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Abstract. We prove the failure of the local-global principle, with respect to all
discrete valuations, for isotropy of quadratic forms of dimension 2n over a rational
function field of transcendence degree n over C. Our construction involves the
generalized Kummer varieties considered by Borcea [6] and Cynk and Hulek [11].

Introduction

The Hasse–Minkowski theorem states that if a quadratic form q over a number
field is isotropic over every completion, then q is isotropic. This is the first, and
most famous, instance of the local-global principle for isotropy of quadratic forms.
Already for a rational function field in one variable over a number field, Witt [20]
found examples of the failure of the local-global principle for isotropy of quadratic
forms in dimension 3 (and also 4). Lind [17] and Reichardt [18], and later Cassels [7],
found examples of failure of the local-global principle for isotropy of pairs of qua-
dratic forms of dimension 4 over Q (see [1] for a detailed account), giving examples
of quadratic forms over Q(t) by an application of the Amer–Brumer theorem [2],
[13, Thm. 17.14]. Cassels, Ellison, and Pfister [8] found examples of dimension 4
over a rational function field in two variables over the real numbers.

Here, we are interested in the failure of the local-global principle for isotropy of
quadratic forms over function fields of higher transcendence degree over algebraically
closed fields. All our fields will be assumed to be of characteristic 6= 2 and all our
quadratic forms nondegenerate. Recall that a quadratic form is isotropic if it admits
a nontrivial zero. If K is a field and v is a discrete valuation on K, we denote by
Kv the fraction field of the completion (with respect to the v-adic topology) of the
valuation ring of v. When we speak of the local-global principle for isotropy of
quadratic forms, sometimes referred to as the Strong Hasse Principle, in a given
dimension d over a given field K, we mean the following statement:

If q is a quadratic form in d variables over K and q is isotropic over Kv

for every discrete valuation v on K, then q is isotropic over K.

Our main result is the following.

Theorem 1. Fix any n ≥ 2. The local-global principle for isotropy of quadratic
forms fails to hold in dimension 2n over the rational function field C(x1, . . . , xn).

Previously, only the case of n = 2 was known, with the first known explicit exam-
ples appearing in [15], and later in [5] and [14]. For a construction, using algebraic
geometry, over any transcendence degree 2 function field over an algebraically closed
field of characteristic 0, see [3], [4, §6]. This later result motivates the following.
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Conjecture 2. Let K be a finitely generated field of transcendence degree n ≥ 2 over
an algebraically closed field k of characteristic 6= 2. Then the local-global principle
for isotropy of quadratic forms fails to hold in dimension 2n over K.

We recall that by Tsen–Lang theory [16, Theorem 6], such a function field is a
Cn-field, hence has u-invariant 2n, and thus all quadratic forms of dimension > 2n

are already isotropic. An approach to Conjecture 2, along the lines of the proof in
the n = 2 case given in [4, Cor. 6.5], is outlined in Section 4.

Finally, we point out that in the n = 1 case, with K = k(X) for a smooth
projective curve X over an algebraically closed field k, the local-global principle for
isotropy of binary quadratic forms (equivalent to the “global square theorem”) holds
when X has genus 0 and fails for X of positive genus.

We would like to thank the organizers of the summer school ALGAR: Quadratic
forms and local-global principles, at the University of Antwerp, Belgium, July 3–7,
2017, where the authors obtained this result. We would also like to thank Jean-Louis
Colliot-Thélène, David Leep, and Parimala for helpful discussions. The first author
received partial support from NSA Young Investigator grant H98230-16-1-0321; the
second author from National Science Foundation grant DMS-1463882.

1. Hyperbolicity over a quadratic extension

Let K be a field of characteristic 6= 2. We will need the following result about
isotropy of quadratic forms, generalizing a well-known result in the dimension 4
case, see [19, Ch. 2, Lemma 14.2].

Proposition 1.1. Let n > 0 be divisible by four, q a quadratic form of dimension n
and discriminant d defined over K, and L = K(

√
d). If q is hyperbolic over L then

q is isotropic over K.

Proof. If d ∈ K×2, then K = K(
√
d) and hence q is hyperbolic over K. Suppose

d 6∈ K×2 and q is anisotropic. Since qL is hyperbolic, q '< 1,−d > ⊗ q1 for some
quadratic form q1 over K, see [19, Ch. 2, Theorem 5.3]. Since the dimension of q is
divisible by four, the dimension of q1 is divisible by two, and a computation of the
discriminant shows that d ∈ K×2, which is a contradiction. �

For n ≥ 1 and a1, . . . , an ∈ K×, recall the n-fold Pfister form

�a1, . . . , an � = <1,−a1> ⊗ · · ·⊗ <1,−an>
and the associated symbol (a1) · · · (an) in the Galois cohomology group Hn(K,µ⊗n

2 ).
Then �a1, . . . , an � is hyperbolic if and only if �a1, . . . , an � is isotropic if and
only if (a1) · · · (an) is trivial.

For d ∈ K× and n ≥ 2, we will consider quadratic forms of discriminant d related
to n-fold Pfister forms, as follows. Write �a1, . . . , an � as q0 ⊥ <(−1)na1 . . . an>,
then define �a1, . . . , an; d� = q0 ⊥ <(−1)na1 . . . and>. For example:

�a, b; d� = <1,−a,−b, abd>
�a, b, c; d� = <1,−a,−b,−c, ab, ac, bc,−abcd>

for n = 2 and n = 3, respectively. We remark that every quadratic form of dimension
4 is similar to one of this type. If q =� a1, . . . , an; d �, we note that, in view of
Proposition 1.1 and the fact that qL is a Pfister form over L = K(

√
d), we have that

q is isotropic if and only if qL is isotropic, generalizing a well-known result about
quadratic forms of dimension 4, see [19, Ch. 2, Lemma 14.2].
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2. Generalized Kummer varieties

In this section, we review a construction, considered in the context of modular
Calabi–Yau varieties [11, §2] and [12], of a generalized Kummer variety attached
to a product of elliptic curves. This recovers, in dimension 2, the Kummer K3
surface associated to a decomposable abelian surface, and in dimension 3, a class of
Calabi–Yau threefolds of CM type considered by Borcea [6, §3].

Let E1, . . . , En be elliptic curves over an algebraically closed field k of character-
istic 6= 2 and let Y = E1 × · · · × En. Let σi denote the negation automorphism on
Ei and Ei → P1 the associated quotient branched double cover. We lift each σi to
an automorphism of Y ; the subgroup G ⊂ Aut(Y ) they generate is an elementary
abelian 2-group. Consider the exact sequence of abelian groups

1→ H → G
Π−→ Z/2→ 0,

where Π is defined by sending each σi to 1. Then the product of the double covers
Y → P1 × · · · × P1 is the quotient by G and we denote by Y → X the quotient by
the subgroup H. Then the intermediate quotient X → P1 × · · · × P1 is a double
cover, branched over a reducible divisor of type (4, . . . , 4).

We point out that X is a singular degeneration of smooth Calabi–Yau varieties
that also admits a smooth Calabi–Yau model, see [11, Cor. 2.3]. For n = 2, the
minimal resolution of X is isomorphic to the Kummer K3 surface Kum(E1 × E2).

Given nontrivial classes γi ∈ H1
ét(Ei, µ2), we consider the cup product

γ = γ1 · · · γn ∈ Hn
ét(Y, µ

⊗n
2 )

and its restriction to the generic point of Y , which is a class in the unramified part
Hn

nr(k(Y )/k, µ⊗n
2 ) of the Galois cohomology group Hn(k(Y ), µ⊗n

2 ) of the function
field k(Y ) of Y (see [9] for background on the unramified cohomology groups). These
classes have been studied in [10]. We remark that γ is in the image of the restriction
map Hn(k(P1 × · · · × P1), µ⊗n

2 ) → Hn(k(Y ), µ⊗n
2 ) in Galois cohomology since each

γi is in the image of the restriction map H1(k(P1), µ2)→ H1(k(Ei), µ2).
We make this more explicit as follows. For each double cover Ei → P1, we choose

a Weierstrass equation in Legendre form

(1) y2
i = xi(xi − 1)(xi − λi)

where xi is a coordinate on P1 and λi ∈ kr {0, 1}. Then the branched double cover
X → P1 × · · · × P1 is birationally defined by the equation

(2) y2 =

n∏
i=1

xi(xi − 1)(xi − λi) = f(x1, . . . , xn)

where y = y1 · · · yn in C(Y ). Up to an automorphism, we can even choose the
Legendre forms so that the image of γi under H1

ét(E,µ2)→ H1(k(E), µ2) coincides
with the square class (xi) of the function xi, which clearly comes from k(P1).

The main result of this section is that the class γ considered above is already
unramified over k(X). We prove a more general result.

Proposition 2.1. Let k be an algebraically closed field of characteristic 6= 2 and
K = k(x1, . . . , xn) a rational function field over k. For 1 ≤ i ≤ n, let fi(xi) ∈ k[xi]
be polynomials of even degree satisfying fi(0) 6= 0, and let f =

∏n
i=1 xif(xi). Then

the restriction of the class ξ = (x1) · · · (xn) ∈ Hn(K,µ⊗n
2 ) to Hn(K(

√
f), µ⊗n

2 ) is
unramified with respect to all discrete valuations.
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Proof. Let L = K(
√
f) and v a discrete valuation on L with valuation ring Ov,

maximal ideal mv, and residue field k(v).
Suppose v(xi) < 0 for some i. Let di be the degree of fi and consider the reciprocal

polynomial f∗i (xi) = xdii fi(
1
xi

), so that xifi(xi) = xdi+2 · 1
xi
f∗i ( 1

xi
). Since di is even,

we have that the polynomials xifi(xi) and 1
xi
f∗i ( 1

xi
) have the same class in K×/K×2.

Thus, up to replacing, for all i with v(xi) < 0, the polynomial fi by f∗i in the
definition of f and replacing xi by 1

xi
, we can assume that v(xi) ≥ 0 for all i without

changing the extension L/K. Hence k[x1, . . . , xn] ⊂ Ov.
Let p = k[x1, . . . , xn]∩mv. Then p is a prime ideal of k[x1, . . . , xn] whose residue

field is a subfield of k(v). Let Kp be the completion of K at p and Lv the completion
of L at v. Then Kp is a subfield of Lv.

If v(xi) = 0 for all i, then ξ is unramified at v. Suppose that v(xi) 6= 0 for some i.
By reindexing x1, . . . , xn, we assume that there exists m ≥ 1 such that v(xi) > 0 for
1 ≤ i ≤ m and v(xi) = 0 for m+1 ≤ i ≤ n, i.e., x1, . . . , xm ∈ p and xm+1, . . . , xn 6∈ p.
In particular, the transcendence degree of k(p) over k is at most n−m.

First, suppose fi(xi) ∈ p for some m + 1 ≤ i ≤ n. Since fi(xi) is a product of
linear factors in k[xi], we have that xi − ai ∈ p for some ai ∈ k, with ai 6= 0 since
fi(0) 6= 0. Thus the image of xi in k(p) is equal to ai and hence a square in Kp. In
particular, xi is a square in Lv, thus ξ is trivial (hence unramified) at v.

Now, suppose that fi(xi) 6∈ p for all m + 1 ≤ i ≤ n. Then for each 1 ≤ i ≤ m,
we see that since xi ∈ p and fi(0) 6= 0, we have fi(xi) 6∈ p. Consequently, we can
assume that f = x1 · · ·xmu for some u ∈ k[x1, . . . , xn] r p.

Computing with symbols, we have

(x1) · · · (xm) = (x1) · · · (xm−1) · (x1 · · ·xm) ∈ Hm(K,µ⊗m
2 ).

By definition, f = x1 · · ·xmu is a square in L, and thus we have that

(x1) · · · (xm) = (x1) · · · (xm−1) · (u) ∈ Hm(L, µ2).

Thus it is enough to show that (x1) · · · (xm−1)·(u)·(xm+1) · · · (xn) is unramified at v.
Let ∂v : Hn(L, µ⊗n

2 ) → Hn−1(k(v), µ⊗n−1
2 ) be the residue homomorphism at v.

Since xi, for all m+ 1 ≤ i ≤ n, and u are units at v, we have

∂v((x1) · · · (xm−1) · (u) · (xm+1) · · · (xn)) = α · (u) · (xm+1) · · · (xn)

for some α ∈ Hm−2(k(v), µm−2
2 ), where for any h ∈ k[x1, . . . , xn], we write h for the

image of h in k(p). Since the transcendence degree of κ(p) over k is at most n−m
and k is algebraically closed, we have that Hn−m+1(κ(p), µ⊗n−m+1

2 ) = 0. Since
u, xi ∈ κ(p), we have (u) · (xm+1) · · · (xn) = 0. In particular ∂v(ξ) = 0. Finally, the
class ξ is unramified at all discrete valuations on L. �

As an immediate consequence, we have the following.

Proposition 2.2. Let E1, . . . , En be elliptic curves over an algebraically closed
field k of characteristic 6= 2, given in the Legendre form (1), with K = k(x1, . . . , xn).
Then the restriction of the class γ = (x1) · · · (xn) in Hn(K,µ⊗n

2 ) to Hn(k(X), µ⊗n
2 )

is unramified at all discrete valuations.

Finally, we will need the fact, proved in the appendix by Gabber to the article [10],
that if k = C and the j-invariants j(E1), . . . , j(En) are algebraically independent,
then any cup product class γ = γ1 · · · γn ∈ Hn(C(Y ), µ⊗n

2 ), with γi ∈ H1(C(Ei), µ2)
nontrivial as considered above, is itself nontrivial.
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3. Failure of the local global principle

Given elliptic curves E1, . . . , En defined over C with algebraically independent
j-invariants, presented in Legendre form (1), and X → P1 × · · · × P1 the double
cover defined by y2 = f(x1, . . . , xn) in (2), we consider the quadratic form

q =�x1, . . . , xn; f �
over C(P1 × · · · × P1) = C(x1, . . . , xn), as in Section 1.

Our main result is that q shows the failure of the local-global principle for isotropy,
with respect to all discrete valuations, for quadratic forms of dimension 2n over
C(x1, . . . , xn), thereby proving Theorem 1.

Theorem 3.1. The quadratic form q = � x1, . . . , xn; f � is anisotropic over
C(x1, . . . , xn) yet is isotropic over the completion at every discrete valuation.

Proof. Let K = C(x1, . . . , xn) and L = K(
√
f) = C(X). Let v be a discrete

valuation of K and w an extension to L, with completions Kv and Lw and residue
fields κ(v) and κ(w), respectively. We note that κ(v) and κ(w) have transcendence
degree 0 ≤ i ≤ n− 1 over C. By Proposition 1.1, we have that q ⊗K Kv is isotropic
if and only if q ⊗K Lw is isotropic.

By Proposition 2.2, the restriction (x1) · · · (xn) ∈ Hn(L, µ⊗n
2 ) is unramified at w,

hence q ⊗K L =� x1, . . . , xn � is an n-fold Pfister form over L unramified at w.
Thus the first residue form for q ⊗K L, with respect to the valuation w, is isotropic
since the residue field κ(w) is a Ci-field and q has dimension 2n > 2i. Consequently,
by a theorem of Springer [19, Ch. 6, Cor. 2.6], q ⊗K L, and thus q, is isotropic.

Finally, q is anisotropic since the symbol (x1) · · · (xn) is nontrivial when restricted
to C(Y ) by [10, Appendice], hence is nontrivial when restricted to C(X). �

To give an explicit example, let λ, κ, ν ∈ C r {0, 1} be algebraically independent
complex numbers. Then over the function field K = C(x, y, z), the quadratic form

q = <1, x, y, z, xy, xz, yz, (x− 1)(y − 1)(z − 1)(x− λ)(y − κ)(z − ν)>

is isotropic over every completion Kv associated to a discrete valuation v of K, and
yet q is anisotropic over K.

4. Over general function fields

We have exhibited locally isotropic but globally anisotropic quadratic forms of
dimension 2n over the rational function field C(x1, . . . , xn). In [4, Cor. 6.5], we
proved that locally isotropic but anisotropic quadratic forms of dimension 4 exist
over any function field of transcendence degree 2 over an algebraically closed field
of characteristic zero. Taking these as motivation, we recall Conjecture 2, that over
any function field of transcendence degree n ≥ 2 over an algebraically closed field
of characteristic 6= 2, there exist locally isotropic but anisotropic quadratic forms
of dimension 2n. In this section, we provide a possible approach to Conjecture 2,
motivated by the geometric realization result in [4, Proposition 6.4].

Proposition 4.1. Let K = k(X) be the function field of a smooth projective variety
X of dimension n ≥ 2 over an algebraically closed field k of characteristic 6= 2.
If either Hn

nr(K/k, µ
⊗n
2 ) 6= 0 or Hn

nr(L/k, µ
⊗n
2 ) 6= 0 for some separable quadratic

extension L/K, then there exists an anisotropic quadratic form of dimension 2n

over K that is isotropic over the completion at every discrete valuation.
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Proof. First, by a standard application of the Milnor conjectures, every element in
Hn(K,µ⊗n

2 ) is a symbol since K is a Cn-field. If Hn
nr(K/k, µ

⊗n
2 ) 6= 0, then taking

a nontrivial element (a1) · · · (an), the n-fold Pfister form � a1, . . . , an � is locally
isotropic (by the same argument as in the proof of Theorem 3.1) but is anisotropic,
giving an example. So we can assume that Hn

nr(K/k, µ
⊗n
2 ) = 0.

Now assume that Hn
nr(L/k, µ

⊗n
2 ) 6= 0 for some separable quadratic extension

L = K(
√
d) of K. Then taking a nontrivial element (a1) · · · (an), the corestric-

tion map Hn
nr(L/k, µ

⊗n
2 ) → Hn

nr(K/k, µ
⊗n
2 ) = 0 is trivial, so by the restriction-

corestriction sequence for Galois cohomology, we have that (a1) · · · (an) is in the
image of the restriction map Hn

nr(K/k, µ
⊗n
2 ) → Hn

nr(L/k, µ
⊗n
2 ) = 0, in which case

we can assume that a1, . . . , an ∈ K×. Then the quadratic form �a1, . . . , an; d� is
locally isotropic over K (by the same argument as in the proof of Theorem 3.1) but
globally anisotropic. �

Hence we are naturally led to the following geometric realization conjecture for
unramified cohomology classes.

Conjecture 4.2. Let K be a finitely generated field of transcendence degree n over
an algebraically closed field k of characteristic 6= 2. Then either Hn

nr(K/k, µ
⊗n
2 ) 6= 0

or their exists a quadratic extension L/K such that Hn
nr(L/k, µ

⊗n
2 ) 6= 0.

Proposition 4.1 says that the geometric realization Conjecture 4.2 implies Con-
jecture 2 on the failure of the local-global principle for isotropy of quadratic forms.
Proposition 2.2 establishes the conjecture in the case when K is purely transcen-
dental over k; in [4, Proposition 6.4], we established the conjecture in dimension 2
and characteristic 0, specifically, that given any smooth projective surface S over an
algebraically closed field of characteristic zero, there exists a double cover T → S
with T smooth and H2

nr(k(T )/k, µ⊗2
2 ) = Br(T )[2] 6= 0. In this latter case, Propo-

sition 4.1 gives a different proof, than the one presented in [4, §6], that there exist
locally isotropic but anisotropic quadratic forms of dimension 4 over K = k(S).
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