the theorem holds for all atomic
formula, lett,, ..., t, be terms of, and R be a relation symbol with arity, then

AEf Ry, ... t,) <= (f(t1),...,f(tn)) € R"
< {se€S:(f(t1)s,---, f(tn)s) € R} € D
— {seS:(fs(t1),...,fs(tn)) € R} € D
— {seS: A= R(ty,....t,)} €D,

where the third equivalence above uses the lemma. Thus the theorem holds for atomic for-
mula.

Now suppose the theorem holds for a formulaf £, then we show that it holds fofip.
Indeed,

AEr-p = Ao
= {seS: A= pt¢D
— {seS: AW 0t €D
— {seS: A ¢} eD,

where the second equivalence is the induction hypothesis, and the third equivalence is by the
ultraproduct property, i.e. that for eaehC S exactly one ofA € D or S \ A € D s true.
Note that this is the only place in the proof where we use the ultraproduct property.
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Now suppose the theorem holds for formulasand and that without loss of generality
we can assume botH = ¢ andA |=; ¢ by using the above. Then

AEreVey = AkEre or Ay
— Akre and Al
— {seS: A ket eD and {seS: A ¢} eD
= {seS: A= ptn{seS: As =5 ¢} €D
— {seS: AL pNYt={seS: A= ¢V} eD.
Finally, suppose the theorem holds for a formglaand letX be a variable oL, then
Ay @AX)p] <= Jze A" Ay 0
— drecA {seS: Ay ... ot€D
— {seS: A= 3X)|¢]} €D (WHY?)
Thus by induction on structure, the theorem holds for every formwa L. OJ
Corollary 28. The ultraproduct of models for a theo¥yis also a model of’, in particular,

the ultraproduct of groups is a group, the ultraproduct of rings is a ring, the ultraproduct of
fields is a field, etc.

Example 29. LetS = {p € N : pis prime}, and choose any non-principal ultrafilter
containing the comaximal filter ofi. For each prime number € S letF, be the algebraic
closure of the finite field",, thought of as ar’,;,,-structure. Then the ultra produgt =
I, F,/Dis afield. We claim it has characteristic zero. Indeed, for any prime numbes
consider the sentene€p = 0), we have

{¢eS:F,=E-(p=0)}=5~{p} €D,
sinceD contains the cofinite subsets ®f Thus
F* = —(p=0) forallprimes p €S,

i.e.[* has characteristic zero. Now aldt,is algebraically closed since it is the ultraproduct
of algebraically closed fields. Also, it's not too hard to see Hiahas the cardinality of the
continuum. Thus in facti* = C as fields.

Example 30. Prove that the ultraproduct of structures of finite bounded cardinality is itself
finite.
From the L& theorem, we get another main result of model theory.

Theorem 31(Compactness Theorem)etT be a theory in a first order language. If each
finite subset of ' has a model, thefi’ has a model.

Proof. Let I be the collection of all finite subsets df then for eackd € F'let Dy = {®’ €
F:® C ¢'}. ThenDg N Dy = Dguaer, SO that the familyDy = {Dg : & € F'} has is
closed under intersections. Thus there exists an ultrafilten F' containingD,. Choosing
a modelM, for each® € F, thenM = [[ M /D is a model ofT’, since for everyp € T,
{® € F: Mg |= ¢} D Dy, so thatM = ¢. O

Example 32.We can show the existence of algebraically closed fields using the compactness
theorem. For each > 1 let ¢,, be the sentence

(VA VA, 1) 3X)[X" + A, 1 X"+ 4 Ag).
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and let

F, = lmF .

k:

ThenF, is an algebraic extension &f, which has no non-trivial extensions of degreen.
Let® = {p, : n > 1}. Then for any finite subset of C @ lettingn = max{l : ¢, € ¢},
we have thaff,, = ¢. Since® together with the axioms of a field form a set of axioms
of the theory of algebraically closed fields, by the compactness theorem, there exists an
algebraically closed field. By the proof of the compactness theorem, the ultrapioduct
[ £./D is algebraically closed for any non-principal ultrafilter containing the cofinite sets
of Z7.

Another important result of model theory is the following. We'll call a family of subsets
of S aBoolean algebra of sei§it’s closed under unions, intersections, and complements.

Proposition 33(Ax). LetS be a set,F a family of small subsets 6f, .4 a Boolean algebra
of subsets of containingF, andC C S withC' ¢ A. The there exist two regular ultrafilters
DandD’ on S suchthath N A=D'NAbutC € DandC ¢ D'.

Proof. See [3] Prop. 7.6.2. O

Remark34. Denoting the set of all ultrafilters on a séby Ult(.S), we can topologiz&/1t(S)

in the following way. For eachl C S defineDy = {D € Ult(S) : A € D}. Then in fact,

the above two theorems say that the collecidh, } 45 is a base for a compact Hausdorff
topology onUlt(.S). This topology is in fact homeomorphic to the Stddeeh compactifica-
tion of the discrete topology of, (i.e. the unique up to homeomorphism topological space
S such that any continuous ma— K to a compact Hausdorff topological space factors
throughs.)

2.3. Ultrapowers.

Definition 35. Let S be a setD and ultrafilter onS, and structuresd, = A all equal to a
fixed L-structure. Then the ultraproducf.A,/D is called arultrapowerof 4 to S modulo
D (we'll write A% /D or just.A* as before.) Consider the diagonal embedding

A B A5 = AS/D

a = (a)SGS - <G>S€S mod D
and note that it’s injective. Thus we have a canonical diagonal embedding of structures
A — AS/D.

Proposition 36. If D is an ultrafilter on a set5 and A is an £L-structure, then the canonical
diagonal embeddingl — A° /D is an elementary extension.

Remark37. There is a powerful theorem of Saharon Shelah stating that foCtstuctures
A and B, we have thatd = B iff there exists a set and an ultrafilterD on S such that
A% /D = B%/D.

2.4. Regular ultraproducts.
Let S be a set together with a family of small subs&tsand for eacl € S let A, be an
L-structure. Define theruth setof a sentence» of £ by

Alp) ={s€S5: A=}
Note that the map — A(y) : sents — 2° preserves the Boolean operations:



11

o A(p V') = A(p) UA(¥)
o A(pNy') = A(p) N A(¥)
o A(—p) =5\ Alp).

Let T be the theory
T = {p € sents : A, = ¢ foralmost alls € S},
and call] [ A, /D aregular ultraproduct ifD is a regular ultraproduct cf.

Proposition 38.
e Letp be a sentence id, theny € T iff A = ¢ for every regular ultrafilter4* =

[1As/D.

e Every model of ' is elementarily equivalent to a regular ultraprodudt = [[ A, /D.

Proof. To the first assertion. To=t,” note that by £&’s Theorem, ifvp € T theny is true
for every regular ultraproduct of th4,.

To “<"if ¢ ¢ T, thenA(—¢) is not small, thus there exists a regular ultraproddan
S which containsA(—¢), so that][ [ A /D F~ .

To the second assertion. Lgt be a model off’, then by the above remark, the family
Dy = {A(p) : A |= ¢} is closed under intersections. Note that A0p) € D, can be
small, since otherwisep € T so thatA = —. By a previous lemma, there exists a regular
ultrafilter D on S containingD,, so by £a&’s TheoremA = [[ As/D. O

An application of this is a condition for when a theoryfisitely axiomatizablgi.e. if it
has a finite set of axioms.

Proposition 39. Let C' be a class of models of a language Then

e (' is anelementary classf models (i.eC' = Mod(T") for some theory{” of £) iff C
is closed under ultraproducts and elementary equivalences.

e (' is a basic elementary clas# models (i.,eC = Mod(y) for a sentencep of
L) iff both C' and it's complement in the class of all models{oére closed under
ultraproducts and elementary equivalences.

Proof. See [1] Theorem 4.1.12. O

Corollary 40. The theories of characteristic zero fields and algebraically closed fields are
not finitely axiomatizable.

Proof. We've already seen examples of an ultraproduct of finite characteristic fields being
characteristic zero and the ultraproduct of non algebraically closed fields being algebraically
closed. O
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