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Linear algebra problem

Problem. Compute the number of k-dim subspaces of I}

General case. Transitive action of GL,(IFy) with stabilizer

(GLk(IFq) ka(n—k)(FQ)>
0 GLn—k(FQ)

Orbit-stabilizer theorem gives

|GL(Fq)|
|GLk (Fq)||GLn—k (Fg) || Mk x (n—k) (Fq)|

(@"—1)(q"—q)---(a"—q")
(gk—1)---(gk — gk=1) (@" Kk —1)---(q"K — qn=K=T) gk(n=h)




Linear algebra problem

Problem. Compute the number of k-dim subspaces of I}

(@"-1)(q"-q)---(q"-g"")
(gk = 1)(gk —q)---(gk — gk ")

(@ = 1)@~ 1) (g 1)

#G(k7 n)(FQ) =

(gk —1)(gk-1—1)---(g—1)

= (n) g-binomial coefficient
k/q

Grassmannian G(k, n) over Fy



Linear algebra problem

Problem. Compute the number of k-dim subspaces of I}

5 k(n—k) _
(1) = X rulird
q i=0

Ank(f) number of partitions of i into at most n — k parts of size

at most k
HG(10)E) =14+ +q"
#G(2,4)(F;) =1+9+2¢°+q*+q*
#G(2,5)(F;) =1+g+2¢°+2¢°+29*+q°+¢°
#G(2,6)(F;) =1+9+2¢°+2¢°+3q* +2¢°+2¢° +q" + ¢°



Topology

G(k, n) complex Grassmannian manifold, dimension k(n — k)
b; = rk H'(G(k, n), Z) ith Betti number

Theorem (Schubert 1874). H'(G(k, n),Z) is free abelian group
generated by Schubert classes for i even and is 0 for / odd
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Topology

G(k, n) complex Grassmannian manifold, dimension k(n — k)
b; = rk H'(G(k, n), Z) ith Betti number

Theorem (Schubert 1874). H'(G(k, n),Z) is free abelian group
generated by Schubert classes for i even and is 0 for / odd

Poincaré polynomial Py (t) = >2%"X) (—1)ip; ¢

PG(1,n)(t) =1 +t2+"'+t2(n_1)

PG(2,4)(t) =1 +t2+2t4+t6+t8

Poes)(t) =1+ +2t4+ 2154218 + 110 4 112

Paeg)(t) =1+12+2t*42t%+ 318 + 2110 4 212 4 14 4 110

Pak,n)(a@'/?) = #G(k, n)(Fy)
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Theorem (Tate 1966). Two elliptic curves over I, are isogenous
if and only if they have the same number of rational points.

Use this as a test for when two elliptic curves defined over a
number field are not isogenous
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Elliptic curves |

Theorem (Tate 1966). Two elliptic curves over I, are isogenous
if and only if they have the same number of rational points.

Use this as a test for when two elliptic curves defined over a
number field are not isogenous

E:y?+xy+y=x®—460x — 3830
E':y?+xy+y=x3—x?—-213x — 1257
E and E’ have conductor 26 and no torsion points over Q
#E(Fp) = 4, #E'(Fo) =2

#E(F3) = 3, #E'(F3) =7



Elliptic curves II*

E/Q elliptic curve

L(E,s) =[] Lo(E.,5)™"
p

Local factors in terms of #E(Fp)

1-2s

Lo(E,s) =1—ap,p °+p p is a prime of good reduction

Fourier coefficiant a, = p+ 1 — #E(Fp)

Conjecture (Birch—Swinnerton-Dyer 1965).

ords_1L(s, E) = rk E(Q)



Weil conjectures
X smooth projective variety of dimension n over Zp

(X, ) = exp <Z “ff"’”)qu)

m=1

Conjecture (Weil 1949) [Dwork, Grothendieck, Deligne]
© (Rationality) ¢(X, s) is a rational functionin T = gq~*

Py(T) - Pop_1(T)
Po(T) -+ Pan(T)

@ (Betti numbers) deg Pi(T) = b;j(X(C))
@ (Functional equation) E = 52" (—1)/ b;(X(C))

C(X’ S) =

¢(X,n—s) = £qz9F((X,5)
© (Riemann hypoth) |a;| = q"/2if Pi(T) = [[;(1 — a;T)



Weil conjectures
X smooth projective variety of dimension n over Zp

~ P(T) - Pan+(T)
(X8) = 5 Ty Pon(T)

Grothendieck’s proof of Betti numbers
Pi(T) = det(l — &* T | Hy (X0, Qr))

Characteristic polynomial of Frobenius ¢ : Xy — Xj acting on
¢-adic cohomology of the special fiber over F,
Lefschetz trace formula

2n
#X(Fqn) =Y _(=1)"Tr(&™ | Hy(Xo, Qu))

i=0



Weil conjectures
X smooth projective variety of dimension n over Zp

Lefschetz trace formula

2n

#X(Fqn) = D (—1) Tr(&™ | Hy(Xo, Q)

i=0

Example. E elliptic curve over Zp
1—a,T+pT?
(1-7)(1-pT)

HL(E,Q¢) = Ty(E) ® Q; Tate module
ap =1 — #E(IF,) + p Frobenius trace
Corollary is Tate’s isogeny theorem

C(E’ S) =




Weil conjectures
X smooth projective variety of dimension n over Zp

Lefschetz trace formula

2n

#X(Fqn) = D (—1) Tr(&™ | Hy(Xo, Q)

i=0

Example. G(k, n) Grassmannian over Zp

k(n—k)
¢(G(k,n),8) = ] (1—g'T)wld

i=0

Corollary
#G(k, n)(Fq) = Panm(q'/?)



Quartic K3 surfaces

X C IP’% smooth quartic hypersurface, e.g.,
Xyttt vt =0

X is a K3 surface: wy = Ox and H'(X, 0x) =0

Néron—Severi group

NS(X) c H?(X,Z)

free lattice of rank p(X)
1 <p(X) <20



Quartic K3 surfaces

X C IP’% smooth quartic hypersurface, e.g.,

Xyt wt=0
X is a K3 surface: wy = Ox and H'(X, 0x) =0
Néron—Severi group
NS(X) c H?(X,Z)

free lattice of rank p(X)
1 <p(X) <20

p(X) =1 for a “very general” X

Challenge (Mumford). Write down any example with p(X) = 1.
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Theorem (van Luijk 2007). First explicit example of quartic K3
surface X with p(X) =1

Idea: A random enough choice of coefficients will suffice, the
real challenge is verifying that p(X) = 1



Quartic K3 surfaces

Theorem (van Luijk 2007). First explicit example of quartic K3
surface X with p(X) =1

Idea: A random enough choice of coefficients will suffice, the
real challenge is verifying that p(X) = 1

X K3 surface over Z,

Po(T)
(1-T)(1-¢q3T7)

C(X, S) -

Po(T) =W(T)Py(T)
W(T) product of cyclotomic polynomials, coming from NS(Xj)

Conclusion p(Xc) < number of root of unity roots of P(T)



Quartic K3 surfaces

Theorem (van Luijk 2007). First explicit example of quartic K3
surface X with p(X) =1
To compute P(T) = characteristic poly of ®* on HZ(Xo, Q¢))

¢ Newton’s formulas =
can deduce P(T) from Tr(¢™)form=1,...,22

e Lefschetz trace formula =
#X(Fgm) = 1+ Tr(d™) + g2

e Functional equation —
only need to count #X(Fgm) form=1,...,11
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