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ABSTRACT. We prove the failure of the local-global principle, with respect to all
discrete valuations, for isotropy of quadratic forms of dimension 2™ over a rational
function field of transcendence degree n over C. Our construction involves the
generalized Kummer varieties considered by Borcea [6] and Cynk and Hulek [11].

INTRODUCTION

The Hasse-Minkowski theorem states that if a quadratic form ¢ over a number
field is isotropic over every completion, then ¢ is isotropic. This is the first, and
most famous, instance of the local-global principle for isotropy of quadratic forms.
Already for a rational function field in one variable over a number field, Witt [20]
found examples of the failure of the local-global principle for isotropy of quadratic
forms in dimension 3 (and also 4). Lind [17] and Reichardt [18], and later Cassels [7],
found examples of failure of the local-global principle for isotropy of pairs of qua-
dratic forms of dimension 4 over Q (see [1] for a detailed account), giving examples
of quadratic forms over Q(¢) by an application of the Amer—Brumer theorem [2],
[13, Thm. 17.14]. Cassels, Ellison, and Pfister [8] found examples of dimension 4
over a rational function field in two variables over the real numbers.

Here, we are interested in the failure of the local-global principle for isotropy of
quadratic forms over function fields of higher transcendence degree over algebraically
closed fields. All our fields will be assumed to be of characteristic # 2 and all our
quadratic forms nondegenerate. Recall that a quadratic form is isotropic if it admits
a nontrivial zero. If K is a field and v is a discrete valuation on K, we denote by
K, the fraction field of the completion (with respect to the v-adic topology) of the
valuation ring of v. When we speak of the local-global principle for isotropy of
quadratic forms, sometimes referred to as the Strong Hasse Principle, in a given
dimension d over a given field K, we mean the following statement:

If ¢ is a quadratic form in d variables over K and ¢ is isotropic over K,
for every discrete valuation v on K, then q is isotropic over K.

Our main result is the following.

Theorem 1. Fix any n > 2. The local-global principle for isotropy of quadratic
forms fails to hold in dimension 2™ over the rational function field C(z1,...,zy).

Previously, only the case of n = 2 was known, with the first known explicit exam-
ples appearing in [15], and later in [5] and [14]. For a construction, using algebraic
geometry, over any transcendence degree 2 function field over an algebraically closed
field of characteristic 0, see [3], [4, §6]. This later result motivates the following.
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Conjecture 2. Let K be a finitely generated field of transcendence degree n > 2 over
an algebraically closed field k of characteristic # 2. Then the local-global principle
for isotropy of quadratic forms fails to hold in dimension 2™ over K.

We recall that by Tsen-Lang theory [16, Theorem 6], such a function field is a
C-field, hence has u-invariant 2", and thus all quadratic forms of dimension > 2"
are already isotropic. An approach to Conjecture 2, along the lines of the proof in
the n = 2 case given in [4, Cor. 6.5], is outlined in Section 4.

Finally, we point out that in the n = 1 case, with K = k(X) for a smooth
projective curve X over an algebraically closed field k, the local-global principle for
isotropy of binary quadratic forms (equivalent to the “global square theorem”) holds
when X has genus 0 and fails for X of positive genus.

We would like to thank the organizers of the summer school ALGAR: Quadratic
forms and local-global principles, at the University of Antwerp, Belgium, July 3-7,
2017, where the authors obtained this result. We would also like to thank Jean-Louis
Colliot-Thélene, David Leep, and Parimala for helpful discussions. The first author
received partial support from NSA Young Investigator grant H98230-16-1-0321; the
second author from National Science Foundation grant DMS-1463882.

1. HYPERBOLICITY OVER A QUADRATIC EXTENSION

Let K be a field of characteristic # 2. We will need the following result about
isotropy of quadratic forms, generalizing a well-known result in the dimension 4
case, see [19, Ch. 2, Lemma 14.2].

Proposition 1.1. Let n > 0 be divisible by four, ¢ a quadratic form of dimension n
and discriminant d defined over K, and L = K(\/ﬁ) If q is hyperbolic over L then
q 1 isotropic over K.

Proof. If d € K*2, then K = K(v/d) and hence ¢ is hyperbolic over K. Suppose
d ¢ K*? and ¢ is anisotropic. Since ¢z, is hyperbolic, ¢ ~< 1,—d > ® q; for some
quadratic form ¢ over K, see [19, Ch. 2, Theorem 5.3]. Since the dimension of ¢ is
divisible by four, the dimension of ¢; is divisible by two, and a computation of the
discriminant shows that d € K*?2, which is a contradiction. ]

For n>1 and ay,...,a, € K*, recall the n-fold Pfister form
LALyeneypy > =<1,—a1> ® - Q@ <1,—a,>

and the associated symbol (a1) - - - (ay,) in the Galois cohomology group H™(K, us™).
Then < ay,...,a, > is hyperbolic if and only if <ay,...,a, > is isotropic if and
only if (ay) --- (ay) is trivial.

For d € K* and n > 2, we will consider quadratic forms of discriminant d related
to n-fold Pfister forms, as follows. Write <ay,...,a, > asqo L <(=1)"a;...ap>,
then define <aq,...,an;d > = qo L <(—1)"ay...a,d>. For example:

<La,b;d> = <1,—a,—b,abd>
La,b,c;d>» = <1,—a,—b,—c,ab, ac, bc, —abed >
for n = 2 and n = 3, respectively. We remark that every quadratic form of dimension
4 is similar to one of this type. If ¢ =< a1,...,a,;d >, we note that, in view of
Proposition 1.1 and the fact that ¢y, is a Pfister form over L = K (v/d), we have that

q is isotropic if and only if ¢y, is isotropic, generalizing a well-known result about
quadratic forms of dimension 4, see [19, Ch. 2, Lemma 14.2].
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2. GENERALIZED KUMMER VARIETIES

In this section, we review a construction, considered in the context of modular
Calabi-Yau varieties [11, §2] and [12], of a generalized Kummer variety attached
to a product of elliptic curves. This recovers, in dimension 2, the Kummer K3
surface associated to a decomposable abelian surface, and in dimension 3, a class of
Calabi-Yau threefolds of CM type considered by Borcea [6, §3].

Let Eq,..., E, be elliptic curves over an algebraically closed field k of character-
istic # 2 and let Y = E; x --- X E,. Let o; denote the negation automorphism on
E; and E; — P! the associated quotient branched double cover. We lift each o; to
an automorphism of Y; the subgroup G C Aut(Y') they generate is an elementary
abelian 2-group. Consider the exact sequence of abelian groups

1—>H—>GE>Z/2—>O,

where 1I is defined by sending each o; to 1. Then the product of the double covers
Y — P! x --- x P! is the quotient by G and we denote by ¥ — X the quotient by
the subgroup H. Then the intermediate quotient X — P! x ... x P! is a double
cover, branched over a reducible divisor of type (4,...,4).

We point out that X is a singular degeneration of smooth Calabi—Yau varieties
that also admits a smooth Calabi—Yau model, see [11, Cor. 2.3]. For n = 2, the
minimal resolution of X is isomorphic to the Kummer K3 surface Kum(E; x E3).

Given nontrivial classes v; € H élt (Ejs, p2), we consider the cup product

Y= € Hy (Y, u5™)

and its restriction to the generic point of Y, which is a class in the unramified part
H2(k(Y)/k, uS™) of the Galois cohomology group H™(k(Y), u$™) of the function
field £(Y") of Y (see [9] for background on the unramified cohomology groups). These
classes have been studied in [10]. We remark that v is in the image of the restriction
map H"(k(P* x --- x P), uS™) — H™(k(Y), u5™) in Galois cohomology since each
7; is in the image of the restriction map H'(k(P'), u2) — H' (k(E;), u2).

We make this more explicit as follows. For each double cover F; — P!, we choose
a Weierstrass equation in Legendre form

(1) yi = wi(w = 1)(z = \i)
where z; is a coordinate on P! and \; € k~ {0,1}. Then the branched double cover
X — P! x ... x P! is birationally defined by the equation

(2) yQ:Hxi(xi—l)(a:,;—)\i):f(acl,...,a:n)
i=1

where y = y1---y, in C(Y). Up to an automorphism, we can even choose the
Legendre forms so that the image of v; under H}, (E, pu2) — H'(k(E), u2) coincides
with the square class (x;) of the function z;, which clearly comes from k(P*).

The main result of this section is that the class v considered above is already
unramified over k(X). We prove a more general result.

Proposition 2.1. Let k be an algebraically closed field of characteristic # 2 and
K = k(x1,...,2,) a rational function field over k. For 1 <1i <mn, let f;i(x;) € k[x;]
be polynomials of even degree satisfying f;(0) # 0, and let f = [, xif(xi). Then
the restriction of the class € = (x1) -+ (7,) € HY(K,u5") to HY(K (V) p$™) is
unramified with respect to all discrete valuations.
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Proof. Let L = K(v/f) and v a discrete valuation on L with valuation ring O,,
maximal ideal m,, and residue field k(v).

Suppose v(z;) < 0 for some i. Let d; be the degree of f; and consider the reciprocal
polynomial f(z;) = :E?if,-(x%), so that z;f;(z;) = 2% +2. x%fz*(x%) Since d; is even,
we have that the polynomials z; f;(z;) and x%fl*(x%) have the same class in K> /K*2.

Thus, up to replacing, for all ¢ with v(z;) < 0, the polynomial f; by f; in the
definition of f and replacing x; by x%, we can assume that v(x;) > 0 for all 7 without
changing the extension L/K. Hence k[z1,...,z,] C O,.

Let p = k[z1,...,2,)Nm,. Then p is a prime ideal of k[z1, ..., z,] whose residue
field is a subfield of k(v). Let K} be the completion of K at p and L, the completion
of L at v. Then K, is a subfield of L.

If v(z;) = 0 for all 4, then ¢ is unramified at v. Suppose that v(z;) # 0 for some i.
By reindexing x1, ..., z,, we assume that there exists m > 1 such that v(x;) > 0 for
1<i<manduv(z;) =0form+1<i<n,ie,x1,...,Tm,m € pand Tyq1,...,Ty € P.
In particular, the transcendence degree of k(p) over k is at most n — m.

First, suppose fi(z;) € p for some m + 1 < ¢ < n. Since f;(z;) is a product of
linear factors in k[x;], we have that x; — a; € p for some a; € k, with a; # 0 since
fi(0) # 0. Thus the image of x; in k(p) is equal to a; and hence a square in K. In
particular, z; is a square in L,, thus £ is trivial (hence unramified) at v.

Now, suppose that f;(x;) & p for all m +1 < i < n. Then for each 1 < i < m,
we see that since z; € p and f;(0) # 0, we have f;(x;) € p. Consequently, we can
assume that f =z - zpu for some u € k[zy,...,2,] N p.

Computing with symbols, we have

(1) (2m) = (21) - (Tm1) - (21 - 2m) € H™(K, p5™).
By definition, f = x1--- z,u is a square in L, and thus we have that
(1) - (@m) = (x1) -+ (®m—1) - (u) € H™(L, p2).
Thus it is enough to show that (z1) -+ (zpm—1)-(w)-(Tm+1) - - - (z5) is unramified at v.

Let 0, : H™(L,u$™) — H" Y (k(v), u$™ 1) be the residue homomorphism at v.
Since z;, for all m + 1 <17 < n, and v are units at v, we have

Ou((21) -+ (@m—1) - () - (@my1) -+ (20)) = @ (@) - (Tns1) - (Tn)
for some o € H™2(k(v), u5"~?), where for any h € k[x1, ..., 2], we write & for the
image of h in k(p). Since the transcendence degree of x(p) over k is at most n —m
and k is algebraically closed, we have that H™ ™% (k(p), u$" ™) = 0. Since
u,T; € K(p), we have (@) - (Tm+1) - -+ (Tn) = 0. In particular 0,(§) = 0. Finally, the
class ¢ is unramified at all discrete valuations on L. O

As an immediate consequence, we have the following.

Proposition 2.2. Let E1,...,E, be elliptic curves over an algebraically closed
field k of characteristic # 2, given in the Legendre form (1), with K = k(z1,...,xy).
Then the restriction of the class v = (z1) -+ (x,) in H"(K, u3") to H™(k(X), u5™)
is unramified at all discrete valuations.

Finally, we will need the fact, proved in the appendix by Gabber to the article [10],
that if & = C and the j-invariants j(E1),...,j(E,) are algebraically independent,
then any cup product class v =1 - -+, € H*(C(Y), u$™), with v; € HY(C(E;), p2)
nontrivial as considered above, is itself nontrivial.
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3. FAILURE OF THE LOCAL GLOBAL PRINCIPLE

Given elliptic curves Fy,..., F, defined over C with algebraically independent
j-invariants, presented in Legendre form (1), and X — P! x ... x P! the double
cover defined by y? = f(z1,...,,) in (2), we consider the quadratic form

q=<21,..., Tp; >

over C(P! x .- x P!) = C(w1,...,2y,), as in Section 1.

Our main result is that ¢ shows the failure of the local-global principle for isotropy,
with respect to all discrete valuations, for quadratic forms of dimension 2" over
C(z1,...,zy), thereby proving Theorem 1.

Theorem 3.1. The quadratic form q = < x1,...,z,; f > 15 anisotropic over
C(x,...,zpn) yet is isotropic over the completion at every discrete valuation.

Proof. Let K = C(z1,...,z,) and L = K(y/f) = C(X). Let v be a discrete
valuation of K and w an extension to L, with completions K, and L., and residue
fields k(v) and k(w), respectively. We note that x(v) and x(w) have transcendence
degree 0 < ¢ <n — 1 over C. By Proposition 1.1, we have that ¢ ® x K, is isotropic
if and only if ¢ ®x Ly, is isotropic.

By Proposition 2.2, the restriction (x1) -+ (x,,) € H"(L, u5") is unramified at w,
hence ¢ g L =<K x1,...,x, > is an n-fold Pfister form over L unramified at w.
Thus the first residue form for ¢ ® x L, with respect to the valuation w, is isotropic
since the residue field x(w) is a Cj-field and ¢ has dimension 2" > 2¢. Consequently,
by a theorem of Springer [19, Ch. 6, Cor. 2.6], ¢ ®x L, and thus ¢, is isotropic.

Finally, ¢ is anisotropic since the symbol (x1) - - - (x,,) is nontrivial when restricted
to C(Y') by [10, Appendice], hence is nontrivial when restricted to C(X). O

To give an explicit example, let A, k,v € C \ {0, 1} be algebraically independent
complex numbers. Then over the function field K = C(z,y, z), the quadratic form

g=<lz,y,z,zy,zz,yz,(r — 1)y —1)(z = 1)(x = N\)(y — k)(z —v)>

is isotropic over every completion K, associated to a discrete valuation v of K, and
yet q is anisotropic over K.

4. OVER GENERAL FUNCTION FIELDS

We have exhibited locally isotropic but globally anisotropic quadratic forms of
dimension 2" over the rational function field C(z1,...,2,). In [4, Cor. 6.5], we
proved that locally isotropic but anisotropic quadratic forms of dimension 4 exist
over any function field of transcendence degree 2 over an algebraically closed field
of characteristic zero. Taking these as motivation, we recall Conjecture 2, that over
any function field of transcendence degree n > 2 over an algebraically closed field
of characteristic # 2, there exist locally isotropic but anisotropic quadratic forms
of dimension 2". In this section, we provide a possible approach to Conjecture 2,
motivated by the geometric realization result in [4, Proposition 6.4].

Proposition 4.1. Let K = k(X) be the function field of a smooth projective variety
X of dimension n > 2 over an algebraically closed field k of characteristic # 2.
If either H'.(K/k,u$™) # 0 or HY(L/k,u$™) # 0 for some separable quadratic
extension L/K, then there exists an anisotropic quadratic form of dimension 2"
over K that is isotropic over the completion at every discrete valuation.
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Proof. First, by a standard application of the Milnor conjectures, every element in
H™(K,p$™) is a symbol since K is a C,-field. If HE(K/k, u5™) # 0, then taking
a nontrivial element (a1)--- (ay,), the n-fold Pfister form < ay,...,a, > is locally
isotropic (by the same argument as in the proof of Theorem 3.1) but is anisotropic,
giving an example. So we can assume that H2 (K /k, u5") = 0.

Now assume that HZ(L/k,u3™) # 0 for some separable quadratic extension
L= K(Vd) of K. Then taking a nontrivial element (a;)---(a,), the corestric-
tion map H2(L/k,uS™) — HE(K/k,uS™) = 0 is trivial, so by the restriction-
corestriction sequence for Galois cohomology, we have that (ai)---(ay) is in the
image of the restriction map HZ.(K/k, u$™) — HI(L/k,us™) = 0, in which case

we can assume that aq,...,a, € K*. Then the quadratic form <az,...,a,;d > is
locally isotropic over K (by the same argument as in the proof of Theorem 3.1) but
globally anisotropic. ([l

Hence we are naturally led to the following geometric realization conjecture for
unramified cohomology classes.

Conjecture 4.2. Let K be a finitely generated field of transcendence degree n over
an algebraically closed field k of characteristic # 2. Then either H.(K [k, u$™) # 0

or their exists a quadratic extension L/K such that H'\.(L/k,usS™) # 0.

Proposition 4.1 says that the geometric realization Conjecture 4.2 implies Con-
jecture 2 on the failure of the local-global principle for isotropy of quadratic forms.
Proposition 2.2 establishes the conjecture in the case when K is purely transcen-
dental over k; in [4, Proposition 6.4], we established the conjecture in dimension 2
and characteristic 0, specifically, that given any smooth projective surface S over an
algebraically closed field of characteristic zero, there exists a double cover T" — S
with 7' smooth and HZ (k(T)/k, u5?) = Br(T)[2] # 0. In this latter case, Propo-
sition 4.1 gives a different proof, than the one presented in [4, §6], that there exist
locally isotropic but anisotropic quadratic forms of dimension 4 over K = k(S).
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