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Abstract. The Brill–Noether lociMr
g,d parameterize curves of genus g admitting a linear system

of rank r and degree d; when the Brill–Noether number is negative, they sit as proper subvarieties
of the moduli space of genus g curves. We explain a strategy for distinguishing Brill–Noether
loci by studying the lifting of linear systems on curves in polarized K3 surfaces, which motivates a
conjecture identifying the maximal Brill–Noether loci. Via an analysis of the stability of Lazarsfeld–
Mukai bundles, we obtain new lifting results for line bundles of type g3d which suffice to prove the
maximal Brill–Noether loci conjecture in genus 9–19, 22, and 23.

Introduction

Given a smooth projective complex curve C of genus g, classical Brill–Noether theory concerns
the geometry of the variety W r

d (C), parameterizing the space of line bundles of type grd, i.e., having
degree d and at least r + 1 linearly independent global sections on C. Specifically, the expected
dimension of W r

d (C) is the Brill–Noether number ρ(g, r, d) := g − (r+ 1)(g − d+ r). In particular,
when ρ(g, r, d) ≥ 0, every smooth curve of genus g admits a line bundle of type grd. If ρ(g, r, d) < 0,
then a curve admitting such a grd is called Brill–Noether special, and the Brill–Noether locus Mr

g,d

parametrizing smooth curves of genus g admitting a line bundle of type grd is a proper subvariety
of the moduli space Mg of smooth curves of genus g, see [1].

In general, the geometry of Brill–Noether loci is complicated by the existence of multiple com-
ponents with some that are non-reduced or not of the expected dimension. Indeed, while the
Brill–Noether locusMr

g,d has expected codimension −ρ inMg, the actual codimension of its com-

ponents is bounded above by −ρ when ρ < 0, see e.g., [13], but it could be lower, and known
examples with lower than expected codimension exist when −ρ > g − 3, see [35]. On the other
hand, when ρ(g, r, d) = −1, Eisenbud and Harris [10] show that Mr

g,d is irreducible of codimen-
sion 1. More generally, when −3 ≤ ρ ≤ −1, any component of Mr

g,d has codimension −ρ, see

[8, 10, 38]. The Brill–Noether divisors were used by Harris, Mumford, and Eisenbud [9, 17, 16] in
their investigation of the Kodaira dimension of Mg when g ≥ 23.

A question of interest is then to determine the stratification of Mg by Brill–Noether loci and,
in particular, to identify those loci that are maximal with respect to containment. For Brill–
Noether divisors, this is equivalent to having distinct support, a property that is crucially used
by Eisenbud and Harris [9], and further developed by Farkas [11], to give lower bounds on the
Kodaira dimension of M23. There are various trivial containments among the Brill–Noether loci,
e.g., M1

g,2 ⊆M1
g,3 ⊆ · · · ⊆ M1

g,k =Mg, where k ≥ bg+3
2 c is at least the generic gonality of a curve

of genus g. Likewise, we have Mr
g,d ⊆ Mr

g,d+1 by adding a base point to a grd on C. Similarly, by

subtracting a point not in the base locus, Mr
g,d ⊆M

r−1
g,d−1 when ρ(g, r − 1, d− 1) < 0, see [12, 25].

Modulo these trivial containments, the expected maximal Brill–Noether loci are theMr
g,d, where for

fixed r, d is maximal such that ρ(g, r, d) < 0 and ρ(g, r− 1, d− 1) ≥ 0. In this work, we conjecture
that the expected maximal Brill–Noether loci are indeed maximal, and we verify the conjecture in
certain genera by developing new results on lifting linear systems on curve in K3 surfaces along
with a general program of relating such lifting results to the containment of Brill–Noether loci.

Conjecture 1. In genus g ≥ 9, the maximal Brill–Noether loci are the expected ones. That is, at
least one component of each expected maximal Brill–Noether locus is not contained in any other
Brill–Noether locus of Mg.
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Hence, we are interested in distinguishing the expected maximal Brill–Noether loci. In low genus,
there are nontrivial containments among the expected maximal Brill–Noether loci. In fact, in genus
≤ 8 there is a unique maximal Brill–Noether locus, despite the fact that in genus 7 and 8 there
are two expected maximal Brill–Noether loci. For example, Mukai [31] proved that every Brill–
Noether special curve of genus 8 has a g2

7, cf. [2, Lemma 1.2]. Recently, there have been several
breakthroughs in the study of Brill–Noether special curves of fixed gonality [6, 19, 23, 24, 33, 34],
from which one can deduce that the expected maximal M1

g,b g+1
2
c is not contained in any of the

other expected maximal loci and hence is maximal, see Section 1. Additionally, there has been
recent focus on showing that Brill–Noether loci of codimension 1 and 2 are distinct, and showing
various non-containments of Brill–Noether loci of codimension 2, see [3, 4, 5, 21]; in fact, for g ≥ 34
and not divisible by 3, one can deduce that there are at least 2 maximal Brill–Noether loci. These
results are proved using a mix of tropical, combinatorial, and limit linear series methods.

On the other hand, our approach is to use K3 surfaces to construct curves admitting a grd, but

not a gr
′
d′ , thus distinguishing the Brill–Noether loci. This idea was introduced by Farkas [12], and

further developed by Lelli-Chiesa [26, 28], who can produce curves on a K3 surface admitting a g1
d

or g2
d, but not a grd′ . We further extend this technique to curves that admit a g3

d, which suffices to
prove our main theorem.

Theorem 1. Conjecture 1 holds in genus 9–19, 22, and 23.

Concerning genus 20 and 21, our results reduce Conjecture 1 to the verification that the codi-
mension ofM3

20,17 andM4
21,20 is the expected value of 4, and that the codimension ofM4

20,19 is at
least the expected value of 5.

The geometry of polarized K3 surfaces is intimately related to the Brill–Noether theory of curves
C in the polarization class, see e.g., [20, 22, 29, 30, 36, 37]. Foundational to this is Green and
Lazarsfeld’s celebrated result that the Clifford index γ(C) is constant as C moves in its linear
system [14]. Donagi and Morrison [7, Theorem 5.1’] proved that if A is a complete basepoint free
Brill–Noether special g1

d on a non-hyperelliptic smooth curve C ∈ |H|, then |A| is contained in the
restriction of |M | for a line bundle M ∈ Pic(S).

In fact, they conjectured that this is always true, with some slight modifications due to Lelli-
Chiesa.

Conjecture 2 (Donagi–Morrison Conjecture, [27] Conjecture 1.3). Let (S,H) be a polarized K3
surface and C ∈ |H| be a smooth irreducible curve of genus ≥ 2. Suppose A is a complete basepoint
free grd on C such that d ≤ g − 1 and ρ(g, r, d) < 0. Then there exists a line bundle M ∈ Pic(S)
adapted to |H| such that |A| is contained in the restriction of |M | to C and γ(M ⊗OC) ≤ γ(A).

For further details and definitions, see Section 1.1. Lelli-Chiesa has verified the Donagi–Morrison
conjecture for linear systems of type g2

d under some mild hypotheses [26], and more recently [27] has
proven the conjecture if the pair (C,A) does not have unexpected secant varieties up to deformation.
The proofs of these results use Lazarsfeld–Mukai bundles EC,A associated to the pair (C,A), and
the fact that when the vector bundle EC,A has a nontrivial maximal destabalizing sub-line bundle
N ∈ Pic(S), then |A| is contained in the restriction of |H ⊗ N∨|. For rank 2 linear systems, a
case-by-case analysis of the Jordan–Hölder and Harder–Narasimhan filtrations of EC,A is used.
This technique becomes much more difficult in higher rank. In general, Lelli-Chiesa [27, Theorem
4.2] proves that A does lift when it computes the Clifford index γ(C). However, in genus g ≥ 14,
except for M1

g,b g+1
2
c, all of the expected maximal Brill–Noether loci correspond to non-computing

Brill–Noether special linear systems, i.e., linear systems |A| with ρ(A) < 0 and γ(A) > bg−1
2 c so

that A cannot compute the Clifford index, as γ(C) ≤ bg−1
2 c.
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Our main lifting result is a proof of the Donagi–Morrison conjecture for linear systems of rank 3
and bounded degree.

Theorem 2. Let (S,H) be a polarized K3 surface of genus g 6= 2, 3, 4, 8 and C ∈ |H| a smooth
irreducible curve of Clifford index γ(C). Suppose that S has no elliptic curves and d < 5

4γ(C) + 6,

then Conjecture 2 holds for any g3
d on C. Moreover, one has c1(M).C ≤ 3g−3

2 .

We prove a slightly more refined version, replacing the hypothesis on non-existence of elliptic
curves with an explicit dependence on the Picard lattice of S, see Theorem 5.1.

With this lifting result in hand, Theorem 1 is proved by considering K3 surfaces (S,H) with a
prescribed Picard group so that curves C ∈ |H| have a grd, and then proving that if C had a g3

d′ ,
its Donagi–Morrison lift would not be compatible with the Picard group. This latter argument
involves some elementary lattice theory. More generally, we explain how a Donagi–Morrison type
result together with some lattice theory imply Conjecture 1. As the Donagi–Morrison conjecture is
not known in rank 4 and above, we cannot show that some of the expected maximal Brill–Noether
loci are not contained in the M4

g,d in genus 20, 21, and ≥ 24. In genus 22 and 23, known results
about the codimension of components of Brill–Noether loci and non-containments of codimension
2 loci, together with our results, suffice to distinguish the expected maximal loci.

Outline. In Section 1, we briefly analyze some constraints on lifting line bundles and find that
in genus ≥ 14 the expected maximal Brill–Noether loci correspond to line bundles that cannot
compute the Clifford index of the curve, and summarize how Conjecture 2 implies Conjecture 1.
The following two sections, Section 2 and Section 3, provide some background on the notion of
stability of coherent sheaves on K3 surfaces and on Lazarsfeld–Mukai bundles and their relation
to lifting line bundles. We also briefly recall some useful facts about generalized Lazarsfeld–Mukai
bundles which are needed in particular arguments. At the end of Section 3, we motivate our proof
strategy in Proposition 3.14. In Section 4, we first reduce the problem to finding a bound for each
terminal filtration of the Lazarsfeld–Mukai bundle associated to the g3

d, a filtration obtained by
taking the Harder–Narasimhan and Jordan–Hölder filtrations of the Lazarsfeld–Mukai bundle. We
then find a bound on the degree of the g3

d for each filtration. In Section 5, after having obtained
bounds for every terminal filtration that does not have a maximal destabilizing sub-line bundle,
we give the proof of Theorem 2. Finally, in Section 6, we use known results about dimensions of
components of Brill–Noether loci and other lifting results to prove Theorem 1. In Section 7, we
prove the results in genus 9− 13.

Acknowledgments. The authors would like to thank David Jensen and Nathan Pflueger for
helpful conversations about Brill–Noether theory, Margherita Lelli-Chiesa for explaining aspects of
her work, Isabel Vogt for pointing out useful facts about Brill–Noether loci, and John Voight for
helpful computations and comments on a draft of the paper. The first author is partially supported
by Simons Foundation Collaboration Grant 712097.

1. Maximal Brill–Noether Loci

In this section, we take a look at the analytic geometry of various Brill–Noether theory conditions
on linear systems. We find simple bounds on the maximal Clifford index of Brill–Noether special
linear systems and for linear systems that can potentially lift to a K3 surface without contradicting
the Hodge index theorem. Furthermore, we find that all non-computing linear systems are always
potentially liftable to K3 surfaces. We end with a discussion of how Conjecture 2 and lattice theory
can imply Conjecture 1. We work with a fixed genus g throughout this section.

Let (S,H) be a polarized K3 surface of genus g. In the moduli space K◦g of polarized K3 surfaces
of genus g, the Noether–Lefschetz (NL) locus parameterizes K3 surfaces with Picard rank > 1. By
Hodge theory, the NL locus is a union of countably many irreducible divisors, which we call NL
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divisors. In [15], Greer, Li, and Tian study the Picard group of K◦g using Noether–Lefschetz theory
and the locus of Brill–Noether special K3 surfaces in K◦g is identified as a union of NL divisors. More
generally, it is convenient to work with the moduli space of primitively quasi-polarized K3 surfaces,
denoted Kg where Kg \ K◦g is a divisor parameterizing K3 surfaces containing a (−2)-exceptional
curve. We define the NL divisor Krg,d to be the locus of polarized K3 surfaces (S,H) ∈ Kg such
that

Λrg,d =
H L

H 2g − 2 d
L d 2r − 2

admits a primitive embedding in Pic(S) preserving H. We note that the Krg,d are each irreducible

by [32]. As we’ll show in Lemma 6.2, polarized K3 surfaces (S,H) ∈ Krg,d should be thought of

as those having a curve C ∈ |H| such that L ⊗ OC is a line bundle of type grd, and we say that
the lattice Λrg,d is associated to grd. Specifically, we have the following lemma, which we prove in
Section 6.

Lemma 1.1 (See Lemma 6.2). Let (S,H) ∈ Krg,d and let C ∈ |H| be a smooth irreducible curve.
If L and H − L are basepoint free, r ≥ 2, and 1 ≤ d ≤ g − 1, then L⊗OC is a grd.

Conversely, one is interested in the question of when a given grd on a curve in a K3 surface is the
restriction of a line bundle from the K3; in this case, we say that the line bundle is a lift of the grd.
Lifting of line bundles on curves on K3 surfaces is considered in [7, 14, 26, 27, 29, 36]. In lifting
Brill–Noether special linear systems on C ∈ |H| to a line bundle L ∈ Pic(S), we are naturally led to
considering two constraints. First, we have ρ(g, r, d) < 0 as the linear system is special. We call the
constraint ρ(g, r, d) < 0 the Brill–Noether constraint. If a grd on a curve C ∈ |H| on a polarized K3
surface (S,H) has a suitable lift (see Corollary 3.11), then Pic(S) admits a primitive embedding of
Λrg,d preserving H, and in particular disc

(
Λrg,d

)
< 0 by the Hodge index theorem. Thus we define

∆(g, r, d) := disc
(
Λrg,d

)
= 4(g − 1)(r − 1)− d2 = 4(g − 1)(r − 1)− (γ(r, d) + 2r)2.

We thus call the constraint ∆(g, r, d) < 0 the Hodge constraint as the inequality stems from the
Hodge index theorem. We remark that when ∆(g, r, d) < 0, the Torelli theorem for polarized K3
surfaces implies that a very general K3 surface in Krg,d has Pic(S) = Λrg,d.

Remark 1.2. When considering the lifting of linear systems to K3 surfaces, it is more convenient
to consider the Brill–Noether and Hodge constraints for fixed g in the (r, γ)-plane as opposed to
the (r, d)-plane, in particular, because the Clifford index of curves on K3 surfaces remains constant
in their linear system [14]. In the (r, γ)-plane the Brill–Noether and Hodge constraints determine
regions that are bounded by the curves ρ(g, r, d) = 0 and ∆(g, r, d) = 0, which we call the Brill–
Noether hyperbola and Hodge parabola, respectively. Simple calculations show that the maximum
γ on the Brill–Noether hyperbola is obtained at r =

√
g − 1 and γ = g − 2

√
g + 1, the intersection

with the line d = g − 1. Hence, taking γ ≤ bg − 2
√
g + 1c suffices to bound Brill–Noether special

linear systems. Similarly, the maximum γ on the Hodge parabola is given by γ = g−5
2 , and obtained

at the intersection with the line d = g − 1 at r = g+3
4 . Thus if γ > g−5

2 then ∆ < 0. Trivially

bg−4
2 c ≥

g−5
2 , and in fact the bound γ ≥ bg−4

2 c =⇒ ∆ < 0 is the best possible as seen in genus
9, 13, and 17. As an example, we show the bounds in genus 100, as graphed on the (r, γ)-plane in
Figure 1.

We recall that the Clifford index of a line bundle A on a smooth projective curve C is the integer
γ(A) = deg(A)− 2 r(A) where r(A) = h0(C,A)− 1 is the rank of A. The Clifford index of C is

γ(C) := min{γ(A) | h0(C,A) ≥ 2 and h1(C,A) ≥ 2}.
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Figure 1. The Brill–Noether hyperbola (ρ = 0) and the Hodge parabola (∆ = 0)
in genus 100. The shaded area satisfies both ρ < 0 and ∆ < 0.

We say that a line bundle A on C computes the Clifford index of C if γ(A) = γ(C). Clifford’s

theorem states that 0 ≤ γ(C) ≤ bg−1
2 c, and when C is a general curve of genus g, γ(C) = bg−1

2 c.

Definition 1.3. Let A be a Brill–Noether special grd on a curve C of genus g, i.e. ρ(g, r, d) < 0. We

say A is non-computing if γ(r, d) > bg−1
2 c; that is, a Brill–Noether special grd that cannot compute

γ(C).

When g < 14, there are no non-computing grds. However, for genus g ≥ 14, except for M1
g,b g+1

2
c,

all the maximal Brill–Noether loci are those associated to non-computing grds. If lifting results are
able to distinguish between maximal Brill–Noether loci, there should not be an obvious obstruction
to lifting the associated linear systems. In particular, the Hodge index theorem implies that the
lattices obtained by lifting should have negative discriminant, which we show is true for non-
computing grds below.

Proposition 1.4. Let g, r, d be natural numbers with 2 ≤ d ≤ g − 1 and 1 ≤ r ≤ g − 1. Then
the Hodge parabola lies under the Brill–Noether hyperbola. In particular, all non-computing linear
systems, and all expected maximal Brill–Noether loci, satisfy ∆ < 0.

Proof. For fixed g ≥ 2, and for each constraint (ρ = 0 or ∆ = 0), we solve for γ as a function
of r and g. For ρ(g, r, γ) = 0, we find γρ(r) = g − r − g

r+1 . Likewise for ∆(g, r, γ) = 0 we have

γ∆(r) = 2
√

(g − 1)(r − 1)−2r. Observe that γρ = γ∆ has no solutions in the given range (solve for
r in terms of g, and note that g ≥ 2). Finally, since γρ(1) > 0 and γ∆(1) < 0, we see by continuity
that γρ(r)− γ∆(r) > 0.

The bound γ ≥ bg−4
2 c implies that ∆ < 0, as in the remark above. Since this is below the general

Clifford index (bg−1
2 c), we see that any lattice associated to a non-computing linear system will

have negative discriminant. In particular, this applies to the expected maximal linear systems. �

We thus conjecture (Conjecture 1) that the maximal Brill–Noether loci are exactly the expected
maximal Brill–Noether loci, which are Brill–Noether lociMr

g,d where for fixed r, d is maximal such

that ρ(g, r, d) < 0 and ρ(g, r − 1, d − 1) ≥ 0. Equivalently, the expected maximal Brill–Noether
5



loci correspond to the maximal grd lying under the Brill–Noether hyperbola for each r, up to the

containmentsMr
g,d ⊆Mr

g,d+1 when ρ(g, r, d+1) < 0 andMr
g,d ⊂M

r−1
g,d−1 when ρ(g, r−1, d−1) < 0.

One could imagine that if there are any unexpected containments among Brill–Noether loci,
then some would come from containments of the form M1

g,d ⊂ Mr
g,d′ . However, we find that the

expected maximal M1
g,d is not contained in the other expected maximal loci.

Proposition 1.5. Let ρ(g, r, d) < 0, and γ(r, d) ≥ bg−1
2 c+ 1, e.g., for a non-computing grd. Then

M1
g,b g+1

2
c *M

r
g,d.

Proof. Let k = g+1
2 , and r′ = min{r, g − d+ r − 1}. We compute

ρk = max
`∈{0,...,r′}

ρ(g, r − `, d)− `k

= max
`∈{0,...,r′}

ρ(g, r, d) + `

(⌈
g − 1

2

⌉
− γ(r, d) + 1

)
− `2

= max
`∈{0,...,r′}

ρ(g, r, d) + `− `2 ≤ ρ(g, r, d) < 0.

From [34, Theorem 1.1], as dimW r
d (C) ≤ ρk, and W r

d (C) is empty if its dimension is negative, we
see that a general k-gonal curve does not admit a grd. Hence M1

g,b g+1
2
c *M

r
g,d. �

In Lemma 6.2, we show that under mild assumptions, the curves C ∈ |H| on a polarized K3
surface (S,H) with Pic(S) = Λrg,d associated to an expected maximal locus with r ≥ 2 have general

Clifford index. Thus the M1
g,b g+1

2
c does not contain other expected maximal loci in many genera.

A natural question is whether lattices corresponding to grds can be contained as sublattices in
each other. In general, the answer is yes. Already in genus 14, we see that Λ2

14,10 could be embedded

as a sublattice of Λ2
14,8. However, these are not associated to expected maximal loci. In particular,

we would like to show that lattices associated to expected maximal loci cannot contain any lattices
associated to other grd. This turns out to be false (see Section 1.1). However, we can prove that
lattices associated to Brill–Noether special linear systems with lower than general Clifford index
cannot be contain in lattices associated to expected maximal loci, and that any containments
between lattices associated to an expected maximal loci and those associated to non-computing grds
must be equalities.

Proposition 1.6. Let Λrg,d be associated to an expected maximal grd.

(i) Any lattice Λr
′
g,d′ associated to a special gr

′
d′ with γ(gr

′
d′) < b

g−1
2 c for any r′ or γ(gr

′
d′) = bg−1

2 c
if r′ 6= 1 cannot be contained in Λrg,d.

(ii) Let d′ ≤ g − 1. Any lattice Λr
′
g,d′ associated to another expected maximal gr

′
d′ is not con-

tained in Λrg,d, unless the lattices are isomorphic. Similarly, any lattice associated to a

non-computing gr
′
d′ with d′ ≤ g − 1 is not contained in the lattice associated to an expected

maximal grd unless they are isomorphic.

Proof. To simplify notation, we write ∆ for the discriminant of a lattice Λ.
To prove (i), we recall that if Λsub ⊂ Λexp is a finite index sublattice, then we have ∆sub =

[Λexp : Λsub]
2∆exp. We calculate that the ratio ∆sub

∆exp
is never a square for the lattices considered.

Specifically, we show that the largest negative discriminant −∆sub among lattices with γ < bg−1
2 c,

divided by the negative discriminant −∆exp of any lattice associated to an expected maximal linear
system, is not an integer. Because ∆(g, r, d) = disc(−Λrg,d) = d2−4(g−1)(r−1), it is clear that for
fixed γ this decreases as r increases until d = g − 1. It follows that none of the lattices considered
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can be contained in Λ1
g,b g+1

2
c, the expected maximal loci with r = 1. From now on, we assume

r > 1. Furthermore, we can take

• max(−∆sub) = d2 with d = g+1
2 when γ = g−1

2 − 1 ; or

• max(−∆sub) = d2 − 4(g − 1) with d = 2
3g + 2 when γ = g−1

2 .

We also note that −∆ increases when r and γ both increase by 1, and increases as γ increases

for fixed r. Thus if r′ ≥ r, then clearly max(−∆sub)
−∆exp

< 1. If r′ < r, then moving from gr
′
d′ to grd,

we take steps increasing r′ and γ by 1 until we hit r (and then take steps increasing γ) or hit the
line d = g − 1 and we take steps increasing γ by 1 and decreasing r′ by 1. Since each of these

steps increase −∆, we again see that max(−∆sub)
−∆exp

< 1. We can always take these steps since we may

assume we start at r = 1 or r = 2, and the expected maximal grd lie far above. Thus (i) is proved.
To prove (ii), we similarly bound max(−∆) and min(−∆) for non-computing grds. It can be

verified that the ratio min(−∆)
max(−∆) > 1

4 for r <
√
g, and hence max(−∆) < 4 min(−∆), thus the

discriminants of lattices associated to the expected maximal Brill–Noether loci cannot differ by a
square greater than 1. Hence if the lattices associated to expected maximal loci are contained,
they must be the same lattice. Since −∆ increases as r decreases and as γ increases until d =
g − 1, this argument in fact shows that any lattice associated to a non-expected maximal non-
computing gr

′
d′ cannot be contained in the lattice of an expected maximal grd unless they have the

same discriminant. �

Remark 1.7. In fact, computation up to large genus shows that the lattices associated to expected
maximal loci do not contain any lattices associated to other expected maximal loci. We conjecture
that this is always true, though a proof of this is currently unknown.

1.1. Program: Lifting Results Distinguish Brill–Noether Loci. To verify Conjecture 1, our
strategy is for fixed genus g and distinct expected maximal Mr

g,d and Mr′
g,d′ to prove that for a

very general K3 surface (S,H) ∈ Krg,d, a smooth curve C ∈ |H| admits a grd but not a gr
′
d′ . We do

this by combining three kinds of results: (i) a lifting result, (ii) showing that C ∈ |H| has a grd
given by restricting L ∈ Λrg,d, and (iii) a comparison result that distinguishes lattices. The latter
two can be checked for any fixed genus. If all the lattices can be distinguished, a lifting result like
the Donagi–Morrison conjecture (Conjecture 2) implies Conjecture 1.

We start by defining a few terms in Conjecture 2.

Definition 1.8. Let S be a K3 surface, C ⊂ S be a curve, and A ∈ Pic(C) and M ∈ Pic(S) be
line bundles. We say that the linear system |A| is contained in the restriction of |M | to C when for
every D0 ∈ |A|, there is some divisor M0 ∈ |M | such that D0 ⊂ C ∩M0.

Definition 1.9. A line bundle M is adapted to |H| when

(i) h0(S,M) ≥ 2 and h0(S,H ⊗M∨) ≥ 2; and
(ii) h0(S,M ⊗OC) is independent of the smooth curve C ∈ |H|.

Thus whenever M is adapted to |H|, condition (i) ensures that M⊗OC contributes to γ(C), and
condition (ii) ensures that γ(M ⊗ OC) is constant as C varies in its linear system and is satisfied
if either h1(S,M) = 0 or h1(S,H ⊗M∨) = 0.

Definition 1.10. Let (S,H) be a polarized K3 surface and C ∈ |H| be a smooth irreducible curve
of genus ≥ 2. Suppose A is a complete basepoint free grd on C such that d ≤ g−1 and ρ(g, r, d) < 0.
We call a line bundle M a Donagi–Morrison lift of A if M satisfies the conditions in Conjecture 2.
That is,

• M is adapted to |H|,
• |A| is contained in the restriction of |M | to C, and
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• γ(M ⊗OC) ≤ γ(A).

We call a line bundle M a potential Donagi–Morrison lift of A if M satisfies γ(M ⊗ OC) ≤ γ(A)
and d(M ⊗OC) ≥ d(A). Note that a Donagi–Morrison lift is a potential Donagi–Morrison lift. We
say a (potential) Donagi–Morrison lift is of type gse if M2 = 2s− 2 and M.H = e.

We summarize a few potential results distinguishing lattices, each of which would be useful in
verifying Conjecture 1 given an appropriate lifting result.

(L1) For a fixed lattice Λrg,d associated to an expected maximal Mr
g,d and any lattice Λr

′
g,d′

associated to another expected maximal Mr′
g,d′ , one has Λr

′
g,d′ * Λrg,d.

(L2) For a fixed lattice Λrg,d associated to an expected maximal Mr
g,d and any lattice Λr

′
g,d′ with

bg+1
2 c ≤ γ(r′, d′) ≤ bg − 2

√
g + 1c and 1 ≤ r′ ≤ bg−1−γ(r′,d′)

2 c, one has Λr
′
g,d′ * Λrg,d.

(L3) For a pair of lattices (Λrg,d,Λ
r′
g,d′) both associated to expected maximal Brill–Noether loci,

and any lattice Λsg,e such that bg+1
2 c ≤ γ(s, e) ≤ γ(r′, d′) and 1 ≤ s ≤ bg−1−γ(s,e)

2 c, one has

Λsg,e * Λrg,d.

We note that L2 implies L1. Furthermore, for fixed r and d, L2 implies L3 for all r′ and d′.

Remark 1.11. The bounds on γ(s, e) and s in L3 include all lattices associated to a potential

Donagi–Morrison lift of a gr
′
d′ . Indeed, suppose M is a potential Donagi–Morrison lift of a gr

′
d′ , and

say M is of type gse. The lower bound on γ(s, e) comes from Proposition 1.6 (i). Since M is a

potential Donagi–Morrison lift of a gr
′
d′ , we have γ(s, e) ≤ γ(r′, d′), which is the upper bound on

γ(s, e). Since M ⊗ OC contributes to γ(C), this forces H ⊗M∨ ⊗ OC to be at least a g1
2g−2−e,

whereby s ≤ g−1−γ(s,e)
2 as 2s ≤ e, which gives the upper bound on s.

Similarly, the bounds in L2 include all lattices associated to a potential Donagi–Morrison lift of
an expected maximal linear system. M ⊗OC must have Clifford index no bigger than the expected
maximal grd by Conjecture 2, the upper bound on γ(r′, d′) comes from Remark 1.2. The other
bounds are obtained in the same way as for L3.

Remark 1.12. As stated above, computations show that L1 holds for every expected maximal
locus up to large genus.

We note that L2 and L3 do not always hold. The first genus where L3 fails is g = 56, where
L3 fails for the lattices Λrg,d = Λ2

56,39 and Λr
′
g,d′ = Λ6

56,49; indeed, in attempting to check whether

M2
56,39 can be contained inM3

56,44, a g3
44 on a curve C ∈ |H| for a very general (S,H) ∈ K2

56,39 has

a potential Donagi–Morrison lift M of type g6
49. However, Λ2

56,39
∼= Λ6

56,49, and so L3 does not hold.

In this case, because ρ(56, 2, 39) = −1 and ρ(56, 3, 44) = −4, we clearly have M2
56,39 * M3

56,44.
Hence the failure of L3 does not necessarily obstruct our program to prove that Conjecture 2 implies
Conjecture 1.

The next genus where L3 fails is g = 89, where the locus M3
89,69 could possibly be contained

in M4
89,75 or M5

89,79. This is because line bundles of type g3
36 and g4

75 have a potential Donagi–

Morrison lift M of type g10
85, and the lattice 〈H,M〉 = Λ10

89,85 is isomorphic to Λ3
89,69, so that L3

does not hold. In this example, M3
89,69 has codimension 3 in M89, whereas M4

89,75 and M5
89,79

both have codimension 1, hence the codimensions of the loci do not rule out the possibility that
M3

89,69 is not maximal. Thus in genus 89, Conjecture 2 together with L2 is not sufficient to imply
Conjecture 1 without additional techniques.

We note that below genus 200, except for genus 89, 91, 92, 145, 153, and 190, L2 holds, and thus
Conjecture 2 implies Conjecture 1.

Proposition 1.13. Let Mr
g,d and Mr′

g,d′ be two expected maximal Brill–Noether loci. Suppose

(S,H) is a polarized K3 surface with Pic(S) = Λrg,d, and L⊗OC is a grd. If the Donagi–Morrison
8



conjecture (Conjecture 2) holds for gr
′
d′ on C and L3 holds for the pair (Λrg,d,Λ

r′
g,d′), then Mr

g,d *
Mr′

g,d′. In particular, if Conjecture 2 and L2 hold for all expected maximal grd in genus g, then
Conjecture 1 holds in genus g.

Proof. The condition L3 implies that Pic(S) cannot admit any potential Donagi–Morrison lift of

the gr
′
d′ . Hence the existence of a gr

′
d′ on C contradicts the Donagi–Morrison conjecture. Therefore

C has no gr
′
d′ , as was to be shown. �

To state a related question, we need a simple definition.

Definition 1.14. We define the special Clifford index of C as

γ̃(C) := {γ(A) | ρ(A) < 0, h0(C,A) ≥ 2, and h1(C,A) ≥ 2}.

We say a Brill–Noether special line bundle A on C computes the special Clifford index if γ(A) =
γ̃(C).

Lelli-Chiesa’s lifting result [27, Theorem 4.2] provides a lift of Brill–Noether special line bundles
computing the Clifford index. A similar result for line bundles computing the special Clifford index
of the curve together with L1 would imply that Mr

g,d *Mr′
g,d′ for γ(r, d) ≥ γ(r′, d′). We are left

with three questions to which positive answers would imply parts of Conjecture 1.

Question 1. When L1 or L2 fail, can the Brill–Noether loci be distinguished in another way?

Question 2. Under what conditions does a line bundle computing the special Clifford index of a
curve C lift to a line bundle on S?

Question 3. Does the Donagi–Morrison conjecture hold for expected maximal grds?

We note that the work on Brill–Noether theory for fixed gonality, if it were extended to higher
rank, could provide another approach to distinguishing Brill–Noether loci that is complementary
to the Donagi–Morrison lifting approach.

2. Stability of Sheaves on K3 Surfaces

We recall the notions of stability and slope stability of torsion free coherent sheaves on a polarized
K3 surface (S,H) and Harder–Narasimhan (HN) and Jordan–Hölder (JH) filtrations. Let E be a

torsion free coherent sheaf on (S,H) The slope of E is µH(E) := c1(E).H
rk(E) . A torsion free coherent

sheaf is called slope stable or µ-stable (µ-semistable) if µH(F ) < µH(E) (respectively, µH(F ) ≤
µH(E)) for all coherent sheaves F ⊆ E with 0 < rk(F ) < rk(E). We define the normalized Hilbert
polynomial of E to be

p(E,n) :=
χ(E ⊗Hn)

rk(E)
=
H2

2!
n2 + µ(E)n+

χ(E)

rk(E)

where the second equality follows from Riemann–Roch. We say E is (Gieseker) stable (semistable)
if p(F, n) < p(E,n) (respectively, p(F, n) ≤ p(E,n)) for all proper subsheaves F ( E, where for
two polynomials f(n), g(n) we say f(n) < g(n) (f(n) ≤ g(n)) if this is true for n� 0.

We have the following implications for a torsion free coherent sheaf E

µ-stable =⇒ stable =⇒ semistable =⇒ µ-semistable.

Every torsion free coherent sheaf E has a unique Harder–Narasimhan filtration, which is an
increasing filtration

0 = HN0(E) ⊂ HN1(E) ⊂ · · · ⊂ HN`(E) = E,
9



such that the factors grHNi (E) = HNi(E)/HNi−1(E) for i = 1, . . . , ` are torsion free semistable
sheaves with normalized Hilbert polynomials pi = p(grHNi (E), n) satisfying

pmax = p1 > · · · > p` = pmin.

In particular, we see that µ(grHN1 (E)) > µ(grHN2 (E)) > · · · > µ(grHN` (E)). If E is a vector bundle,
the sheaves HNi(E) are locally free. We also have µ(HN1(E)) > µ(HN2(E)) > · · · > µ(E).

Likewise, every (µ)-semistable sheaf E has a Jordan–Hölder filtration, which is an increasing
filtration

0 = JH0(E) ⊂ JH1(E) ⊂ · · · ⊂ JH`(E) = E,

such that the factors grJHi (E) = JHi(E)/JHi−1(E) for i = 1, . . . , ` are torsion free stable sheaves
with normalized Hilbert polynomial p(E,n). In particular, µ(E) = µ(grJHi (E)) for all i. The JH
filtration is not uniquely determined, however the associated graded object grJH(E) =

⊕
i
grJHi (E)

is uniquely determined by E.
We also briefly recall some facts about the moduli space of stable and semistable sheaves on K3

surfaces from [18]. For a sheaf E on (S,H), the Mukai vector is given by

v(E) := ch(E)
√
td(S) = (rk(E), c1(E), ch2(E) + rk(E)) = (rk(E), c1(E), χ(E)− rk(E)) ,

considered as an element in H∗(S,Z). For a fixed Mukai vector v, the moduli space of semistable
sheaves with Mukai vector v is denoted M(v), and the open (possibly empty) subscheme of stable
sheaves is denoted M(v)s ⊂M(v). The Mukai pairing is given by

〈v(E), v(F )〉 := χ(E,F ) =
∑
i

(−1)i Exti(E,F ) = −
∫
S
v(E)∗ ∧ v(F ),

where for v(E) = v0 + v2 + v4 ∈ H i(S,Z) with vi ∈ H i(S,Z), v(E)∗ := v0− v2 + v4. We recall that
the space of stable sheaves with Mukai vector v, M(v)s is either empty or a smooth quasi-projective
variety of dimension 2 + 〈v, v〉.

3. Lazarsfeld–Mukai Bundles and Lifting

We briefly recall some facts about Lazarsfeld–Mukai bundles (LM bundles) and state a few useful
facts that motivate our proof. Let ι : C ↪→ S be a smooth irreducible curve of genus g in S and A
a basepoint free line bundle on C of type grd. We define a bundle FC,A on S via the short exact
sequence

0 // FC,A // H0(C,A)⊗OS
ev // ι∗(A) // 0.

Dualizing gives EC,A := F∨C,A (the LM bundle associated to A on C) sitting in the short exact
sequence

0 // H0(C,A)∨ ⊗OS // EC,A // ι∗(ωC ⊗A∨) // 0;

whereby the following facts about the LM bundle EC,A are readily proved.

Proposition 3.1. Let EC,A be a LM bundle associated to a basepoint free line bundle A of type grd
on C ⊂ S, then:

• detEC,A = c1(EC,A) = [C] and c2(EC,A) = deg(A);
• rk(EC,A) = r + 1 and EC,A is globally generated off the base locus of ι∗(ωC ⊗A∨);
• h0(S,EC,A) = h0(C,A) + h0(C,ωC ⊗A∨) = 2r + 1 + g − d = g − (d− 2r) + 1;
• h1(S,EC,A) = h2(S,EC,A) = 0, h0(S,E∨C,A) = h1(S,E∨C,A) = 0;

• χ(FC,A ⊗ EC,A) = 2(1− ρ(g, r, d)).
10



A vector bundle E is called simple if End(E) is a division algebra. Over an algebraically closed
field, this is equivalent to h0(E∨ ⊗ E) = 1. Thus we see that EC,A is non-simple if ρ(g, r, d) < 0.

In [27], generalized LM bundles are defined and prove useful in lifting special line bundles on a
curve C ∈ |H| to a line bundle on the polarized K3 surface (S,H).

Definition 3.2. Let C be a curve and A ∈ Pic(C). The linear system |A| is called primitive if
both A and ωC ⊗A∨ are basepoint free.

Definition 3.3 ([27] Definition 1). A torsion free coherent sheaf E on S with h2(S,E) = 0 is called
a generalized Lazarsfeld–Mukai bundle (gLM bundle) of type (I) or (II), respectively, if

(I) E is locally free and generated by global sections off a finite set;
or

(II) E is globally generated.

Remark 3.4 ([27] Remark 1). If conditions (I) and (II) of Definition 3.3 are both satisfied, then
E is the LM bundle associated with a smooth irreducible curve C ⊂ S and a primitive linear series
(A, V ) on C, i.e. E = EC,(A,V ), where EC,(A,V ) is the dual of the kernel of the evaluation map

V ⊗OS → A. Furthermore, V = H0(C,A) if and only if h1(S,E) = 0, in which case E is just the
LM bundle associated to A.

Definition 3.5. Let E be a gLM bundle. The Clifford Index of E is:

γ(E) := c2(E)− 2(rk(E)− 1).

Remark 3.6. For the LM bundle EC,A for a smooth curve C ⊂ S and A a grd on C, one has
γ(EC,A) = γ(A) by Proposition 3.1.

Lemma 3.7 ([27] Corollary 2.5). Let E be a gLM bundle of rank r and c1(E)2 > 0. Then,
γ(E) ≥ 0. Furthermore, γ(E) = 0 only in the following cases:

(a) r = 1 and E is a globally generated line bundle;
(b) E = EC,ωC

for some smooth irreducible curve C ⊂ S of genus g = r ≥ 2;
(c) r > 1 and E = EC,(r−1)g12

for some smooth hyperelliptic curve C ⊂ S of genus g > r.

Lemma 3.8. Let N ∈ Pic(S) be nontrivial and globally generated with h0(S,N) 6= 0. Let E = EC,A
and suppose we have a short exact sequence

0 // N // E // E/N // 0

with E/N torsion free. Then E/N satisfies h1(S,E/N) = h2(S,E/N) = 0. If A is primitive, then
E/N is a gLM bundle of type (II). If we further assume that E/N is locally free, then it is a LM
bundle for a smooth irreducible curve D ∈ |H − N |. If A is not primitive and E/N is assumed
locally free, then E/N is a gLM bundle of type (I). In any of the above cases, we have

• c1(E/N) = H −N ;
• c2(E/N) = d+N2 −H.N ;
• γ(E/N) = γ(EC,A) +N2 −H.N + 2.

Proof. If A is primitive, we see that E/N is globally generated as E is globally generated. From the
long exact sequence in cohomology, and noting that h2(S,N) = h1(S,E) = h2(S,E) = 0, we see
that h1(S,E/N) = h2(S,E/N) = 0. Thus E/N is a gLM bundle of type (II). If E/N is assumed
to be locally free, then as in Remark 3.4, E/N = ED,B is the LM bundle associated to a smooth
irreducible curve D ⊂ S and a line bundle B on D. Finally, if A is not primitive, then E/N is
globally generated off a finite set as it is the quotient of E, which is also globally generated off a
finite subset. Thus E/N is a gLM of type (I).
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Applying Whitney’s formula to the exact sequence, we see that

1 + c1(E) + c2(E) = (1 + c1(E/N) + c2(E/N)) (1 +N) ,

hence c1(E/N) = H − N and c2(E/N) = d + N2 − H.N . Finally, as γ(E/N) = c2(E/N) −
2(rk(E/N)− 1) and rk(E/N) = rk(E)− 1 = (r + 1)− 1 = r, it follows that

γ(E/N) = d+N2 −H.N − 2(r − 1) = d− 2r +N2 −H.N + 2 = γ(E) +N2 −H.N + 2.

�

Remark 3.9. If A is of type grd and L = H − N is a lift of A with L2 = 2r − 2, then the last
equality gives γ(E/N) = γ(A) + (2r − 2)− d+ 2 = 0.

We recall a few lemmas which show when a linear series on a curve C ∈ |H| is the restriction of
a line bundle L on S.

Lemma 3.10. Let (S,H) be a polarized K3 surface of genus g ≥ 2, C ∈ |H| be a smooth irreducible
curve, and L a globally generated line bundle on S such that L|C is a grd with c1(L).C = d < 2g−2.
Then if h1(S,L) = 0, we have L2 = 2r − 2− 2h1(S,L(−C)).

Proof. Since H is basepoint free and c1(L(−C)).C = d− (2g − 2) < 0, we have h0(S,L(−C)) = 0,
as in the proof of [22, Proposition 2.1]. We now consider the short exact sequence for a divisor
C ⊂ S tensored with L,

0 // L(−C) // L // L|C // 0.

By Riemann-Roch on C we have h1(S,L|C) = h1(C,L|C) = r−d+g, and as h1(S,L) = h2(S,L) = 0,
the long exact sequence in cohomology and Serre duality give h2(S,L(−C)) = h0(S,L(−C)∨) =
r − d+ g. By Riemann-Roch on S, we have

h0(S,L(−C)∨)−h1(S,L(−C)) = 2 +
c1(L(−C))2

2
= 2 +

c1(L)2 − 2d+ 2g − 2

2
= 1− d+ g+

c1(L)2

2

thus c1(L)2 = 2r − 2− 2h1(S,L(−C)). �

Corollary 3.11. Let (S,H) be a polarized K3 surface of genus g ≥ 2, A a complete grd on a smooth
C ∈ |H|. Let N ∈ Pic(S) be a line bundle with h0(S,N) ≥ 2 and h1(S,N) = 0. Assume H ⊗N∨
is globally generated, satisfies h1(S,H ⊗N∨) = 0, and is a lift of A. Then c1(H ⊗N∨)2 = 2r − 2.

Proof. We have h1(S,N) = 0. Hence as N∨ = H ⊗N∨ ⊗H∨, Serre duality gives 0 = h1(S,N∨) =
h1(S,H ⊗N∨(−C)). Thus Lemma 3.10 shows that (H −N)2 = 2r − 2. �

Remark 3.12 ([27] Remark 6). The proof [27, Lemma 4.1] shows that as soon as we have a
nontrivial N ∈ Pic(S) with h0(S,N) 6= 0 and an injection N ↪→ EC,A, we have h0(S, ι∗(A)⊗ (H ⊗
N∨)⊗OC) = h0(C,A∨ ⊗ (H ⊗N∨)|C) 6= 0, i.e., the linear series |A| is contained in |(H ⊗N∨)|C |.
We also note that if h1(S,N) = 0, then

H0(C, (H ⊗N∨)⊗OC) = H0(S,H ⊗N∨)|C .

Lemma 3.13. Let N be a line bundle and 0→ N → E → E/N → 0 be a short exact sequence of
coherent sheaves on a polarized K3 surface (S,H), where E/N is stable, rk(E) = r+1, c1(E) = H,

c1(E)2 = 2g − 2 ≥ 0. If h0(S,N) < 2, then c2(E) ≥ g(r−1)
r + 2g−2

r(r+1) + r + 1
r .

Proof. Since µ(N) ≥ µ(E) ≥ 0, we have h2(S,N) = 0. Therefore if h0(S,N) < 2 we have
c1(N)2 ≤ −2. Hence

c1(E/N)2 + 2c1(N).c1(E/N) = c1(E)2 − c1(N)2 ≥ 2g − 2 + 2 = 2g
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and

c1(E/N).c1(N) = c1(N).(c1(E)− c1(N)) ≥ 2g − 2

r + 1
+ 2,

where the last inequality comes from the fact that µ(N) ≥ µ(E). Thus c1(E/N)2

2 ≥ g−c1(N).c1(E/N).
Furthermore, since E/N is stable of rank r, the dimension of the moduli space of stable sheaves

with Mukai vector ν(E/N), M s
ν(E/N), has non-negative dimension. Thus 2rc2(E/N)−(r−1)c1(E/N)2−

2(r2 − 1) ≥ 0, and we have c2(E/N) ≥ r + 1
r +

(
r−1
2r

)
c1(E/N)2.

We now calculate c2(E) = c1(E/N).c1(N) + c2(E/N) ≥ g(r−1)
r + 2g−2

r(r+1) + r + 1
r , as desired. �

We present a version of [26, Proposition 7.4] which motivates our proof strategy below.

Proposition 3.14. Let (S,H) be a polarized K3 surface and A be a complete basepoint free grd on
a smooth irreducible curve C ∈ |H| with r ≥ 2 and let E = EC,A. Suppose that E sits in a short
exact sequence

0 // N // E // E/N // 0

for some line bundle N and c2(E) = d < g(r−1)
r + 2g−2

r(r+1) + r + 1
r . If E/N is stable, or E/N is

semistable and there are no elliptic curves on S, then |A| is contained in the restriction to C of the
linear system |H⊗N∨| on S. Moreover, H⊗N∨ is adapted to |H| and γ(H⊗N∨⊗OC) ≤ d−r−3.

Proof. By the previous lemma, h0(S,N) ≥ 2. We also have h0(S, detE/N) ≥ 2 from [26, Lemma
3.3]. We note that (E/N)∨∨ is globally generated off a finite set and

hi(S, (E/N)∨∨) = hi(S,E/N) = 0 for i = 1, 2.

Since detE/N = det(E/N)∨∨ is basepoint free and nontrivial, detE/N is nef, thus c1(E/N)2 ≥ 0.
If h1(S, detE/N) 6= 0, then c1(E/N)2 = 0 by Saint-Donat. By [14, Proposition 1.1], there is a
smooth elliptic curve Σ ⊂ S such that (E/N)∨∨ = O(Σ)⊕3. This contradicts the stability of E/N
(or the non-existence of elliptic curves on S), thus we must have c1(E/N)2 ≥ 2 (hence c2(E/N) ≥
r + 1) and h1(S, detE/N) = 0. This ensures that h0(C,detE/N ⊗ OC) = h0(C,H ⊗ N∨ ⊗ OC)
does not depend on the curve C ∈ |H|s. Hence detE/N = H⊗N∨ is adapted to |H|. We calculate

γ(detE/N ⊗OC) = c1(E/N).c1(E)− 2h0(C,detE/N ⊗OC) + 2

= c1(E/N)2 + c1(N).c1(E/N)− 2h0(C,detE/N ⊗OC) + 2

≤ c1(E/N)2 − 2h0(S,detE/N) + c1(N).c1(E/N) + 2

= −2h1(S, detE/N)− 4 + c1(N).c1(E/N) + 2

= d− c2(E/N)− 2 ≤ d− r − 3.

The claim that |A| is contained in |H ⊗ N∨ ⊗ OC | is proved in the same way as in [27, Lemma
4.1]. �

Remark 3.15. In the above proposition, if A is of type g3
d, then γ(H⊗N∨⊗OC) ≤ d−r−3 = γ(A).

However, as soon as r ≥ 4, then γ(H ⊗N∨⊗OC) may be bigger than γ(A). However, Lelli-Chiesa
proves in [27, Propositioon 5.1] that γ(H ⊗ N∨ ⊗ OC) ≤ γ(A) whenever N ⊂ E is a saturated
subsheaf and h1(S,N) = 0.

4. Filtrations of Lazarsfeld–Mukai Bundles of Rank 4

Throughout this section, (S,H) is a polarized K3 surface of genus g, C ∈ |H| is a smooth
irreducible curve, A is a line bundle of type g3

d on C, and E = EC,A is the LM bundle corresponding
to A. Given E, we can take its JH filtration or take its HN filtration, further take JH filtrations of
the properly semistable factors, lift the JH factors and expand the HN filtration of E to arrive at
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a terminal filtration such that all quotients are stable sheaves. We enumerate all the possibilities
listing a filtration by the ranks of the terms, i.e., a filtration of type 0 ⊂ 1 ⊂ 4 is a filtration
0 ⊂ N ⊂ E where rk(N) = 1.

The terminal filtrations correspond to flags of E where each quotient is stable, hence the terminal
filtrations are

0 ⊂ 1 ⊂ 4, 0 ⊂ 2 ⊂ 4, 0 ⊂ 3 ⊂ 4,

0 ⊂ 1 ⊂ 2 ⊂ 4, 0 ⊂ 1 ⊂ 3 ⊂ 4, 0 ⊂ 2 ⊂ 3 ⊂ 4,

0 ⊂ 1 ⊂ 2 ⊂ 3 ⊂ 4.

In order to apply Proposition 3.14, we want to show that given the g3
d, E must have a terminal

filtration of type 0 ⊂ 1 ⊂ 4. In all other cases, we want to find a lower bound on d = c2(E). To this
end, we find a bound for c2(E) in terms of the intersections of the Chern roots of the LM bundle
E. We begin by noting a few general bounds, and then deal with each filtration.

We slightly generalize the proof of [26, Lemma 4.1].

Proposition 4.1. Let E a LM bundle with c1(E) = H and µ(E) = g−1
2 > 0 sitting in an exact

sequence

0 // M // E // M1
// 0

where M and M1 are coherent sheaves. Suppose that the general smooth curve C ∈ |H| has
(constant) Clifford index γ = γ(C). Then one has c1(M).c1(M1) ≥ γ + 2.

Proof. We write µ(F ) = µH(F ). Since M1 is a quotient of E, it is globally generated off a finite
set of points. Moreover, we have h2(S,M1) = 0, thus h0(S, detM1) ≥ 2 by [26, Lemma 3.3] as the
vector bundle M∨∨1 is globally generated off a finite number of points and det(M1) := det(M∨∨1 ).
As in [26, Lemma 3.2], we see that detM1 is basepoint free and nontrivial, thus µ(detM1) > 0,
µ(M) > 0. Hence as µ(detM) ≥ µ(M) > 0, [26, Proposition 3.1] shows that h2(S, detM1) = 0,
h2(S,detM) = 0, and that detM1 is nef whereby c1(M1)2 ≥ 0.

Furthermore, as

µ(M) =
c1(M).c1(E)

rk(M)
=
c1(M).(c1(M) + c1(M1))

rk(M)
≥ g − 1

2
,

we have c1(M).c1(M1) ≥ rk(M)g−1
2 − c1(M)2. Since h2(S, detM) = 0, we note that

h0(S, detM) ≥ h0(S, detM)− h1(S, detM) = χ(detM) = 2 +
c1(M)2

2
.

Therefore, if 2 > h0(S,detM), then c1(M)2 ≤ −2, and thus

c1(M).c1(M1) ≥ rk(M)
g − 1

2
+ 2 ≥ rk(M)γ + 2 ≥ γ + 2

as rk(M) ≥ 1.
Hence from now on we assume that h0(S,detM) ≥ 2. Since ωC⊗(detM1)∨⊗OC = detM⊗OC ,

the line bundle detM1 ⊗OC contributes to γ(C). Tensoring the short exact sequence for OC with
detM1 gives

0 // detM∨ // detM1
// detM1 ⊗OC // 0 ,

which gives h0(C,detM1 ⊗OC) ≥ h0(S, detM1). It follows that

γ(detM1 ⊗OC) = c1(M1).(c1(M) + c1(M1))− 2h0(C,detM1 ⊗OC) + 2

≤ c1(M1)2 + c1(M).c1(M1)− 2χ(detM1)− 2h1(S, detM1) + 2

= −2 + c1(M).c1(M1)− 2h1(S,detM1).
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By assumption, we have γ(detM1⊗OC) ≥ γ, thus c1(M).c1(M1) ≥ γ+ 2 + 2h1(S, detM1) ≥ γ+ 2,
as desired. �

Remark 4.2. It follows from the second half of the proof that if M and M1 are coherent sheaves
such that c1(M) + c1(M1) = c1(E), detM1⊗OC (hence also detM ⊗OC) contributes to γ(C), and
h2(S, detM1) = 0 (or h2(S, detM) = 0), then c1(M).c1(M1) ≥ γ(C)+2+2h1(S, detM1) ≥ γ(C)+2
(or c1(M).c1(M1) ≥ γ(C) + 2 + 2h1(S, detM) ≥ γ(C) + 2).

Proposition 4.3. Let (S,H) be a polarize K3 surface, C ∈ |H| a smooth irreducible curve, A a
basepoint free line bundle on A of type g3

d, and E = EC,A. Suppose E sits in an exact sequence

0 // M // E // E/M // 0 ,

where M and E/M are coherent torsion free sheaves on S and µ(M) ≥ µ(E) ≥ µ(E/M). If
rk(M) ≥ rk(E/M), then c1(M)2 ≥ c1(E/M)2. And if rk(M) > rk(E/M), then c1(M)2 >
c1(E/M)2. In particular, det(E/M)⊗OC contributes to γ(C).

Proof. As in Proposition 4.1, we see h0(S, detE/M) ≥ 2, µ(E/M) > 0, det(E/M) is nef, and
h2(S, detM) = 0. Since h0(S, detE/M) ≥ 2, it remains to show that h0(S,detM) ≥ 2.

We observe that

c1(M)2 + c1(M).c1(E/M) = rk(M)µ(M) ≥ rk(E/M)µ(E/M) = c1(E/M)2 + c1(M).c1(E.M)

whence c1(M)2 ≥ c1(E/M)2 ≥ 0 as det(E/M) is nef.

Since h2(S, detM) = 0, we have h0(S, detM) ≥ χ(detM) = 2 + c1(M)2

2 . Thus as c1(M)2 ≥ 0,
det(E/M)⊗OC contributes to γ(C). �

For each terminal filtration not of the form 0 ⊂ 1 ⊂ 4, we find a lower bound for d = c2(E).
That is whenever E does not have a maximal destabilizing sub-line bundle, we find that d must be
large.

4.1. Filtration 2 ⊂ 4. We assume E is unstable with terminal filtration 0 ⊂M ⊂ E with M and
M1 = E/M stable rank 2 torsion free sheaves. Thus E sits in an exact sequence of the form

0 // M // E // M1
// 0 .

We have

µ(M) ≥ µ(E) =
g − 1

2
≥ µ(M1)(1)

d = c2(E) = c1(M).c1(M1) + c2(M) + c2(M1)(2)

Lemma 4.4. Suppose C ∈ |H|s has Clifford index γ = γ(C). Then if E is as above, we have

d ≥ γ
2 + 4 + g−1

2 .

Proof. From Proposition 4.1 and Proposition 4.3, we see that c1(M).c1(M1) ≥ γ + 2. Stability of

M and M1 give −2 ≤ 〈ν(M(1)), ν(M(1))〉 = 4c2(M(1))− c1(M(1))
2−8, thus c2(M(1)) ≥ 3

2 +
c1(M(1))

2

4 .
We have

c1(M)2 + c1(M1)2

4
+
c1(M).c1(M1)

2
=
µ(M) + µ(M1)

2
=

(c1(M) + c1(M1))2

4
= µ(E) =

g − 1

2
.
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We now calculate

d = c1(M).c1(M1) + c2(M) + c2(M1) + l(ξ)

≥ c1(M).c1(M1) + 3 +
c1(M)2 + c1(M1)2

4

= c1(M).c1(M1) + 3 +
g − 1

2
− c1(M)/c1(M1)

2

≥ γ + 2

2
+ 3 +

g − 1

2
.

as claimed. �

4.2. Filtration 3 ⊂ 4. We assume E = EC,A is unstable with terminal filtration 0 ⊂M ⊂ E with
M a stable rank 3 torsion free sheaf. Thus E sits in an extension

0 // M // E // N ⊗ Iξ // 0

where N is a line bundle and Iξ is the ideal sheaf of a 0-dimensional subscheme ξ ⊂ S of length
l(ξ) = d− c1(M).c1(N). We have

µ(M) ≥ µ(E) =
g − 1

2
≥ µ(N)(3)

c1(H) = c1(E) = c1(M) + c1(N)(4)

d = c2(E) = c1(N).c1(M) + c2(M) + l(ξ)(5)

Lemma 4.5. Suppose C ∈ |H|s has Clifford index γ = γ(C). Then if E is as above, we have
d ≥ 2

3(γ + 2) + g
2 + 13

6 .

Proof. From Proposition 4.1 and Proposition 4.3, we see that c1(N).c1(M) ≥ γ + 2.

As M is stable, we have −2 ≤ 〈ν(M), ν(M)〉 = 6c2(M)− 2c1(M)2 − 18, thus c2(M) ≥ 8+c1(M)2

3 .
Thus

d = c1(N).c1(M) + c2(M) + l(ξ)

≥ c1(N).c1(M) +
c1(M)2

3
+

8

3

≥ c1(N).c1(M) +
g − 1

2
− c1(N).c1(M)

3
+

8

3

≥ 2

3
(γ + 2) +

g

2
+

13

6
,

as desired. �

4.3. Filtration 1 ⊂ 2 ⊂ 4. We assume E has a terminal filtration 0 ⊂ N ⊂ M ⊂ E with
rk(N) = 1, rk(M) = 2, and E/M = M1 a stable torsion free sheaf. Furthermore, we have

µ(N) ≥ µ(M) ≥ µ(E) =
g − 1

2
≥ µ(M1)(6)

µ(M) ≥ µ(M/N) ≥ µ(E/N) ≥ µ(M1)(7)

d = c2(E) = c2(M) + c2(M1) + c1(M).c1(M1) = c1(N).c1(M/N) + c1(N).c1(M1) + c1(M/N).c1(M1) + c2(M1)
(8)

Moreover, as M1 is stable, we have

−2 ≤ 〈ν(M1), ν(M1)〉 = c1(M1)2 − 4χ(M1) + 8 = 4c2(M1)− c1(M1)2 − 8
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thus c2(M1) ≥ 3
2 + c1(M1)2

4 . We find below that c1(M1)2 ≥ 0 therefore we have

d ≥ 2 + c1(N).c1(M/N) + c1(N).c1(M1) + c1(M/N).c1(M1).(9)

Lemma 4.6. Suppose E is as above. Then detM1 ⊗ OC contributes to γ(C) and one of the
following occurs:

(a) N ⊗OC and (M/N)⊗OC contribute to γ(C);

(b) c1(N).(c1(M1) + c1(M/N)) ≥ g−1
2 + 2 and either (M/N)⊗OC contributes to γ(C) or

c1(M/N).(c1(N) + c1(M1)) ≥ g ;

(c) N ⊗OC contributes to γ(C) and c1(M/N).(c1(N) + c1(M1)) ≥ 2 + c1(M).c1(M1)
2 + c1(M1)2

2 ;

(d) c1(N).c1(M/N) ≥ g+3
2 .

Proof. From Proposition 4.1 and Proposition 4.3, we see that detM1 ⊗OC contributes to γ(C).
We have the following four cases:

(i) h0(S,M/N), h0(S,N) ≥ 2
(ii) h0(S,M/N) ≥ 2 and h0(S,N) < 2

(iii) h0(S,M/N) < 2 and h0(S,N) ≥ 2
(iv) h0(S,M/N), h0(S,N) < 2

In case (i), we have h0(S,H ⊗ (M/N)∨) = h0(S, detM1 ⊗ N) ≥ 2 and h0(S,H ⊗ N∨) =
h0(S, detM1 ⊗M/N) ≥ 2 as detM1 has global sections. Thus we are in case (a) of the lemma.

In case (ii), we see that χ(N) < 2, hence c1(N)2 ≤ −2, and we calculate

c1(N).(c1(M1).c1(M/N)) = c1(N).(c1(E)− c1(N))

= µ(N)− c1(N)2 ≥ µ(E) + 2 =
g − 1

2
+ 2,

thus the first statement of case (b) is proved. We now observe that c1(N ⊗ detM1)2 > c1(M/N)2

which follows from the computation c1(N ⊗ detM1)2 − c1(M/N)2 ≥ 2µ(M1) > 0.
If c1(N ⊗ detM1)2 < 0, then also c1(M/N)2 < 0, and we calculate

2g − 2 = c1(E)2 = (c1(N) + c1(M/N) + c1(M1))2

= c1(N ⊗ detM1)2 + 2c1(N ⊗ detM1).c1(M/N) + c1(M/N)2

< 2(c1(N) + c1(M1)).c1(M/N),

thus c1(M/N).(c1(N) + c1(M1)) ≥ g. Else c1(N ⊗ detM1)2 ≥ 0 and so h0(S,H ⊗ (M/N)∨) =
h0(S,N ⊗ detM1) ≥ 2 and so M/N contributes to γ(C). Thus we are in case (b).

In case (iii), since detE/N ∼= detM1 ⊗ M/N , we have h0(S,detM1 ⊗ M/N) ≥ 2. Thus as
h0(S,N) ≥ 2, we see that N ⊗ OC contributes to γ(C). Therefore, as h0(S,M/N) < 2, we have
c1(M/N)2 ≤ −2.

In cases (iii) and (iv), we have c1(M/N)2 ≤ −2. We now calculate

2g − 2 = c1(E)2 = c1(M/N)2 + c1(N)2 + c1(M1)2 + 2c1(M/N).c1(N) + 2c1(M/N).c1(M1) + 2c1(N).c1(M1)

≤ c1(N)2 + c1(M1)2 + 2c1(M/N).c1(N) + 2c1(M/N).c1(M1) + 2c1(N).c1(M1)− 2

≤ c1(N)2 + g − 3 + 2c1(M/N).c1(N),

thus

(10) c1(N).c1(M/N) ≥ g + 1

2
− c1(N)2

2
.

In case (iii), we observe that since

c1(M/N).(c1(N) + c1(M1)) + c1(M/N)2 = µ(M/N) ≥ µ(E/N) =
(c1(E/N)).(c1(E))

3
,
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we have

c1(M/N).(c1(N) + c1(M1)) ≥ −c1(M/N)2 +
c1(M/N)2

3
+
c1(M/N).(c1(N) + c1(M1))

3

+
c1(M).c1(M1)

3
+
c1(M1)2

3
.

And subtracting c1(M/N).(c1(N) + c1(M1))/3 from both sides and multiplying by 3/2 yields

c1(M/N).(c1(N) + c1(M1)) ≥ −c1(M/N)2 +
c1(M).c1(M1)

2
+
c1(M1)2

2
.

Noting that c1(M/N)2 ≤ −2 shows we are in case (c).
In case (iv), as h0(S,N), h0(S,M/N) < 2, we have c1(N)2, c1(M/N)2 ≤ −2, thus Equation (10)

gives c1(N).c1(M/N) ≥ g+1
2 −

c1(N)2

2 ≥ g+1
2 + 1 = g+3

2 , and we are in case (d). �

Lemma 4.7. With E as above, if general curves in |H|s have Clifford index γ = γ(C), and m = D2

is the minimum self-intersection of an effective classes D ∈ Pic(S) (i.e. there are no curves of genus
g′ < m+2

2 on S), then we have d ≥ 5 + 5
4γ + 3m

4 or d ≥ 5 + 3
2γ.

Proof. We write 2d ≥ 4 + c1(N).c1(E/N) + c1(M/N).(c1(N) + c1(M1)) + c1(M).c1(M1). From
Proposition 4.1, we see that c1(N).c1(E/N) ≥ γ + 2, and c1(M).c1(M1) ≥ γ + 2. In cases (a), (b),
we have c1(M/N).(c1(N) + c1(M1)) ≥ γ+ 2. In case (c), we have d ≥ 5 + 5

4γ+ 3m
4 . Finally, in case

(d), we have d ≥ 2 + c1(N).c1(M/N) + c1(M).c1(M1) ≥ 2 + g+13
2 + γ+ 2. And in any case, we have

the desired inequality. �

4.4. Filtration 1 ⊂ 3 ⊂ 4. We assume E has a terminal filtration 0 ⊂ N ⊂ M ⊂ E with
rk(N) = 1, rk(M) = 3, and M/N a stable torsion free sheaf, and we call E/M = N1. Furthermore,
we have

µ(N) ≥ µ(M) ≥ µ(E) ≥ µ(E/N) ≥ µ(N1)(11)

µ(M) ≥ µ(M/N) ≥ µ(E/N)(12)

d = c2(E) = c2(M/N) + c1(M/N).c1(N) + c1(N).c1(N1) + c1(N1).c1(M/N)(13)

Moreover, since M/N is stable, we have

−2 ≤ 〈ν(M/N), ν(M/N)〉 = c1(M/N)2 − 4χ(M/N) + 8 = 4c2(M/N)− c1(M/N)2 − 8

thus c2(M/N) ≥ 3
2 + c1(M/N)2

4 .

Lemma 4.8. Suppose E is as above. Then N1⊗OC contributes to γ(C), and one of the following
occurs:

(a) N ⊗OC and det(M/N)⊗OC contribute to γ(C);

(b) c1(N).(c1(N1) + c1(M/N)) ≥ g+3
2 ≥ γ(C) + 2 and either det(M/N) ⊗ OC contributes to

γ(C) or c1(M/N)2

2 + c1(M/N).(c1(N) + c1(N1)) ≥ g;

(c) N⊗OC contributes to γ(C) and c1(M/N)2

2 +c1(M/N).c1(N) ≥ 1
2c1(N).(c1(N1)+c1(M/N));

(d) c1(M/N)2

2 + c1(M/N).c1(N) ≥ g + 1.

Proof. From Proposition 4.1 and Proposition 4.3, we see that N1 ⊗ OC contributes to γ(C) and
h2(S, detM/N) = h2(S,M/N) = h2(S,N) = 0.

We have the following four cases:

(i) h0(S, detM/N), h0(S,N) ≥ 2
(ii) h0(S, detM/N) ≥ 2 and h0(S,N) < 2

(iii) h0(S, detM/N) < 2 and h0(S,N) ≥ 2
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(iv) h0(S,detM/N), h0(S,N) < 2

In case (i), we have h0(S,H ⊗ N∨) = h0(S, detM/N ⊗ N1) ≥ 2, and h0(S,H ⊗ detM/N∨) =
h0(S,N ⊗ N1) ≥ 2 as detM/N , N , and N1 have global sections. Thus we are in case (a) of the
lemma.

In case (ii), we see that χ(N) < 2, thus c1(N) ≤ −2, and we calculate

c1(N).(c1(N1) + c1(M/N)) =c1(N).(c1(E)− c1(N))

= µ(N)− c1(N)2 ≥ µ(E) + 2 =
g + 3

2
.

• If c1(N ⊗ N1)2, c1(M/N)2 ≥ 0, then detM/N contributes to γ(C) as h0(S,N ⊗ N1) =
h0(S,H − detM/N) ≥ 2.
• If c1(N ⊗N1)2 ≥ 2 and c1(M/N)2 < 0, then as above detM/N contributes to γ(C).
• If c1(N ⊗N1)2 < 0 and c1(M/N)2 ≥ 0 then we cannot say if detM/N contributes to γ(C)

as above. However, we calculate

2g − 2 = c1(E)2 =(c1(M/N) + c1(N ⊗N1))2

= c1(M/N)2 + 2c1(M/N).(c1(N) + c1(N1)) + c1(N ⊗N1)2

< c1(M/N)2 + 2c1(M/N).(c1(N) + c1(N1)),

thus c1(M/N)2

2 + c1(M/N).(c1(N) + c1(N1)) ≥ g.

• If c1(N ⊗ N1)2, c1(M/N)2 < 0, then the same calculation as above yields c1(M/N)2

2 +
c1(M/N).(c1(N) + c1(N1)) ≥ g.

Thus we are in case (b) of the lemma.
In case (iii), since detE/N = N1⊗detM/N , [26, Lemma 3.3] implies that h0(S,N1⊗detM/N) ≥

2. Thus since h0(S,N) ≥ 2, we see that N ⊗OC contributes to γ(C). Furthermore, as c1(M/N)2 +
c1(M/N).c1(N) ≥ c1(N1)2 + c1(N1).c1(N) and c1(N1)2 ≥ 0 > c1(M/N)2, we have c1(M/N)2 +
c1(M/N).c1(N) ≥ c1(N1).c1(N). Thus

c1(M/N)2 + c1(M/N).c1(N)− 1

2
(c1(N).(c1(N1) + c1(M/N))) ≥ c1(M/N)2 +

c1(M/N).c1(N)

2
− c1(N).c1(N1)

2

≥ c1(M/N)2

2
,

thus
c1(M/N)2

2
+ c1(M/N).c1(N) ≥ 1

2
c1(N).(c1(N1) + c1(M/N)),

and we are in case (c).
In case (iv), we see that c1(N)2, c1(M/N)2 ≤ −2. We calculate

2g − 2 =c1(E)2 = (c1(N) + c1(N1) + c1(M/N))2

≤ c1(N1)2 + c1(M/N)2 + 2c1(N).c1(N1) + 2c1(N).c1(M/N) + 2c1(N1).c1(M/N)− 2

≤ g − 1 + 2c1(N).c1(M/N) + c1(M/N)2 − 2,

thus c1(M/N)2

2 + c1(N).c1(M/N) ≥ g + 1, and we are in case (d). �

Remark 4.9. From the second half of the proof of Proposition 4.1, we see that in the situation
above, if C ∈ |H|s has Clifford index γ = γ(C), and if detM/N contributes to γ(C), then we have
c1(M/N).(c1(N) + c1(N1)) ≥ γ + 2 + 2h1(S,detM/N).

Lemma 4.10. With E as above, if general curves in |H|s have Clifford index γ = γ(C), we have
d ≥ 3

2γ + 5.
19



Proof. We first see that if c1(M/N)2 ≥ 0, then we are in cases (a) or (b) of the above lemma.
Furthermore, we have c2(M/N) ≥ 2. Thus in case (a), we have

2d ≥ 2c2(M/N) + c1(M/N).c1(N) + c1(N).c1(N1) + c1(N1).c1(M/N)

≥ 4 + 2c1(M/N).2c1(N) + 2c1(N).c1(N1) + 2c1(N1).c1(M/N)

= 4 + c1(M/N).(c1(N) + c1(N1)) + c1(N).(c1(N1) + c1(M/N)) + c1(N1).(c1(M/N) + c1(N))

≥ 4 + 3(γ + 2),

where the last inequality comes from Proposition 4.1. Thus d ≥ 3
2γ + 5. In case (b), we calculate

as in case (a) and get d ≥ 3
2γ + 5 or

2d ≥ c1(N).c1(N1) + c1(N).c1(M/N) + c1(N1).c1(M/N) +
c1(M/N)2

4
≥ g + c1(N).c1(M/N) + 2c1(N).c1(N1) + c1(N1).c1(M/N)

≥ g + 2(γ + 2),

hence d ≥ γ + 2 + g
2 >

3
2γ + 5.

If c1(M/N)2 < 0, in case (d), we have

d ≥ 3

2
+
g + 1

2
+
c1(N).c1(M/N)

2
+ c1(M/N).c1(N1) + c1(N).c1(N1)

≥ 4 + g

2
+ k +

g + 1

2
− c1(M/N)2

4

≥ γ + 2 + g +
7

2
.

If 0 > c1(M/N)2 ≥ −6, then c2(M/N) ≥ 0, and as there are no (−2)-curves we immediately
have that c1(M/N)2 ≤ −4 thus χ(detM/N) ≤ 0. Therefore h1(S,detM/N) ≥ h0(S, detM/N).
Calculating as above, we see that

• in case (a), we have d ≥ 3
2γ + 5;

• in case (b), we have d ≥ 3
2γ + 5 or d ≥ γ + 7

2 + g+2
2 ; and,

• in case (c), we have d ≥ 3
2γ + 3

2 + 4.

If c2(M/N) < 0, then the stability of M/N implies that c1(M/N)2 ≤ −8 and

−2 ≤ 〈ν(M/N), ν(M/N)〉 = c1(M/N)2 + 8− 4χ(M/N) ≤ −4χ(M/N),

whereby χ(M/N) ≤ 0. We now consider inequalities associated with various filtrations that lead
to the terminal 0 ⊂ 1 ⊂ 3 ⊂ 4 filtration of E.

If the JH filtration of E is 0 ⊂ 1 ⊂ 3 ⊂ 4, then we have p(E) = p(M/N), which gives an equality
of normalized Euler characteristics

χ(M/N)

2
=
χ(E)

4
=
g − γ + 1

4
.

Thus 0 ≥ 2χ(M/N) = g − d+ 7, and hence d ≥ g + 7.
If the HN filtration of E is 0 ⊂ M ⊂ E with rk(M) = 3 and M properly semistable, then the

JH filtration of M is 0 ⊂ N ⊂M . Hence µ(M/N) = µ(M) and µ(M) > µ(E). Thus

c1(M/N)2

2
+
c1(M/N).c1(N ⊗N1)

2
= µ(M/N) > µ(E) =

g − 1

2
,
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hence

d ≥ 3

2
+
c1(M/N)2

4
+ c1(M/N).c1(N ⊗N1) + c1(N).c1(N1)

≥ 3

2
+
g − 1

2
− c1(M/N)2

4
+
c1(M/N).(c1(N) + c1(N1))

2

≥ 3

2
+
g − 1

2
+
c1(N).(c1(N1) + c1(M/N))

2
+
c1(N1).(c1(N) + c1(M/N))

2

≥ 3

2
+
g − 1

2
+ γ + 1

where the last inequality comes from the fact that N1 contributes to γ(C), and that in cases (a),(b),
and (c) c1(N).(c1(N1) + c1(M/N)) ≥ γ + 2.

If the HN filtration of E is 0 ⊂ N ⊂ E with E/N properly semistable and the JH filtration of
E/N is 0 ⊂M ⊂ E/N with rk(M) = 2, then we have an equality of normalized Euler characteristics

χ(E)− χ(N)

3
=
χ(E/N)

3
=
χ(M)

2
=
χ(M/N)

2
.

Thus χ(E) = g − γ + 1 = 3χ(M/N)
2 + χ(N), where γ = d − 6 is the Clifford index of the g3

d on C.
From the short exact sequence

0 // N // E // E/N // 0 ,

we have χ(N) = h0(S,E)− h0(S,E/N) ≤ g − γ − 1 as h0(S,E/N) ≥ 2. Therefore

g − γ + 1 = χ(E) ≤ 3χ(M/N)

2
+ g − γ − 1,

and thus 2 ≤ 3
2χ(M/N) ≤ 0, which is a contradiction. Thus this does not occur, and in all cases

we have at least d ≥ 3
2γ + 5, as claimed. �

4.5. Filtration 2 ⊂ 3 ⊂ 4. We assume E has a terminal filtration 0 ⊂ N ⊂ M ⊂ E with N a
stable torsion free sheaf of rank rk(N) = 2, rk(M) = 3, and N1 = E/M a line bundle. Furthermore,
we have

µ(N) ≥ µ(M) ≥ µ(E) =
g − 1

2
≥ µ(N1)(14)

µ(M) ≥ µ(M/N) ≥ µ(E/N) ≥ µ(N1)(15)

d = c2(E) = c2(N) + c1(N).c1(M/N) + c1(N).c1(N1) + c1(M/N).c1(N1)(16)

Moreover, as N is stable, we have c2(N) ≥ 3
2 + c1(N)2

4 .

Lemma 4.11. Suppose E is as above. Then N1⊗OC contributes to γ(C) and one of the following
occurs:

(a) (detN)⊗OC and (M/N)⊗OC contribute to γ(C);
(b) c1(N).(c1(N1)+c1(M/N)) ≥ g+1and either (M/N)⊗OC contributes to γ(C) or c1(M/N).(c1(N)+

c1(N1)) ≥ g;
(c) (detN) ⊗ OC contributes to γ(C), we can assume c1(N)2 ≥ 0 and c1(M/N).c1(N) ≥

1
2c1(N).(c1(M/N) + c1(N1));

(d) c1(N)2 ≤ −2 and c1(N)2

2 + c1(M/N).c1(N) ≥ g+1
2 .

Proof. From Proposition 4.1 and Proposition 4.3, we see that N1 ⊗ OC contributes to γ(C) and
h2(S, detN) = h2(S,detM) = h2(S,M/N) = h2(S,detE/N) = 0.

We have the following four cases:
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(i) h0(S,M/N), h0(S,detN) ≥ 2
(ii) h0(S,M/N) ≥ 2 and h0(S,detN) < 2

(iii) h0(S,M/N) < 2 and h0(S,detN) ≥ 2
(iv) h0(S,M/N), h0(S,detN) < 2.

In case (i), as N1 has global sections, and H − c1(M/N) = c1(N) + c1(N1) and H − c1(N) =
c1(N1) + c1(M/N), we see that both (detN) ⊗OC and (M/N) ⊗OC contribute to γ(C), and we
are in case (a).

In case (ii), we have χ(N) < 2, hence c1(N)2 ≤ −2, and we calculate

c1(N).(c1(N1) + c1(M/N)) = c1(N).(c1(E)− c1(N))

= 2µ(N)− c1(N)2 ≥ g − 1 + 2 = g + 1

We now observe that c1(detN ⊗N1)2 ≥ c1(M/N)2 which follows from the following calculation

c1(detN ⊗N1)2 − c1(M/N)2 = c1(N)2 + 2c1(N).c1(N1) + c1(N1)2 − c1(M/N)2

= 2µ(N) + µ(N1)− µ(M/N) ≥ µ(N) + µ(N1) > 0.

If c1(detN ⊗N1)2 < 0, then also c1(M/N) < 0, and we calculate

2g − 2 = c1(E)2 = (c1(N) + c1(M/N) + c1(N1))2

= c1(detN ⊗N1)2 + 2c1(detN ⊗N1).c1(M/N) + c1(M/N)2

< 2(c1(N) + c1(N1)).c1(M/N),

thus c1(M/N).(c1(N) + c1(N1)) ≥ g. Else c1(detN ⊗ N1)2 ≥ 0, and so h0(S,H ⊗ (M/N)∨) =
h0(S, detN ⊗N1) ≥ 2, whereby M/N ⊗OC contributes to γ(C). Thus we are in case (b).

In case (iii), since detE/N ∼= detM/N ⊗N1, we have h0(S, detM/N ⊗N1) ≥ 2 by [26, Lemma
3.3]. Thus as h0(S,detN) ≥ 2, we have that detN ⊗ OC contributes to γ(C). Thus proving the
first statement of case (c).

In cases (iii) and (iv), as h0(S,M/N) < 2 we have c1(M/N)2 ≤ −2. We now calculate

2g − 2 = c1(E)2 = (c1(N) + c1(M/N) + c1(N1))2

= c1(N)2 + c1(M/N)2 + c1(N1)2 + 2c1(N).c1(M/N) + 2c1(M/N).c1(N1) + 2c1(N).c1(N1)

≤ c1(N)2 + c1(N1)2 + 2c1(N).c1(M/N) + 2c1(M/N).c1(N1) + 2c1(N).c1(N1)− 2

≤ g − 1 + c1(N)2 + 2c1(M/N).c1(N)− 2,

thus c1(N)2

2 + c1(M/N).c1(N) ≥ g+1
2 . If c1(N)2 ≤ −2, we are in case (d).

From now on, we assume c1(N)2 ≥ 0. From the inequality µ(M/N) ≥ µ(N1), we see that
c1(N).c1(M/N) > c1(M/N)2 + c1(N).c1(M/N) ≥ c1(N1)2 + c1(N1).c1(M/N) ≥ c1(N1).c1(M/N).
Thus

c1(M/N).c1(N)− 1

2
c1(N).(c1(M/N) + c1(N1)) =

1

2
(c1(N).c1(M/N)− c1(N).c1(N1)) > 0,

and we are in case (c).
�

Lemma 4.12. With E as above, if general curves in |H|s have Clifford index γ = γ(C), we have
d ≥ 5 + 3

2γ.

Proof. The proof follows the same argument as Lemma 4.7. �
22



4.6. Filtration 1 ⊂ 2 ⊂ 3 ⊂ 4. We suppose E has a terminal filtration of the form

0 = E0 ⊂ E1 ⊂ E2 ⊂ E3 ⊂ E4 = E,

where rk(Ei) = i, and Ei/Ei+1 are torsion free sheaves of rank 1. Furthermore, we have

µ(E1) ≥ µ(E2) ≥ µ(E3) ≥ µ(E) =
g − 1

2
≥ µ(N1)(17)

µ(E1) ≥ µ(E2/E1) ≥ µ(E3/E2) ≥ µ(N1)(18)

µ(Ei/Ej) ≥ µ(N1) for 1 ≤ j < i ≤ 4(19)

d = c1(N1).(c1(E1) + c1(E2/E1) + c1(E3/E2)) + c1(E1).c1(E3/E2) + c1(E2/E1).c1(E3/E2) + c1(E1).c1(E2/E1)
(20)

Letting ei := c1(Ei/(Ei−1)), be the Chern roots of E, and writing ei+ej := c1(Ei/Ei−1⊗Ej/Ej−1),
we have

4d =e1(e2 + e3 + e4) + (e1 + e2).(e3 + e4) + (e1 + e2 + e3).e4

+ (e1 + e4).(e2 + e3) + (e1 + e3).(e2 + e4) + (e1 + e3 + e4).e2 + (e1 + e2 + e4).e3

Lemma 4.13. With E as above, if general curves in |H|s have Clifford index γ = γ(C),

m := min{D2|D ∈ Pic(S), D2 ≥ 0, D is effective}
(i.e. there are no curves of genus g′ < m+2

2 on S), and

µ = min{µ(D)|D ∈ Pic(S), D2 ≥ 0, µ(D) > 0},
we have d ≥ 5

4γ + µ
2 + m

2 + 9
2 .

Proof. From Proposition 4.1 and Proposition 4.3, we see that det(E/Ei)⊗OC contributes to γ(C),
and so we have e1(e2 + e3 + e4) ≥ γ + 2, (e1 + e2).(e3 + e4) ≥ γ + 2, and (e1 + e2 + e3).e4 ≥ γ + 2.
We also have h2(S, F ) = 0 for F = det(Ei/Ej) and F = N1,detEi.

It remains to bound the other four terms.
To bound (e2 + e3).(e1 + e4), we note that µ(e2 + e3) ≥ µ+ µ(e3) ≥ µ+ µ(E/E2), and thus

(e2 + e3)2 + (e1 + e4).(e2 + e3) ≥ µ+
(e1 + e2).(e3 + e4)

2
+

(e3 + e4)2

2
≥ µ+

γ + 2

2
+

(e3 + e4)2

2
.

Furthermore, we note that µ(e1 + e4) = µ(e1) + µ(e4) ≥ g−1
2 , whereby

(e1 + e4)2 + (e1 + e4).(e2 + e3) ≥ γ.
Now if h0(S, e1 + e4) < 2 then by considering the Euler characteristic we have (e1 + e4)2 ≤ −2,
and thus (e1 + e4).(e2 + e3) ≥ γ + 2. If h0(S, e2 + e3) < 2 then (e2 + e3)2 ≤ −2, and we have

(e1+e4).(e2+e3) ≥ 2+µ+ γ+2
2 + (e3+e4)2

2 . By assumption, (e3+e4)2 ≥ m, hence (e1+e4).(e2+e3) ≥
3 + µ+ γ

2 + m
2 as well. Finally, if h0(S, e1 + e4), h0(S, e2 + e3) ≥ 2, and thus they contribute to the

γ(C), and hence by Proposition 4.1 (e1 + e4).(e2 + e3) ≥ γ + 2. Therefore in either case, we have
(e1 + e4).(e2 + e3) ≥ 3 + µ+ γ

2 + m
2 .

To bound (e1 + e3).(e2 + e4), we note that µ(e1 + e3) ≥ g−1
2 , and hence

(e1 + e3)2 + (e1 + e3).(e2 + e4) ≥ g − 1

2
.

We also note that µ(e2 + e4) ≥ µ+ µ(E/E1) ≥ µ+ µ(E/E2), whereby

(e2 + e4)2 + (e1 + e3).(e2 + e4) ≥ 1 +
(e1 + e2).(e3 + e4)

2
+

(e3 + e4)2

2
≥ 1 +

γ + 2

2
+

(e3 + e4)2

2
.

As above, we have (e1 + e3).(e2 + e4) ≥ 3 + µ+ γ
2 + m

2 .
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To bound (e1 + e3 + e4).e2, we note that µ(e1 + e3 + e4) ≥ µ(e1) ≥ g−1
2 and µ(e2) ≥ µ(E/E1) ≥

µ(E/E2). Following the same argument as above, we have (e1 + e3 + e4).e2 ≥ 3 + γ
2 + m

2 .

To bound (e1 + e2 + e4).e3, we note that µ(e1 + e2 + e4) ≥ µ(e1) ≥ g−1
2 and µ(e3) ≥ µ(E/E2).

Following the same argument as above, we have (e1 + e2 + e4).e3 ≥ 3 + γ
2 + m

2 .
Finally, we have that three of the terms in the expression for 4d are bounded below by γ + 2,

two by 3 + γ
2 + m

2 , and two by 3 + µ+ γ
2 + m

2 . Thus d ≥ 5
4γ + µ

2 + m
2 + 9

2 , as desired. �

5. Lifting g3
ds

As above, (S,H) is a polarized K3 surface of genus g, C ∈ |H| is a smooth irreducible curve of

general Clifford index γ = bg−1
2 c, A is a complete basepoint free g3

d with ρ(A) < 0, and E = EC,A
the unstable LM bundle. Having attained the needed bounds on c2(E), we can prove our lifting
results.

Theorem 5.1. Let (S,H) be a polarized K3 surface of genus g 6= 2, 3, 4, 8 and C ∈ |H| a smooth
irreducible curve of Clifford index γ. Let

m := min{D2 | D ∈ Pic(S), D2 ≥ 0, D is effective}
(i.e. there are no curves of genus g′ < m+2

2 on S), and

µ = min{µ(D) | D ∈ Pic(S), D2 ≥ 0, µ(D) > 0}.
If

d < min

{
5

4
γ +

µ

2
+
m

2
+

9

2
,

5

4
γ + 5 +

3m

4
,

3

2
γ + 5,

γ

2
+
g − 1

2
+ 4

}
,

then there is a line bundle L ∈ Pic(S) adapted to |H| such that |A| ⊆ |L⊗OC | and γ(L⊗OC) ≤ γ(A).

Moreover, one has c1(L).C ≤ 3g−3
2 .

Proof. The LM bundle E has c2(E) = d. If g 6= 2, 3, 4, 8, then d < 5g+19
6 . As

d < min

{
5

4
γ +

µ

2
+
m

2
+

9

2
,

5

4
γ + 5 +

3m

4
,

3

2
γ + 5,

γ

2
+
g − 1

2
+ 4

}
by assumption, the only terminal filtration of E is of type 0 ⊂ 1 ⊂ 4. Thus by Proposition 3.14,
the result follows. �

We remark that Theorem 2 is a special case of Theorem 5.1 since if S has no elliptic curves, then
m ≥ 2 so that d < 5

4γ + 6.

6. Maximal Brill–Noether Loci in Genus 14− 23

We identify the maximal Brill–Noether loci in genus 14–19, 22, and 23. Our technique uses a few
known results about non-containments of Brill–Noether loci, work by Lelli-Chiesa [26] on lifting of
rank 2 linear systems and linear systems computing the Clifford index, and our lifting results for
rank 3 linear systems above.

We first prove a few useful lemmas which in effect say that if Pic(S) = 〈H,L〉 looks like it is
obtained by lifting a grd on C to a line bundle L, then L is in fact a lift of a grd. Moreover, when
considering these lifts, we would like the line bundle to be basepoint free, which is true if it is
primitive. In particular, our next lemma shows that if a curve C on a K3 surface strictly contains
a Brill–Noether special linear system, then it is primitive.

Lemma 6.1. Let (S,H) be a polarized K3 surface of genus g, C ∈ |H| a smooth connected curve,
and A ∈ Pic(C) be a line bundle of type grd. Suppose that ρ(g, r, d) < 0 and C contains no Brill–
Noether special linear series of Clifford index smaller than A. Then A is primitive.
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Proof. We note that γ(ωC ⊗ A∨) = γ(A), ρ(A) = ρ(ωC ⊗ A∨), γ(A − P ) < γ(A) when P is a
basepoint of A, and ρ(g, r, d − 1) < ρ(g, r, d). Suppose A has a basepoint P . Then A − P has
strictly smaller Clifford index and is Brill–Noether special. By assumption, C cannot be in the
linear series |A − P |. Thus A is basepoint free. Likewise, if ωC ⊗ A∨ has a basepoint P , then
ωC ⊗A∨−P is Brill–Noether special and has smaller Clifford index, which cannot be the case. �

Lemma 6.2. Let (S,H) be a polarized K3 surface of genus g in the Noether–Lefschetz divisor Krg,d,
i.e., with Pic(S) admitting a primitive embedding of the sublattice

Λrg,d =
H L

H 2g − 2 d
L d 2r − 2

Let C ∈ |H| be a smooth irreducible curve.

(i) If Pic(S) = Λrg,d and 2 ≤ r, d ≤ g − 1, then L is nef.

(ii) If L and H − L are basepoint free, r ≥ 2, and 0 < d ≤ g − 1, then L ⊗ OC is a grd. (The
assumption on basepoint free-ness is achieved if for example S has no (−2)-curves, or can
be checked numerically.)

(iii) Suppose that L ⊗ OC is a grd with γ(r, d) > bg−1
2 c and ρ(g, r, d) < 0 and that all lattices

obtained by lifting special linear systems of general Clifford index or lower cannot be con-
tained in Pic(S). Then C has Clifford index γ(C) = bg−1

2 c, maximal gonality bg+3
2 c, and

Clifford dimension 1.
(iv) If Pic(S) = Λrg,d is associated to an expected maximal grd, then the assumption on lattices

in (iii) holds.

(v) Suppose that γ(r, d) ≤ bg−1
2 c, ρ(g, r, d) < 0, and that all lattices obtained by lifting special

linear systems A not of type grd with γ(A) ≤ bg−1
2 c cannot be contained in Pic(S). Then

L⊗OC is a grd and γ(C) = γ(r, d).

Proof. To prove (i) we show that for any (−2)-curve Γ = aH + bL ∈ Λrg,d, we have Γ.L ≥ 0. We

note that as Γ is a (−2)-curve, a and b must have opposite sign. We prove (i) in three cases.
First suppose a > 0 and b < 0. Then as Γ.H ≥ 1 and a > 0, we have bΓ.L ≤ −2, thus as b < 0,

Γ.L ≥ 0.
Second, suppose a < −1 and b > 0. Then since Γ.H ≥ 1, we have aΓ.H ≤ −2. Thus b.Γ.L ≥ 0,

and since b > 0 we must have Γ.L ≥ 0.
Lastly, suppose a = −1 and b > 0. We see that if Γ.H ≥ 2, then we can follow the same argument

as above to see that L is nef. Thus the only remaining case is when a = −1 and Γ.H = 1. We
calculate 2g − 2 = (H + Γ)2 = (bL)2 = b2(2r − 2), hence b2 = g−1

r−1 ∈ Z. From Γ.H = 1, we see

b = 2g−1
d , and plugging this in to 2g − 2 = b2(2r − 2) yields

d2(g − 1) = (2g − 1)2(r − 1).

Looking modulo g − 1, we immediately see that r − 1 ≡ 0 mod g − 1, hence r−1
g−1 ∈ Z, and thus

r = g, which is a contradiction. Thus L is always nef.
To prove (ii), we note that L is clearly a lift of a gr

′
d on C for some r′ ≥ 0. Since 0 < d ≤ g − 1,

we see that L2, (H − L)2 > 0. Furthermore, since H.L,H.(H − L) > 0, both these line bundles
are nontrivial and intersect H positively, hence h0(S,L), h0(S,H − L) ≥ 2. By assumption, L and
H − L are basepoint free, and thus globally generated. Therefore Corollary 3.11 applies. Thus, as
L2 = 2r − 2, we see that L⊗OC must be a divisor of type grd. Hence (ii) is proved.

To prove (iii), we note that a g1
d′ with ρ(g, 1, d′) < 0 has Clifford index γ(g1

d′) < b
g−1

2 c. Suppose
for contradiction that C has lower than general Clifford index. Then by [27, Theorem 4.2] we
would be able to lift some special linear system computing γ(C) to a divisor L′ ∈ Pic(S), and by
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assumption 〈H,L′〉 cannot be contained in Pic(S). Thus C has general Clifford index. The same
argument shows that C cannot have a special linear system computing its Clifford index. Thus
C has a g1

b g+3
2
c which computes the Clifford index. Hence C has maximal gonality and Clifford

dimension 1.
To prove (iv), we note that if C had any Brill–Noether special gr

′
d′ with γ(gr

′
d′) ≤

g−1
2 , then it

has a grd with γ = g−1
2 or a g1

d with γ(g1
d) = g−1

2 − 1. Thus we only need to consider lattices Λrg,d
associated to those grd. The proof is now Proposition 1.6(i). Thus (iv) is proved.

To prove (v), we note again that L ⊗ OC is a gr
′
d . If r′ 6= r, then γ(C) 6= γ(r, d) and some

line bundle A would compute γ(C). Thus there would exists some lift of A to a line bundle L′,
but again the lattice 〈H,L′〉 * Pic(S). Hence r′ = r and we see that L ⊗ OC is a grd. Similarly,
γ(C) = γ(r, d). �

Remark 6.3. If Λrg,d has a (−2)-curve, there are still some ways to check that L and H − L are
basepoint free. Namely, if they are both nef, then we can check they are basepoint free by checking
if there are any elliptic curves on S. Namely if N ∈ Pic(S) is nef and there are no elliptic curves,
then N is basepoint free by a well-known result of Saint-Donat. To numerically check if D ∈ Pic(S)
is nef, one can check whether D.Γ ≥ 0 for any (−2)-curve Γ.

One can also check that L ⊗ OC is a grd by enumerating all of the degree d gr
′
d on C and using

Lelli-Chiesa’s lifting results to show that Pic(S) cannot have a lift of a gr
′
d for r′ 6= r.

We can now prove that the maximal Brill–Noether loci in genus 14–19, 22, and 23 are as claimed.
The proof in genus 14 only requires the lifting results of Lelli-Chiesa. We write the proof in genus
16 and 23 as the other proofs follow similar arguments.

Theorem 6.4. In genus 14, the maximal Brill–Noether loci are M1
14,7, M2

14,11, and M3
14,13.

Proof. By [28, Proposition 2.1] and the trivial containments among Brill–Noether loci, we see that
the Brill–Noether loci that can be maximal are the ones above. It remains to show that there are
no containments among these loci. By Proposition 1.5, M1

14,7 *M2
14,11 and M1

14,7 *M3
14,13. By

(iii) of Lemma 6.2, we see that there are curves which admit a g2
11 or a g3

13 and have maximal
gonality b14+3

2 c = 8, whereby M2
14,11 *M1

14,7 and M3
14,13 *M1

14,7. Since ρ(14, 2, 11) = −1 and

ρ(14, 3, 13) = −2, and noting that thereforeM2
14,11 has codimension 1 andM3

14,13 has codimension

at least 2 inM14, we see thatM2
14,11 *M3

14,13. Finally, Lelli-Chiesa’s lifting of rank 2 line bundles

[26] shows that M3
14,13 *M2

14,11. �

In genus 16 and 17, the proofs are slightly complicated by the fact that one cannot expect to
always exactly lift a linear system A ∈ Pic(C), but by the Donagi–Morrison conjecture, we can at
least find a line bundle N ∈ Pic(S) such that |A| ⊆ |N ⊗OC | with γ(N ⊗OC) ≤ γ(A). We provide
the proof in genus 16, noting that the genus 17 case is similar.

Theorem 6.5. The maximal Brill–Noether loci in genus 16 are M1
16,8, M2

16,12, and M3
16,14.

Proof. One can check as in Remark 6.3 that for L ∈ Λ3
16,14, L⊗OC is in fact a g3

14. We note that

there are no (−2)-curves in Λ2
15,12. Hence Lemma 6.2 applies for Pic(S) either Λ2

16,12 or Λ3
16,14. Thus

M2
16,12 *M1

16,8 andM3
16,14 *M1

16,8. Furthermore, we haveM1
16,8 *M2

16,12 andM1
16,8 *M3

16,14

from Proposition 1.5. It remains to show that there are curves with a g2
12 and not a g3

14, and vice
versa. Since ρ(16, 2, 12) = −2 and ρ(16, 3, 14) = −4, we see that M2

16,12 *M3
16,14.

Finally, suppose that Pic(S) = Λ3
16,14, and suppose C has a line bundle A of type g2

12. Then

by [26, Theorem 1], there is a Donagi–Morrison lift of A. It can easily be checked that if the
Donagi–Morrison lift M is not of type g3

14, then M can not be contained in Pic(S). Thus M is of
type g3

14 and M2 = 4. However, by Lemma 3.8, we see that γ(EC,A/N) = 0, and each of the cases
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in Lemma 3.7 cannot hold. In case (c), one appeals to [37, Theorem 5.2] which shows that a curve
is hyperelliptic only if there is an irreducible curve B ⊂ S of genus 1 or 2. However, this would
yield B2 = 0 or B2 = 2, both of which are too small. Thus there can be no M , and thus C cannot
admit a g2

12. Thus M3
16,14 *M2

16,12. �

Remark 6.6. In genus 18, the expected maximal Brill–Noether loci are M1
18,10, M2

18,13, and

M3
18,16. To prove these are all maximal one notes that when Pic(S) = Λ2

18,13, then in Theorem 5.1,

we have that µ ≥ 2 and hence the Donagi–Morrison conjecture holds for the g3
16, otherwise the

argument is similar to the one above. Similarly for genus 19. In genus 22, while our bounds cannot
rule out that a curve in M2

22,16 does not admit a g3
19, [3, Corollary 3.5] shows that the loci M2

22,16

andM3
22,19 are distinct. The lifting results of Lelli-Chiesa for g2

ds and our own lifting results suffice
to prove the conjecture in genus 22.

Finally, we provide a proof in genus 23.

Theorem 6.7. The maximal Brill–Noether loci in genus 23 are M1
23,12, M2

23,17, M3
23,20, and

M4
23,22.

Remark 6.8. Before the proof, we note that Farkas proved in [11] that the Brill–Noether loci
M1

23,12, M2
23,17, and M3

23,20 are mutually distinct. We provide a different proof.

Proof. As before, by [28, Proposition 2.1] and the trivial containments among Brill–Noether loci,
we see that the Brill–Noether loci which can be maximal are the ones above. Once again, Propo-
sition 1.5 shows that M1

23,12 is not contained in any of the other loci. Since ρ(23, 1, 12) =

ρ(23, 2, 17) = ρ(23, 3, 20) = −1, Eisenbud and Harris [10] show that the corresponding loci are
irreducible of codimension 1 inMg and thatM4

23,22 has codimension ≥ 2, hence the other loci can-

not be contained in it. Since there are no (−2)-curves in the Picard lattices of a general K3 surface
in K2

23,17, K3
23,20, and K4

23,22, we see by Lemma 6.2 that none of the loci are contained in M1
23,12.

One can check that for a very general K3 surface in M4
23,22, the minimal positive self-intersection

is 4. Hence by Theorem 5.1, if C ∈ |H| had a g3
20 then by considering the Donagi–Morrison lifts,

one finds that the g3
20 would be contained in |L| restricted to C. After noting that γ(E/N) = 0,

one then argues as in the proof for genus 16. Thus M4
23,22 * M3

23,20. The lifting results in [26]

similarly show that M4
23,22 *M2

23,17 and M3
23,22 *M2

23,17. Since the latter two are codimension
1 and irreducible, they are distinct. Thus all of the Brill–Noether loci are distinct. �

7. Lower Genus

If we make a similar assumption on a grd computing the Clifford index of C ∈ |H|, then we have
the following theorem.

Theorem 7.1. For any 8 ≤ g ≤ 13 and any positive integers r, d, r′, d′ such that

• ρ(g, r, d), ρ(g, r′, d′) < 0,
• ∆(g, r, d),∆(g, r′, d′) < 0, and

• 2 < γ(r′, d′) ≤ γ(r, d) ≤ bg−1
2 c,

there is a polarized K3 surface (S,H) ∈ Krg,d such that a curve C ∈ |H| admits a grd but not a gr
′
d′ .

Thus Mr
g,d *Mr′

g,d′.

Remark 7.2. The hypothesis that g ≥ 8 stems from the result in [36, Theorem 1] that a g1
d lifts

if g > 1
4d

2 + d+ 2
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Proof. We let (S,H) be a very general polarized K3 surface of genus g in the Noether–Lefschetz
divisor Krg,d, i.e., such that Pic(S) is given by the lattice

H L
H 2g − 2 d
L d 2r − 2

,

and C ∈ |H| a smooth irreducible curve of genus g. As in Proposition 1.6 (i), no lattices obtained by
lifting special linear systems on C can be contained in Pic(S). By Lemma 6.2 (v) we see that L⊗OC
is a grd and γ(C) = γ(r, d). We suppose for contradiction that C admits a gr

′
d′ . We cannot have

γ(r′, d′) < γ(r, d), as then the grd does not compute the Clifford index of C. Hence γ(r′, d′) = γ(r, d).

But now [27, Theorem 4.2] shows that we can lift the gr
′
d′ to a line bundle M ∈ Pic(S), and by

Proposition 1.6 (i) again, we see that 〈H,M〉 * Pic(S). Thus C cannot admit a gr
′
d′ . �

From this and Brill–Noether theory for curves of fixed gonality [34, Theorem 1.1], see Proposi-
tion 1.5, we can verify the conjecture in low genus.

Corollary 7.3. In genus 9− 13, Conjecture 1 holds, i.e., the expected maximal Brill–Noether loci
are maximal.
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