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Let X be an integral scheme, K its function field, €2 the set of rank 1 discrete
valuations on K, and K, the completion of K at v € 2. We assume throughout
that 2 is invertible on X. Let ¢ be a nondegenerate quadratic form over K and
G» = q @ K,. The local-global principle for isotropy of quadratic forms is the
statement: if g, is isotropic over K, for all v € Q) then ¢ is isotropic over K. A
natural question is: does the local-global principle hold for a given function field K7

We mention three examples. First, the local-global principle holds if K is a
global field by the Hasse-Minkowski theorem. Second, let K be the function
field of a smooth proper curve X over an algebraically closed field k. Here, Q2 is in
bijection with the set of closed points of X. By Tsen’s theorem, all quadratic forms
of dimension > 3 are isotropic. An anisotropic form ¢ of dimension 2 is similar
to the norm form of a separable quadratic field extension L/K, corresponding
to a finite flat quadratic cover Y — X between smooth proper curves. Then
¢y 1s isotropic if and only if the fiber of ¥ — X is split over the closed point
corresponding to v € Q. Hence ¢, is isotropic for all v € Q if and only if Y — X
is étale (indeed, k is algebraically closed). The Riemann—Hurwitz formula implies
that this is only possible if the genus of X is positive. We conclude that the
local-global principle holds over K if and only if X = P'. Third, there is a similar
situation when K is the function field of a smooth proper curve X over a complete
discretely valued field k. In this case, the local-global principle holds when X = P!,
fails in general for quadratic forms of dimension 2 over higher genus curves, and
holds for forms of dimension > 3, by the results of Colliot-Thélene, Parimala, and
Suresh [7] using the patching techniques of Harbater, Hartmann, and Krashen [8].

It is the second example above that we generalize to higher dimension.

Theorem 1. Let k be an algebraically closed field of characteristic not 2 and K
the function field of a surface X over k. Then there are counterexamples to the
local-global principle for quadratic forms of dimension 4 over K.

We remark that K is a Cs-field, hence all quadratic forms of dimension > 5 are
isotropic. Earlier, there were known counterexamples to the local-global principle
over special classes of surfaces yet the question was still open for rational surfaces.

These counterexamples arise as an application of classification results for qua-
dratic forms of dimension 4. Given a nondegenerate quadratic form ¢ of dimension
4 over a field k (of any characteristic), the even Clifford algebra Cy(q) is a quater-
nion algebra over the discriminant extension, which is an étale quadratic k-algebra
l. Similar quadratic forms yield isomorphic even Clifford algebras. Conversely,
given a quaternion algebra A over [, which has trivial corestriction to k, there is
an associated similarity class g4,/ of quadratic forms of dimension 4 over k, called
the norm form. In fact, the even Clifford algebra and norm form define inverse
bijections between the set of similarity classes of nondegenerate quadratic forms
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of dimension 4 with discriminant extension {/k and the set of isomorphism classes
of quaternion algebras over [ with trivial corestriction to k, see [10, IV.15.B].

This has been generalized to a classification of regular quadratic forms of di-
mension 4 over affine schemes by Knus, Parimala, and Sridharan [9], and more
generally, regular line bundle-valued quadratic forms of dimension 4 in [2, §5.3],
in terms of Azumaya quaternion algebras A over étale quadratic covers ¥ — X.
A line bundle-valued quadratic form (E,q, L) over a scheme X is the datum of a
locally free Ox-module E of finite rank, an invertible sheaf L, and a quadratic
form g : E — L. The even Clifford algebra Cy(E, ¢, L) was defined by Bichsel and
Knus [5]. The notion of similarity is replaced by projective similarity, which allows
for scaling by global units as well as tensoring by invertible modules.

We generalize these classification results to the degenerate context. Let X be
an integral scheme with 2 invertible and D C X a divisor. A line bundle-valued
quadratic form (E, g, L) has simple degeneration along D if its restriction to X \ D
is regular and if for each point = of D, the quadratic form ¢ ® ¢, Ox . has dis-
criminant in mx , \ m% . and contains a regular subform of codimension 1. If
X is regular, then the center of Cy(FE,q, L) defines the finite flat quadratic dis-
criminant cover Y — X. If (E, g, L) has simple degeneration and even dimension,
then Cy(FE, q, L) becomes an Azumaya algebra over Y, a result of Kuznetsov [11,
Prop. 3.13]. Our main construction is, given an Azumaya quaternion algebra A
over Y, a line bundle-valued norm form g, ,y,x of dimension 4 over X.

Theorem 2 ([3]). Let X be a regular integral scheme of dimension < 2 with 2
invertible and Y — X a finite flat quadratic cover with regular branch divisor D.
Then the even Clifford algebra and norm form define inverse bijections between the
set of projective similarity classes of quadratic forms (E,q, L) of dimension 4 with
simple degeneration and discriminant cover Y — X and the set of isomorphism
classes of Azumaya quaternion algebras over Y having split norm to X.

We now review the key ingredients of the proof. The first is a norm (or core-
striction) map for Azumaya algebras with respect to finite flat covers of schemes of
dimension < 2. Our construction uses Zariski patching techniques of Ojanguren,
relying on results of Colliot-Thélene and Sansuc [6, §2]. For the Brauer group, such
a norm map was defined in greater generality by Deligne in SGA 4, Exp. 17, §6.2.
Second, we prove the smoothness of the nonreductive special orthogonal group
scheme SO(FE,q, L) over X associated to a quadratic form with simple degenera-
tion, which allows to extend the exceptional isomorphisms of type 2A; = Ds to
this context. Third, we prove the Grothendieck—Serre conjecture for such special
orthogonal (and projective) group schemes over discrete valuation rings. The proof
then proceeds by patching the classical norm form (for étale quadratic covers) over
X ~ D with suitably chosen quadratic form models having simple degeneration
over the local rings of generic points of components of D.

Finally, to construct counterexamples to the local-global principle for the func-
tion field K of a smooth proper surface X over an algebraically closed field &k, we
have two cases. First, if oBr(X) # 2, then a given 2-torsion Brauer class « has a
quaternion algebra representative by the “period = index” result of Artin [1]. By
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“purity for division algebras” for schemes of dimension < 2, a result going back
to Auslander and Goldman [4], there exists an Azumaya quaternion algebra A on
X whose generic fiber is a. Then the reduced norm Nrd : A — Ox is a locally
isotropic quadratic form by Tsen’s theorem, yet is anisotropic over K. Second, in
the case when 2Br(X) = 0, we utilize our results. We prove a geometric lemma
showing that there always exists a finite flat quadratic cover Y — X between
smooth surfaces, having smooth branch divisor, such that 2Br(Y) # 0. Then as
in the previous case, there exists a nonsplit Azumaya quaternion algebra A over
Y, which now has split norm to X by our hypothesis in this case. Since the norm
form q4,y,x of dimension 4 has simple degeneration, it contains a regular subform
of rank 3, hence is locally isotropic by Tsen’s theorem. Finally, the norm form is
anisotropic over K since its even Clifford algebra gives back the nonsplit algebra
A over Y, appealing to the fact that a quadratic form of rank 4 is isotropic if and
only if its even Clifford algebra is split over the discriminant extension.

Similar considerations can lead to counterexamples to the local-global principle
for quadratic forms of dimension 4 over function fields of curves over totally imag-
inary number fields. An important open question remains: does the local-global
principle hold for quadratic forms of dimension > 5 over such fields?
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