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Abstract. Generalizing a theorem of Albert, Saltman showed that an Azumaya algebra A over a
ring represents a 2-torsion class in the Brauer group if and only if there is an algebra A′ in the Brauer

class of A admitting an involution of the first kind. Knus, Parimala, and Srinivas later showed that
one can choose A′ such that degA′ = 2 degA. We show that 2 degA is the lowest degree one can

expect in general. Specifically, we construct an Azumaya algebra A of degree 4 and period 2 such

that the degree of any algebra A′ in the Brauer class of A admitting an involution is divisible by 8.
Separately, we provide examples of split and non-split Azumaya algebras of degree 2 admitting

symplectic involutions, but no orthogonal involutions. These stand in contrast to the case of central

simple algebras of even degree over fields, where the presence of a symplectic involution implies the
existence of an orthogonal involution and vice versa.

Introduction

Let A be a central simple algebra over a field F . It is a classical result of Albert [2, X §9 Thm. 19]
(cf. [29, Thm. 3.1(1)]) that A has an involution of the first kind if and only if the Brauer class [A] has
period at most 2, i.e., lies in the 2-torsion part of the Brauer group Br(F ). This characterization was
later extended and clarified by Scharlau [41] and in unpublished work by Tamagawa.

Albert’s theorem does not generally extend to Azumaya algebras A over a commutative ring R.
However, Saltman [39, Thm. 3.1(a)] showed that a class [A] ∈ Br(R) has period dividing 2 if and only if
there is an Azumaya algebra A′ in the class [A] admitting an involution of the first kind. Furthermore,
one can take A′ = A when R is semilocal or when degA = 2, see [39, Thms. 4.1, 4.4]. A later proof
given by Knus, Parimala, and Srinivas [27, Thm. 4.1], which applies in the generality of Azumaya
algebras over schemes, shows that in this context A′ can be choosen so that degA′ = 2 degA.

Suppose X = SpecR is connected and [A] is a 2-torsion class in Br(X). It is natural to ask, in
the context of the results of [39] and [27], whether in general 2 degA is the least possible degree of a
representative A′ in the class [A] admitting an involution of the first kind. We answer this question
in the affirmative.

Theorem A. There exists a commutative domain R and an Azumaya R-algebra A satisfying

degA = 4, perA = 2,

and such that any representative A′ in the Brauer class [A] admitting an involution of the first kind
satisfies

8 | degA′.

This construction is done using approximations of the universal bundle over the classifying stack
of SL4 /µ2, similarly to the methods of [4].

Involutions of the first kind of central simple algebras may be further classified as being orthogonal
or symplectic, see [29, §2]. This classification extends to Azumaya algebras over connected schemes
[28, §III.8].

It is well known that a central simple algebra of even degree over a field admits either involutions of
both types or of neither type. We show that this is not the case for Azumaya algebras. We construct
both split and non-split Azumaya algebras of degree 2, each admitting a symplectic involution but
no orthogonal involutions. The split examples are constructed using quadratic spaces and Clifford
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algebras, whereas the non-split example relies on generic methods to construct an Azumaya algebra
without zero divisors that specializes to the given split example. In fact, the latter example can made
to specialize to any prescribed Azumaya algebra with involution over an affine scheme.

We remark that simply constructing Azumaya R-algebras A without involution and with period
2 is a nontrivial problem. For instance, it is impossible when R is a semilocal ring (as mentioned
above). In addition, for many low-dimensional rings, e.g., integer rings of global fields, the bound
degA′ ≤ 2 degA of [27] is not sharp; see [17, Rem. 11.5].

In [39, §4], Saltman provided a criterion for split Azumaya algebras to have an involution, which
was used to provide explicit split examples. These methods were extended in [17, §11] to give non-
split examples. Alternatively, given a split example, a sufficiently generic algebra of period 2, which
specializes to the split example, cannot have any involution. The major difficultly then lies, in trying
to fully verify Theorem A, with showing that no Brauer equivalent algebra of the same degree can
have an involution. This is where the topological obstruction theory is useful.

Given the above results, we conjecture that:

(a) For any n ≥ 2, there is an Azumaya algebra A of degree 2n and period 2 such any A′ ∈ [A]
with an involution of the first kind satisfies 2n+1 | degA′.

(b) For any n ≥ 1 and n ≥ m ≥ 0, there is an Azumaya algebra A with degA = 2n and indA = 2m

which admits a symplectic involution, but not an orthogonal involution.
(c) For any n ≥ 2 and n ≥ m ≥ 0, there is an Azumaya algebra A with degA = 2n and indA = 2m

which admits an orthogonal involution, but not a symplectic involution.

We have settled (a) when n = 2 and (b) when n = 1 and m ∈ {0, 1}.
We would also like to mention the case of involutions of the second kind, which we do not take

up in this article. Let K/F be a separable quadratic extension of fields. The Albert–Riehm–
Scharlau Theorem [29, Thm. 3.1(2)] asserts that a central simple K-algebra A has an involution
of the second kind with fixed field F if and only if the corestriction corK/F [A] is trivial in Br(F ).
Saltman [39, Thm. 3.1(b)] showed that a class [A] ∈ Br(S), where S/R is a quadratic Galois extension
of commutative rings, has trivial corestriction if and only if there is an Azumaya algebra A′ in the
class [A] admitting an involution of the second kind fixing R pointwise. A different proof given by
Knus, Parimala, and Srinivas [27, Thm. 4.2], shows that A′ can be choosen so that degA′ = 2 degA.
It is then natural to ask, whether in general 2 degA is the least possible degree of a representative A′

in the class [A] admitting an involution of the second kind.

Question B. Do there exist a commutative domain R, a quadratic Galois extension S/R, and an
Azumaya S-algebra A of degree n with corS/R[A] trivial, such that any representative A′ in the Brauer
class [A] admitting an involution of the second kind with fixed ring R has 2n | degA′?

We warmly thank B. Antieau, without whom this paper would not have been written in its present
form. We thank R. Parimala and D. Saltman for useful remarks and suggestions. The second named
author is grateful to Z. Reichstein for many beneficial discussions. The first author was partially
sponsored by NSF grant DMS-0903039 and a Young Investigator grant from the NSA.

The paper is organized as follows: In the first section, we provide some of the necessary background
on Azumaya algebras and their involutions. The second section is topological in content. After a brief
primer on the required theory of classifying spaces and cohomology, it is dedicated to giving certain
obstructions to the existence of maps between classifying spaces. These obstructions are described in
Proposition 10, which is used in Section 3 to construct an example of an Azumaya algebra of period 2
and degree 4 for which any Brauer-equivalent algebra with involution has degree no less than 8. Section
4 exhibits a split Azumaya algebra equipped with a symplectic but not an orthogonal involution. The
fifth and final section is concerned with two constructions of non-split Azumaya algebras that specialize
to the split example of the previous section, thus consequently giving examples of non-split Azumaya
algebras admitting symplectic but not orthogonal involutions.
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1. Preliminaries

We assume throughout that 2 is invertible in all rings and schemes.

We begin by recalling some facts about Azumaya algebras and their involutions. For simplicity,
we have restricted here to connected rings, schemes, etc., but the extension to disconnected settings
requires only some additional bookkeeping.

1.1. Azumaya algebras. Let R be a connected commutative ring. Recall that an R-algebra A is
called Azumaya if A is locally free of finite nonzero rank and the map Φ : A⊗RAop → EndR(A) given
by Φ(a⊗ bop)(x) = axb is an isomorphism. Equivalently, A is Azumaya if there exists a faithfully flat
étale R-algebra S such that A⊗R S ∼= Matn×n(S) as S-algebras, [28, Thm. III.5.1.1]. The number n
is called the degree of n and is denoted degA. When R is a field, Azumaya algebras are precisely the
central simple algebras.

Two Azumaya algebras A, B over R are Brauer equivalent if there are locally free R-modules P
and Q of finite rank such that A ⊗R EndR(P ) ∼= B ⊗R EndR(Q) as R-algebras. The equivalence
class of A is called the Brauer class of A and denoted [A]. The index of A, denoted indA, is
gcd{degA′ |A′ ∈ [A]}. Unlike in the case where R is a field, it is possible that there might be no
representative A′ in the class [A] with degA′ = indA; see [4]. The collection of Brauer classes with
the operation [A]⊗ [B] := [A⊗R B] forms a group, denoted Br(R), and called the Brauer group of R.
See [14], [28, §III.5] for further details.

Let X be a connected scheme. An Azumaya algebra of degree n over X is a sheaf of OX -modules
that is locally isomorphic in the étale topology to Matn×n(OX). That is, X has an étale cover (possibly
disconnected) π : U → X such that π∗A ∼= Matn×n(OU ). If X = SpecR for a commutative ring R,
then A is Azumaya over X if and only if Γ(X,A) is Azumaya as an R-algebra. The degree of A, the
Brauer class [A], the Brauer group of X, etc. are defined as above—replace P and Q by locally free
OX -modules of finite rank and End(−) by the sheaf End(−). See [32, Chp. IV] for further details.

In the same way, one can define Azumaya algebras, Brauer classes, etc., in any locally ringed topos,
[21]. In the case where X is a topological space and OX is the sheaf of continuous functions into C,
an Azumaya algebra over X is called a topological Azumaya algebra. A topological Azumaya algebra
A over X is therefore a sheaf of C-algebras over X the fibers of which are isomorphic to Matn×n(C);
see [3].

1.2. Involutions. Let F be a field and let A be a central simple F -algebra. Recall that an involution
on A is an additive map σ : A→ A such that σ ◦ σ = idA and σ(ab) = σ(b) · σ(a) for all a, b ∈ A. The
involution σ is of the first kind if it fixes F pointwise and of the second kind otherwise. Henceforth,
all involutions are assumed to be of the first kind. An Azumaya algebra admitting an involution will
be termed involutary.

Write n = degA. Recall from [29, §2] that the F -dimension of {σ(a)−a | a ∈ A} is either 1
2n(n−1)

or 1
2n(n+1), in which case the type of σ is said to be orthogonal or symplectic respectively. Symplectic

involutions can exist only when n is even.

Let X be a connected scheme (resp. topological space) and let A be an Azuamya algebra (resp.
topological Azumaya algebra) over X. An involution on A is an OX -module isomorphism σ : A→ A
such that σ ◦ σ = idA and the identity σ∗(ab) = σ∗b · σ∗a holds on sections. In this case, we say
that the pair (A, σ) is an Azumaya algebra with involution (of the first kind). If X is SpecR for a
commutative ring R, a map σ is an involution if and only if σ∗ : Γ(X,A)→ Γ(X,A) is an involution
of Azumaya R-algebras.

Let x be a point of X. In the algebraic case, let k = k(x), and in the topological, let k = C. By
pulling back, A induces a central simple k-algebra Ax and σ induces an involution of the first kind
σx : Ax → Ax, which can be either orthogonal or symplectic. Since X is connected, the type of σx
is independent of x, so we can simply say that σ is orthogonal or symplectic. See [28, §III.8] for an
extensive discussion in the case of affine schemes and [34, §1.1] in the case of arbitrary schemes.

Example 1. Denote by t the standard matrix transpose.

(1) The transpose t defines an orthogonal involution of Matn×n(OX).
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(2) Suppose n is even and let sp denote the standard symplectic involution on Matn×n(OX),
defined by

sp∗ [A B
C D ] = [A B

C D ]
sp

:=
[
At −Ct

−Bt Dt

]
on sections—here A,B,C,D are n

2 ×
n
2 matrices.

(3) Let b : P × P → L be nondegenerate symmetric (resp. anti-symmetric) bilinear form, where
P is a locally free OX -module of finite rank and L is an invertible OX -module on X. Then b
induces an orthogonal (resp. symplectic) involution σ on End(P); on sections, σ∗ can be recov-
ered from the equality b∗(ax, y) = b∗(x, σ∗(a)y). Moreover any orthogonal (resp. symplectic)
involution on End(P) is obtained in this manner, as L varies, by virtue of [39, Thm. 4.2]. For
a generalization see [16, Thm. 5.7].

Example 2. Azumaya algebras of degree 2 may always be equipped with a symplectic involution.
To see this, let A be an Azumaya algebra of degree 2 over X. If U is an open affine subscheme of
X, define σU : Γ(U,A)→ Γ(U,A) by σU (a) = Trd(a)− a, where Trd(a) denotes the reduced trace of
a ∈ Γ(U,A); see [39, Thm. 4.1].

Example 3. To construct split Azumaya algebras with no involution of the first kind, we simply need
to find a locally free OX -module P such that P 6∼= P∨ ⊗ L for any invertible OX -module L on X.
Examples over projective schemes are easy to construct, e.g., X = P1 and P = OX⊕OX⊕OX⊕OX(1).
Similar examples were constructed over appropriate Dedekind domains in [17, §11].

Proposition 4. Let X be a connected scheme, let A be an Azumaya algebra of degree n over X, and
let σ : A→ A be an involution of orthogonal or symplectic type. Then (A, σ) is locally isomorphic to
(Matn×n(OX), t) or (Matn×n(OX), sp) in the étale topology, respectively.

Proof. We can assume X is affine, and in this case we refer to [28, §III.8.5]. See also [34, §1.1]. �

1.3. Cohomology. Let X be a scheme and let Xét denote X endowed with the étale topology.
Recall that PGLn is the sheaf of algebra automorphisms of Matn×n. There is a standard bijective
correspondance between isomorphism classes of Azumaya algebras of degree n and of PGLn-torsors
over Xét, and each is classified by H1

ét(X,PGLn); see [28, p. 145] and [32, Chp. III, Cor. 4.7]. The
general principle of this correspondence appears as [19, Cor. III.2.2.6].

Suppose now that 2 is invertible on X and let PGO2n and PGSp2n denote the sheaf of automor-
phisms of (Mat2n×2n, t) and (Mat2n×2n, sp), respectively. In the same manner as the above, there is a
bijective correspondence between isomorphism classes of PGO2n-torsors (resp. PGSp2n-torsors) over
Xét and isomorphism classes of Azumaya algebras with an orthogonal (resp. symplectic) involution of
degree 2n over X, see Proposition 4, [28, §III.8.5], or [34, §1.1(iii)].

Similarly, when X is a topological space, isomorphism classes of topological Azumaya algebras with
an orthogonal (resp. symplectic) involution of degree 2n over X correspond to isomorphism classes of
PGO2n(C)-bundles (resp. PGSp2n(C)-bundles) over X. The Skolem–Noether Theorem implies that
PGO2n(C) ∼= PO2n(C) = O2n(C)/µ2 and PGSp2n(C) ∼= PSp2n(C) = Sp2n(C)/µ2 where µ2 = {±1}.

2. Homotopy Theory

In this section, we use algebraic topology to find obstructions to maps between classifying spaces
of Lie groups by considering the rational cohomology of maximal tori. This idea appears at least as
long ago as [1]. Our application requires that we consider spaces that have the same homotopy and
homology groups as classifying spaces in a certain range, but which differ in general; this contrasts
with the results of [25] where the classifying space is considered in its entirety.

In this section and the next, the notation H∗(X,A) will be used for sheaf cohomology groups with
values in the sheaf represented by the topological group A. When A is discrete, and X has the
homotopy type of a CW complex, this coincides with singular cohomology with coefficients in A.

We make extensive use of classifying spaces of topological groups. A thorough discussion of this
material may be found in [30, §8 and 9], but the discussion in [31, Chp. 6] covers most of what we
need. That is, if G is a topological group (satisfying a mild topological hypothesis which is satisfied
by all Lie groups) there is a functorially defined pointed CW complex BG and a principal G-bundle
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EG→ BG. If X is any pointed CW complex, then there is a natural bijection of pointed sets between
[X,BG] and H1(X,G), where the former denotes the set of homotopy classes of pointed maps between
the spaces in question. The correspondence is given by assigning to a map ξ : X → BG the pull-back
of EG along ξ. It is a theorem that the isomorphism class of the resulting G-bundle depends on ξ
only up to homotopy. One may replace BG by a homotopy equivalent CW complex without harming
this bijection. If G is an abelian group, then BG is again a topological group, and we may form B2G,
B3G and so on. If G is discrete, then BiG is homotopy equivalent to the Eilenberg–MacLane space
K(G, i), and [X,K(A, i)] is isomorphic to the reduced cohomology group H̃i(X,A).

2.1. The 2-torsion of the topological Brauer group. The relationship between the topological
Brauer group, Brtop(X), and the cohomology groups H2(X,C∗)tors and H3(X,Z)tors shall become
important in Section 3, so we discuss it here.

First of all, there is an isomorphism H3(−,Z) ∼= H2(−,C×). This arises from the exponential short
exact sequence of topological groups 0 → Z → C → C× → 1, where C is a contractible topological
group, so H≥1(−,C) vanishes. Often when H∗(−,C) is written elsewhere, C is to be understood as a
discrete ring, so that H∗(−,C) ∼= H∗(−,Z)⊗Z C; this is not the case here.

Secondly, in general Brtop(−) is a subfunctor of H3(−,Z), see [21, Prp. 1.4]. It is the subfunctor
consisting of those classes that lie in the image of the coboundary maps H1(−,PGLn(C))→ H2(−,C∗)
arising from the exact sequence C× → GLn(C)→ PGLn(C). Whenever X has the homotopy type of
a finite CW complex, Brtop(X) may be identified with the torsion subgroup of H3(X,Z), this being
a theorem of Serre [21, Thm. 1.6]. While there are spaces for which Brtop(X) ( H3(X,Z)tors, for
example B2µ2 (see [3, Cor. 5.10]), in the sequel we shall deal only with classes α ∈ H3(X,Z)tors that
arise as the pull-back f∗(α0) of a canonical class in H2(B PGLn,C×)tors corresponding to the universal
PGLn–bundle on B PGLn. Such a class α necessarily lies in Brtop(X).

In the sequel, we generally write µ2 for the group of square roots of 1. We will use H∗(−, µ2) and
H∗(−,Z/2) interchangeably.

Consider the group µ2 embedded as scalar matrices {±I2n} in GL2n(C). The inclusion µ2 →
GL2n(C) factors through either of the two standard inclusions O2n(C) and Sp2n(C), and it follows that
there are natural maps O2n(C)/µ2 → GL2n(C)/µ2 → PGL2n(C) and Sp2n(C)/µ2 → GL2n(C)/µ2 →
PGL2n(C).

We set about explaining how a principal O2n(C)/µ2- or Sp2n(C)/µ2-bundle gives rise to a 2-torsion
Brauer class, cf. [34, p. 214]. Suppose G ⊂ GL2n(C) is a subgroup such that µ2 ⊂ G. There is an
associated map of short exact sequences

(1) 1 // µ2

��

// G

��

// G/µ2

��

// 1

1 // Gm // GL2n
// PGL2n

// 1

and therefore, for any CW complex X, a natural long exact sequences of cohomology groups yielding
a commutative diagram:

H1(X,G/µ2) //

��

H2(X,Z/2)

��
H1(X,PGL2n(C)) // Brtop(X) �

� // H2(X,C∗)
∼=

H3(X,Z).

(2)

That is to say, associated to an element in H1(X,G/µ2), there is an element of H3(X,Z) which lies
in Brtop(X) and also in the image of a map from H2(X,Z/2). It is therefore 2-torsion.

There is a diagram of short exact sequences

0 // Z ×2 // Z //

×iπ
��

Z/2

x 7→(−1)x

��

// 0

0 // Z // C
exp

// C∗ // 1
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from which it follows that the composite map H2(−,Z/2) → H2(−,C∗) → H3(−,Z) appearing in

Diagram 1 is simply the unreduced Bockstein homomorphism associated to Z ×2−−→ Z → Z/2, and
denoted

β2 : H2(−,Z/2)→ H3(−,Z) .

Remark 5. For technical reasons, we find it easier to work with the simply connected group SL2n(C)
rather than GL2n(C). For comparison, therefore, we should work with SO2n(C) rather than O2n(C).

The inclusion of scalar matrices µ2 → O2n factors as µ2 → SO2n → O2n and there is a diagram

µ2

��

µ2
//

��

1

��
SO2n(C)

��

// O2n(C)
det //

��

µ2

��
SO2n(C)/µ2

// O2n(C)/µ2
det // µ2

in which every row and column is exact. In particular, the diagram

H1(Y,SO2n(C)/µ2)

''

// H1(Y,O2n(C)/µ2)

xx

// H1(Y,Z/2)

H2(Y,Z/2)

commutes and the top row is an exact sequence of pointed sets. If H1(Y,Z/2) = 0, then the problem
of finding a lift of an element of H2(Y,Z/2) to a class in H1(Y,O2n(C)/µ2) is equivalent to the problem
of lifting to H1(Y,SO2n(C)/µ2).

Since Sp2n(C) ⊂ SL2n(C), no modification of the group is required in the symplectic case.

Restricting our attention to the special-linear setting, we have groups: SL2n(C)/µ2, Sp2n(C)/µ2

and SO2n(C)/µ2. There are induced diagrams

(3) BSp2n(C)/µ2
//

ξs ##

B SL2n(C)/µ2

ξ{{
B2µ2

, BSO2n(C)/µ2
//

ξo ##

B SL2n(C)/µ2

ξ{{
B2µ2.

These correspond to diagrams in cohomology for a CW complex X:

(4) H1(X,Sp2n(C)/µ2) //

��

H2(X,µ2)

H1(X,SL2n /µ2) // H2(X,µ2)

, H1(X,SO2n(C)/µ2) //

��

H2(X,µ2)

H1(X,SL2n /µ2) // H2(X,µ2)

We now summarize the topological argument. In the next section, we will construct a pointed CW
complex Y such that H1(Y,Z/2) = 0 and H2(Y,Z) = 0, and a 2-torsion class α ∈ Brtop(Y ) ⊂ H3(Y,Z).

The class α admits a lift to a class

ζ ∈ H2(Y,Z/2)

such that the unreduced Bockstein β2(ζ) is α. The condition H2(Y,Z) = 0 ensures the class ζ is
unique. It will be the case that ζ is in the image of a map H1(Y,SL4 /µ2) → H2(Y,Z/2), so that
in particular, α is in the image of a map H1(Y,PGL4(C)) → H2(Y,C∗) = H3(Y,Z); cf. Diagram (2).
That is, the index of α divides 4.

The class ζ is represented by a map ζ : Y → B2µ2. We will show that there is no factorization
in homotopy of ζ as a map Y → BG → B2µ2, where G is either SO2n(C)/µ2 or Sp2n(C)/µ2 for
n 6≡ 0 (mod 4), thus showing that ζ ∈ H2(Y,Z/2) is not in the image of the natural map H1(Y,G)→
H2(Y,Z/2). It follows that α is not in the image of the natural map H1(Y,G) → H3(Y,Z) for such
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G, and this shows that α is not the Brauer class of an Azumaya algebra with involution of degree 2n
where n 6≡ 0 (mod 4).

2.2. The Cohomology of B SL2n /µ2. In order to simplify the notation, we have written in this
section SL2n in place of SL2n(C) and similarly for GL2n.

The Cartan–Iwasawa–Malcev Theorem, see for instance [24], says that the Lie groups SL2n(C),
O2n(C), and Sp2n(C) are homotopy equivalent to maximal compact subgroups, which may be taken
to be the compact Lie groups SU2n, O2n(R), and Sp2n respectively.

Our main technical tool is the low-degree part of the Serre spectral sequence in integral cohomology
associated to the fiber sequence B SL2n → B SL2n /µ2 → B2µ2. A portion of this is presented in
Figure 1.

Necessary background for the Serre spectral sequence per se may be found in [31, Chp. 5,6]. The E2

page of the Serre spectral sequence of a fiber sequence F → E → B, where B is simply connected, takes
the form Ep,q2 = Hp(B,Hq(F,Z)), the differentials satisfy dr : Ep,qr → Ep+r,q−r+1

r , and it converges
strongly to Hp+q(E,Z). In the cases we encounter, Ep,q2 = Hp(B,Z) ⊗Z Hq(F,Z), since H∗(F,Z) will
be a free abelian group.

The cohomology of B SL2n is well-known, and may be deduced from [31, Ex. 5.F, Thm. 6.38],
along with the observation that B SU2n is homotopy equivalent to B SL2n. The homology of B2µ2

can be found in [13], and the cohomology may be deduced from there using the Universal Coefficients
Theorem.

c2Z = H4(B SL2n,Z)

d5

((

0

0

0

Z 0 0 q1Z/2 0 q2Z/4.

Figure 1. A portion of the Serre spectral sequence in integral cohomology associated
to B SL2n → B SL2n /µ2 → B2µ2.

Lemma 6. The map ξ : B SL2n /µ2 → B2µ2, appearing in Diagram (3), represents a generator of

H2(B SL2n /µ2,Z) ∼= Z/2.
Proof. By considering Figure 1, we see that ξ induces an isomorphism on H≤3(−,Z). It follows that
it induces an isomorphism on H2(−,Z/2), but H2(B2µ2,Z/2) = ιZ/2, where ι is represented by the
identity map B2µ2 → B2µ2. The result follows. �

We concern ourselves with the calculation of the d5 differential by comparison with the case of the
(compact) maximal torus of diagonal unitary matrices ST2n ⊂ SL2n. Write T2n for the (compact)
maximal torus of diagonal unitary matrices in GL2n. The following descriptions are well known:

H∗(BT2n,Z) ∼= Z[θ1, . . . , θ2n], |θi| = 2,

H∗(B GL2n,Z) ∼= Z[c1, . . . , c2n] ⊂ Z[θ1, . . . , θ2n], ci = σi(θ1, . . . , θ2n),

H∗(BST2n,Z) ∼= Z[θ1, . . . , θ2n]/(θ1 + θ2 + · · ·+ θn),

H∗(B SL2n,Z) ∼= Z[c2, . . . , c2n].

A proof of the relation between H∗(BT2n,Z) and H∗(B GL2n,Z) appears as [23, Thm. 18.3.2], provided
we recall that the noncompact groups appearing here are weakly equivalent to the compact groups
appearing there. The reduction to the special linear case is an easy Serre spectral sequence argument.

The cohomology H∗(BST2n,Z) is the polynomial algebra on 2n − 1 generators, which we may as
well take to be the images of θ1, . . . , θ2n−1, all lying in degree 2. There is a reduced augmentation
map

φ : H2(BST2n,Z)→ Z/2
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given by θi 7→ 1 for all i.
There is a comparison of fiber sequences

(5) BST2n
//

��

BST2n/µ2

��

// B2µ2

��
B SL2n

// B SL2n /µ2
// B2µ2.

Lemma 7. The map BST2n → BST2n/µ2 identifies H∗(BST2n/µ2,Z) with the subring of H∗(BST2n,Z)
generated by ker(φ : H2(BST2n,Z/2)→ Z/2).

Proof. Since ST2n/µ2 is a compact connected abelian Lie group of dimension 2n − 1, it is again a
torus. Therefore, both H∗(BST2n,Z) and H∗(BST2n/µ2,Z) are polynomial rings over Z on 2n − 1
generators in dimension 2. The assertion of the lemma reduces to the claim that H2(BST2n/µ2,Z)→
H2(BST2n,Z) is exactly kerφ.

Consider the inclusion maps µ2
ι→ ST2n → T2n. These are compatible with the Σ2n action

on T2n, given by permuting factors in T2n. The induced action of Σ2n is transitive on the classes
θi ∈ H2(BT2n,Z), and therefore also on their reductions to H2(BST2n,Z), while Σ2n acts trivially on
H2(Bµ2,Z). We deduce that ι∗(θi) = ι∗(θj) where 1 ≤ i, j ≤ 2n− 1.

H2(Bµ2,Z) ∼= Z/2

0

Z 0 H2(BST2n/µ2,Z) 0

Figure 2. A portion of the Serre spectral sequence in integral cohomology associated
to Bµ2 → BST2n → BST2n/µ2.

Now we examine the Serre spectral sequence associated to the fiber sequence Bµ2 → BST2n →
BST2n/µ2, as given in Figure 2. It collapses in the illustrated range, and we are left with an extension
problem

0→ H2(BST2n/µ2,Z)→ H2(BST2n,Z)
ι∗→ H2(Bµ2,Z)→ 0.

Since ι∗ 6= 0, it follows that ι∗(θi) = 1 for at least one, and therefore for all, values of i ∈
{0, . . . , 2n− 1}. Therefore, ι∗ = φ, and the result follows. �

Explicitly, one may present H∗(BST2n/µ2,Z) as the subring of H∗(BST2n,Z) generated by the
reductions modulo the ideal (θ1 + θ2 + · · ·+ θ2n) of {2θ1} ∪ {θi − θ1}2ni=2.

For convenience, we write H∗(BST2n,Z) = Z[x1, y2, . . . , y2n−1], where x1 is the reduction modulo
the ideal (θ1 + θ2 + · · ·+ θ2n) of θ1, and yi is the reduction modulo the ideal (θ1 + θ2 + · · ·+ θ2n) of

θi− θ1. Observe that the reduction of θ2n modulo (θ1 + θ2 + · · ·+ θ2n) is −(2n− 1)x1−
∑2n−1
i=2 yi. In

this notation, H∗(BST2n/µ2,Z) = Z[2x1, y2, . . . , y2n−1].
Since the spectral sequence of Figure 3 converges to Z[2x1, y2, . . . , y2n−1], we deduce that x2

1Z ∩
E0,4
∞ = 4x2

1Z, and since d3(x2
1) = 2x1d3(x1) = 0, it follows that d5(x2

1) = q2 up to a negligeable choice
of sign.

We turn to the calculation of the d5 differential in the spectral sequence of Figure (1).

Lemma 8. In the spectral sequence of Figure 1, d5(c2) = gcd(n, 4)q2, up to a negligeable choice of
sign.

Proof. There is a comparison map from the spectral sequence of Figure 1 to the spectral sequence of
Figure 3.
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x2
1Z⊕

2n−1⊕
i=1

x1yiZ⊕
⊕
i≤j

yiyjZ
d5

��

d3

((

0

x1Z⊕
2n−1⊕
i=2

yiZ

d3

**

(Z/2)2n−1

0

Z 0 0 q1Z/2 0 q2Z/4

Figure 3. A portion of the Serre spectral sequence in integral cohomology associated
to BST2n → BST2n/µ2 → B2µ2.

One has the following expansion in H∗(BST2n,Z)

c2 = σ2(θ1, . . . , θ2n)

= σ2

(
x1, y2 + x1, . . . , y2n−1 + x1,−(2n− 1)x1 −

2n−1∑
i=2

yi

)
=

(
2n− 1

2

)
x2

1 − (2n− 1)(2n− 1)x2
1 − 2nx1(y2 + · · ·+ y2n−1) + p(y2, . . . , y2n−1)

= −(2n− 1)nx2
1 − 2nx1(y2 + · · ·+ y2n−1) + p(y2, . . . , y2n−1)

where p is a homogeneous polynomial of degree 2.
Since d5(yi) = 0 and d5(2x1) = 0 in the sequence of Figure 3, it follows that d5(c2) = −(2n −

1)nd5(x2
1) = u gcd(n, 4)q2, for some unit u, in the sequence of Figure 3, and by comparison also in

that of Figure 1. �

2.3. Obstructions to self maps of approximations to B SL2n /µ2. We remind the reader that a
based space (X,x0) is n-connected if it is connected and the homotopy groups πi(X,x0) are trivial for
i ≤ n. In the sequel we drop the basepoints from the notation and all spaces will be assumed based.
A map of spaces f : X → Y is an n-equivalence if the homotopy fiber, hofib f , is n− 1-connected. In
practice, this means that f∗ : πi(X) → πi(Y ) is a bijection for i < n and is surjective for i = n. If
f : X → Y is an n-equivalence, then f∗ : Hi(Y,R) → Hi(X,R) is an isomorphism when i < n; this
follows from [43, Thm. IV.7.13] and the Universal Coefficient Theorem.

Proposition 9. Suppose Y1, Y2 are two spaces each equipped with 7-equivalences Y1 → B SL2n1
/µ2,

Y2 → B SL2n2
/µ2, where the ni are not multiples of 4, and n1 ≥ 2. Any map f : Y1 → Y2 inducing

an isomorphism f∗ : H2(Y2,Z/2) → H2(Y1,Z/2) ∼= Z/2 induces an isomorphism f∗ : H6(Y2,Q) →
H6(Y1,Q).

Proof. Let Y ′i denote the homotopy fibers of the composite maps Yi → B SL2ni
/µ2 → B2µ2. These

are 7-equivalent to B SL2ni
by comparison with the case of B SL2ni

→ B SL2ni
/µ2 → B2µ2. The low-

degree parts of the Serre spectral sequences in integral cohomology associated to Y ′i → Yi → B2µ2

necessarily take the form shown in Figure 4. This coincides with the Serre spectral sequence associated
to B SL2ni → B SL2ni /µ2 → B2µ2, which is presented in Figure 1.

By comparison with the case of B SL2ni
→ B SL2ni

/µ2 → B2µ2 and use of Lemma 8, the differential
d5 takes a generator to 2q2.
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Z = H4(Y ′i ,Z)

d5

((

0

0

0

Z 0 0 q1Z/2 0 q2Z/4

Figure 4. A portion of the Serre spectral sequence in integral cohomology associated
to Y ′i → Yi → B2µ2.

The fact that f induces an isomorphism on H2(Yi,Z/2) for i ∈ {1, 2} implies that there is a
homotopy-commutative diagram

(6) Y ′1

f ′

��

// Y1

f

��

// B2µ2

��
Y ′2 // Y2

// B2µ2

and an attendant map of spectral sequences which induces the identity on E∗,02 . It follows by con-
sidering the d5 differential in Figure 4 that f ′∗ : H4(Y ′2 ,Z) → H4(Y ′1 ,Z) is multiplication by an odd
integer, and so f ′∗ : H4(Y ′2 ,Z/2)→ H4(Y ′1 ,Z/2) is an isomorphism.

We have H4(B SL2ni ,Z/2) = c̄2Z/2, where x̄ denotes the reduction modulo 2 of the integral coho-
mology class x. We now make use of the action of the Steenrod algebra on Z/2 cohomology. The
properties of this action may be found in [22, §. 4L]. We compute the action of the Steenrod algebra
on H∗(B SL2n,Z/2) by comparison with H∗(BT2n,Z/2). In H∗(BT2n,Z/2), one has Sq2θ̄i = θ̄2

i for all
i, and using the axioms, we calculate that

Sq2σ2(θ̄1, . . . , θ̄2ni) = σ1(θ̄1, . . . , θ̄2ni)σ2(θ̄1, . . . , θ̄2ni) + σ3(θ̄1, . . . , θ̄2ni).

Therefore, upon reducing to the case of B SL2ni
, we obtain Sq2c̄2 = c̄3, the reduction of the third

Chern class.
By naturality of the Steenrod operations, it follows that f ′∗ : H6(Y ′2 ,Z/2)→ H6(Y ′1 ,Z/2) ∼= Z/2 is

an isomorphism. Since H6(Y ′i ,Z/2) is, in each case, the reduction modulo 2 of the free abelian group
H6(Yi,Z) ∼= Z, it follows that the natural maps H6(Yi,Q)→ H6(Y ′i ,Q) are isomorphisms

Using the Serre spectral sequence, for instance, one deduces that H∗(BΓ,Q) ∼= H∗(BΓ/µ2,Q)
where Γ is a topological group containing µ2 as a subgroup, so f ′∗ : H6(Y ′2 ,Q) → H6(Y ′1 ,Q) is also
an isomorphism. That f∗ : H6(Y2,Q) → H6(Y1,Q) is an isomorphism now follows from the previous
paragraph and left square of diagram (6). �

Proposition 10. Suppose Y → B SL4 /µ2 is a 7-equivalence. Let η : Y → B2µ2 denote the composite
ξ ◦ (Y → B SL2n /µ2). Let G be one of the groups Sp2n/µ2 or SO2n/µ2, where n is not divisible by 4.
There is no map f : Y → BG making the following diagram commute in homotopy

Y
f //

η !!

BG

ξ?||
B2µ2

.

Proof. The cohomology H∗(BSp2n,Z) is a polynomial ring on classes in dimensions {4, 8, . . . , 4n};
this calculation is classical and is to be found in [11] following Proposition 29.2. The cohomology ring
H∗(BSO2n,Z) is calculated in [12]. In each case, H6(BG,Z) is torsion, so it follows in our situation
that H6(BG,Q) = 0.

Now we turn to disproving the existence of a map f . If there were such a map, then by composing
Y → BG with the appropriate map in Diagram (3), we could construct a map g : Y → BG →
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B SL4 /µ2 over B2µ2. By Lemma 6, we know that both η : Y → B2µ2 and B SL4 /µ2 → B2µ2

represent a generator of H2(−,Z/2), and so g∗ : H2(B SL4 /µ2,Z/2)→ H2(Y,Z/2) is an isomorphism.
By Proposition 9, the map g induces an isomorphism H6(B SL2n /µ2,Q) → H6(Y,Q) ∼= Q, factoring
through H6(BG,Q) ∼= 0, a contradiction. �

3. Back to Algebra

In this section, the notation reverts to SL2n,GL2n for a group scheme and SL2n(C),GL2n(C) for
the Lie group of complex points. We can now prove the main Theorem A, which we rephrase.

Theorem 11. There exists a nonsingular affine variety SpecR over C with an Azumaya algebra A
of period 2 and degree 4 such that if B is any Azumaya algebra with involution and [B] = [A] then
8|deg(B).

The construction is similar to that of [4, Thm. 1.1].

Proof. Let V be an algebraic linear representation of SL4 /µ2 over C such that SL4 /µ2 acts freely
outside an invariant closed subscheme S of codimension at least 5, and such that (V − S)/(SL4 /µ2)
exists as a smooth quasi-projective complex variety. Such representations exist by [42, Rem. 1.4]. As
the codimension of S is at least 5, the space (V − S)(C) is 2(5)− 2 = 8–connected.

Since we would like to have an affine example in particular, we use the Jouanolou device, [26],
to replace (V − S)/(SL4 /µ2) by an affine vector bundle torsor p : SpecR → (V − S)/(SL4 /µ2). In
order to simplify the notation, we write Y = SpecR. The map Y (C) → (V − S)/(SL4 /µ2)(C) is a
homotopy equivalence.

We pull the evident (SL4 /µ2)-torsor on (V − S)/(SL4 /µ2) back along p, giving an SL4 /µ2-torsor,
T , on Y . There is a map Y (C) → B(SL4(C)/µ2), classifying the complex realization T (C), and the
map Y (C)→ B(SL4(C)/µ2) is an 8–equivalence of topological spaces.

As explained in Section 2.1, the algebraic (SL4 /µ2)-torsor T on Y induces an Azumaya algebra A
over Y of degree 4 whose image in Br(Y ) is 2-torsion. Consider the topological Azumaya algebra A(C)
over Y (C). Its image in H2(Y (C),Z/2) is classified by a map η : Y (C)→ B2µ2, which factors through
the 8-equivalence Y (C) → B SL4(C)/µ2. Therefore, by Lemma 6, the map η represents a generator
of H2(Y (C),Z/2) ∼= Z/2. Since H2(Y (C),Z) = 0, the map β2 : H2(Y (C),Z/2) → H3(Y (C),Z)tors =
Br(Y (C)) is injective, and therefore A(C) is not split.

Suppose B is some Azumaya algebra on Y equivalent to A, and B is equipped with an involution
of the first kind. Since A is not split, the degree of B is an even integer, 2n. Then the topological
realization B(C) is equivalent to A(C), and B(C) is classified by a map β : Y → BG where G =
SO2n(C)/µ2 or Sp2n(C)/µ2, depending on whether the involution is orthogonal or symplectic; here
we use Remark 5 to replace O2n(C) by SO2n(C). Since the Brauer classes of A(C) and B(C) are the
same, there is a homotopy commutative diagram

Y (C)
β //

η

##

BG

ξ?||
B2µ2

from which Proposition 10 implies that 8|2n. �

We remark that once SpecR has been found of some, possibly large, dimension, the affine Lefschetz
theorem (see [20, Introduction, §2.2]), ensures we can replace it by a 7-dimensional smooth affine
variety.

We further note that any algebra A as in Theorem 11 has index 4 and no zero divisors. Indeed,
if A′ ∈ [A], then by the proof of Saltman’s result given by Knus, Parimala, and Srinivas [27, §4],
there is A′′ ∈ [A] admitting an involution with degA′′ = 2 degA′. By assumption, 8 | degA′′, and
hence 4 | degA′. It follows that indA = gcd{degA′ : A′ ∈ [A]} is at least 4. Next, let K be the
fraction field of R. Since SpecR is nonsingular, indA ⊗R K = indA ([3, Prp. 6.1]). This implies
degA⊗R K = 4 = indA⊗R K, and therefore A⊗R K is a division algebra.
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4. Split Azumaya Algebras With Only Symplectic Involutions

Let X be a scheme, let P be a locally free OX -module of finite rank, and let L be a line bundle
over X. Given a symmetric bilinear form b : P × P → L, there is an associated even Clifford algebra
C0(b) and a Clifford bimodule C1(b) over the even Clifford algebra constructed by Bichsel [10], [9].
For a summary of its main properties, see [5, §1.8], [6, §1.2], or [7, §1.5]. In particular, if P has
rank n, then C0(b) and C1(b) are locally free OX -modules of rank 2n−1. There is a natural vector
bundle embedding P → C1(b). Assume that b is regular, i.e., the associated map P → Hom(P,L)
is an isomorphism. If moreover n is even, then the center Z(b) of C0(b) is an étale quadratic OX -
algebra, and the left action of Z(b) on C1(b) is a twist of the right action by the unique nontrivial
OX -algebra automorphism of Z(b). The class of the associated étale quadratic cover Z → X defines
the discriminant class d(b) ∈ H1

ét(X,Z/2Z).

Proposition 12. Let b : P × P → L be a regular symmetric bilinear form of rank 2 over a scheme
X. If b has trivial discriminant then P is a direct sum of line bundles.

Proof. This is a consequence of [5, Cor. 5.6], but we will give a direct proof here for completeness. Since
P has rank 2, the vector bundle embedding P → C1(b) is an OX -module isomorphism, and similarly,
the embedding Z(b) → C0(b) is an OX -algebra isomorphism. As b is regular, another property is
that C1(b) is an invertible right C0(b)-module, i.e., P has a canonical structure of an invertible Z(b)-
module. If b has trivial discriminant, then Z(b) is the split étale quadratic algebra OX × OX , and
therefore there is a decomposition of P into a direct sum of two invertible OX -modules. �

This gives a nontrivial necessary condition for the existence of a regular symmetric bilinear form
on a rank 2 vector bundle P. On the other hand, any rank 2 vector bundle P has a canonical regular
skew-symmetric form P × P →

∧2P defined by wedging.

Corollary 13. Let X be a scheme such that H1
ét(X,Z/2Z) = 0. If A = End(P) is a split Azumaya

algebra of degree 2 with orthogonal involution over X, then P is a direct sum of line bundles. In
particular, if P is an indecomposable vector bundle of rank 2 on X, then End(P) carries a symplectic
involution but no orthogonal involution.

Proof. By a result of Saltman [39, Thm. 4.2a], any orthogonal (resp. symplectic) involution on End(P)
is adjoint to a regular symmetric (resp. skew-symmetric) bilinear form b : P × P → L in the sense
of Example 1. If A admits an orthogonal involution and b is the corresponding form, then the
discriminant d(b) ∈ H1

ét(X,Z/2Z) is trivial by assumption, hence P is a direct sum of two line bundles
by Proposition 12. Finally, the algebra A always has a symplectic involution by Example 2. �

It is easy to provide a projective scheme and an indecomposable rank 2 vector bundle, e.g., X = P2

and P = Ω1
P2 . We now give an example of an integral affine scheme X and a locally free sheaf P

satisfying the conditions of Corollary 13, thus giving rise to a split Azumaya algebra of degree 2
admitting a symplectic involution but no orthogonal involution over a domain.

Example 14. Let R = C[x, y, z, s, t, u]/(xs+yt+zu−1). The vector v = (x, y, z) ∈ R3 is unimodular,
hence P = R3/Rv is a projective R-module of rank 2. Indeed, the ring R is (A3,1)C and the module P is
P3,1 in the notation of [35]. There is an affine vector bundle torsor SpecR→ A3\{0}, which on the level

of coordinates is given by (x, y, z, s, t, u) 7→ (x, y, z), and it follows that Pic(R) = CH1(SpecR) = 0, see
[18, Thm. 1.9]. By [35, Cor. 6.3], the R-module P is not free, and as a consequence is indecomposable.

By Artin’s Comparison theorem, H1
ét(R,Z/2Z) = 0, and thus A = End(P) has a symplectic

involution, but no orthogonal involution by Corollary 13.

5. Non-Split Azumaya Algebras With Only Symplectic Involutions

We now show that any Azumaya algebra with involution over an affine scheme is a specialization
of an involutary Azumaya algebra without zero divisors. Applying this to Example 14, we obtain
non-split Azumaya algebras of degree 2 admitting only symplectic involutions.

We shall give two different constructions, both arising from orders in certain generic division al-
gebras. The first construction is in fact a sequence of involutary Azumaya algebras that together
specialize to any involutary Azumaya algebra. The centers of these algebras are regular, but their
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Krull dimension is very large. The second construction is not universal in the previous sense, but its
center has smaller Krull dimension.

Henceforth, we shall restrict to Azumaya algebras over commutative rings. We write A/R to denote
that A is an R-algebra. We remind the reader that if A/R and A′/R′ are two Azumaya algebras of
degree n, then any ring homomorphism φ : A→ A′ is in fact a specialization, meaning that φ(R) ⊆ R′,
and A⊗φ R′ ∼= A′ via a⊗ r′ 7→ φ(a)r′ (see [40, Cor. 2.9b]).

We will also need Rowen’s version of the Artin–Procesi Theorem. If g(x1, . . . , xn) is a polynomial in
non-commuting variables over Z and A is a ring, then let g(A) denote {g(a1, . . . , an) | a1, . . . , an ∈ A}.
We further let Id(A) denote the multilinear polynomial identities of A over Z (see [36, Chp. 6]). The
center of A is denoted Z(A).

Theorem 15 (Artin, Procesi, Rowen). Let A be a ring and let gn(x1, . . . , x4n2+1) denote the Formanek
central polynomial (see [36, Def. 6.1.21]). The following conditions are equivalent:

(a) A is Azumaya of degree n over Z(A).
(b) Id(Matn×n(Z)) ⊆ Id(A), and there exists a multilinear polynomial identity of Mat(n−1)×(n−1)(Z)

that is not a polynomial identity of any nonzero image of A.
(c) Id(Matn×n(Z)) ⊆ Id(A), the polynomial gn is a central polynomial of A, and 1A is in the

additive group spanned by gn(A).

Proof. See [36, Thm. 6.1.35] or [37, §6], for instance. �

5.1. First Construction. This construction is inspired by Rowen’s generic division algebras with
involution [38].

Fix an integral domain Ω with 2 ∈ Ω× and fix n > 1. Recall that gn denotes the Formanek central
polynomial, and let N = 4n2 + 1 denote the number of variables of gn. Theorem 15 implies that any
Azumaya algebra A/R of degree n admits vectors v1, . . . , vm ∈ AN such that

∑m
i=1 gn(vi) = 1A. We

call the minimal possible such m the Formanek number of A and denote it by For(A).

For every k ∈ N, let T = T (n, k) be the free commutative Ω-algebra spanned by {x(r)
ij }i,j,r

where 1 ≤ i, j ≤ n and 1 ≤ r ≤ k. We let F denote the fraction field of T . Let Xr denote

the generic matrix (x
(r)
ij ) ∈ Matn×n(T ). Let A0(n, k) be the Ω-subalgebra of Matn×n(T ) generated

by X1, X
t
1, . . . , Xk, X

t
k. If n is even, let B0(n, k) be the Ω-subalgebra of Matn×n(T ) generated by

X1, X
sp
1 , . . . , Xk, X

sp
k (see Example 1). We alert the reader that the algebras A0(n, k) and B0(n, k)

are not Azumaya in general.

Lemma 16. Let (A, σ) be an Azumaya algebra of degree n with an orthogonal (resp. symplectic) invo-
lution and such that R := Z(A) is an Ω-algebra. Let a1, . . . , ak ∈ A. Then there is a homomorphism
of Ω-algebras with involution φ : (A0(n, k), t) → (A, σ) (resp. φ : (B0(n, k), sp) → (A, σ)) such that
φ(Xi) = ai for all 1 ≤ i ≤ k.

Proof (compare with [38, Thm. 27(i)]). We will treat the orthogonal case; the symplectic case is sim-
ilar.

The lemma is clear when A = Matn×n(R) and σ = t, indeed, simply specialize Xi to ai for all i.
For general A, choose an étale R-algebra S such that (A′, σ′) := (A⊗R S, σ ⊗R idS) is isomorphic to
(Matn×n(S), t) (see Proposition 4), and view (A, σ) as an involutary subring of (A′, σ′). Then there
is φ : A0(n, k) → A′ with φ(Xi) = ai and φ(Xt

i ) = σ′(ai) = σ(ai). Since A0(n, k) is generated as an
Ω-algebra by X1, . . . , Xk, X

t
1, . . . , X

t
k, we have im(φ) ⊆ Ω[a1, . . . , ak, σ(a1), . . . , σ(ak)] ⊆ A. �

Suppose now that k = Nm for m ∈ N and let

ω =

m∑
i=1

gn(XN(i−1)+1, . . . , XN(i−1)+N ) ∈ A0(n, k) ∩B0(n, k)

Since gn is a central polynomial of Matn×n(T ), the matrix ω is diagonal, and hence ωt = ωsp = ω.
Furthermore, since gn is not a polynomial identity of Matn×n(Ω), we have ω 6= 0 (because the matrices
X1, . . . , XNm can be specialized to any n× n matrix over Ω). We define

A(n,m) := A0(n,Nm)[ω−1] ⊆ Matn×n(F ) .
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The involution t on Matn×n(F ) restricts to an involution on A(n,m), which we also denote by t. In
the same way, we define B(n,m) for n even by replacing “A0” with “B0” and “t” with “sp”.

Theorem 17. Suppose n > 1 is a power of 2. Then A(n,m) (resp. B(n,m)) is an Azumaya algebra
of degree n without zero divisors. Furthermore, (A(n,m), t) (resp. (B(n,m), sp)) specializes to any
Azumaya algebra with an orthogonal (resp. symplectic) involution (E, σ) satisfying degE = n and
For(E) ≤ m, and such that Z(E) is an Ω-algebra.

Proof. Again, we prove only the orthogonal case.
We use condition (c) of Theorem 15 to check that A(n,m) is Azumaya. That Id(Matn×n(Z)) ⊆

Id(A(n,m)) and gn is a central polynomial of A(n,m) follow from the fact that A(n,m) ⊆ Matn×n(F ).
Next, we have ω =

∑m
i=1 gn(XN(i−1)+1, . . . , XN(i−1)+N ), and hence

1 =

m∑
i=1

gn(ω−1XN(i−1)+1, XN(i−1)+2, . . . , XN(i−1)+N )

because gn is multilinear, so 1 is in the additive group generated by gn(A(n,m)), as required.
That A(n,m) has no zero divisors follows from [38, Thm. 29].
To finish, let (E, σ) be as in the theorem. Since For(E) ≤ m, there are vectors v1, . . . , vm ∈ EN such

that
∑
i gn(vi) = 1E . Define a1, . . . , aNm ∈ E via vi = (aN(i−1)+1, . . . , aN(i−1)+N ). By Lemma 16,

there is a homomorphism φ : (A0(n,Nm), t)→ (E, σ) such that φ(Xi) = ai and φ(Xt
i ) = σ(ai) for all

1 ≤ i ≤ Nm. It follows that the element ω ∈ A0(n,Nm) is mapped by φ to 1E . Thus, φ extends to a
homomorphism of rings with involution (A(n,m), t)→ (E, σ) by setting φ(ω−1) = 1. �

Write Z(n,m) = Z(A(n,m)) and W (n,m) = Z(B(n,m)). We now show that the morphisms
SpecZ(n,m) → Spec Ω and SpecW (n,m) → Spec Ω are smooth when Ω is noetherian. As a result,
Z(n,m) and W (n,m) are regular when Ω is a field.

Lemma 18. Let A/R be an Azumaya algebra. Suppose that there is a noetherian subring R0 ⊆ R
such that A is finitely generated as an R0-algebra. Then R is finitely generated as an R0-algebra. In
particular, A and R are noetherian.

Proof. Since A is Azumaya, it is finitely generated as a module over R. The proposition therefore
follows from a variant of the Artin–Tate Lemma (see [33, Lem. 1], for instance). �

Lemma 19. Let R be a commutative ring and let I be an ideal in R satisfying I2 = 0. Let G be a
smooth affine group scheme over R. Then the map H1

ét(R,G)→ H1
ét(R/I,G) is bijective.

Proof. Write R′ = R/I.
By [SGA4, Exp. viii, Thm. 1.1], the base change SpecR′ → SpecR induces an equivalence between

the étale site of SpecR and the étale site of SpecR′. It is therefore enough to prove that for any étale
cover SpecS → SpecR, the map H1

ét(S/R,G)→ H1
ét(S

′/R′, G) is an isomorphism, where S′ = S⊗RR′.
By [SGA3, Exp. xxiv, Lem. 8.1.8], the map H1

fpqc(S/R,G)→ H1
fpqc(S′/R′, G) is an isomorphism (here

we need G to be smooth), and since SpecS → SpecR is étale and G → SpecR is smooth, we may
replace the fpqc topology by the étale topology, see the introduction to [SGA3, Exp. xxiv]. �

Proposition 20. When Ω is noetherian, the morphisms SpecZ(n,m)→ Spec Ω and SpecW (n,m)→
Spec Ω are smooth.

Proof. We prove only that SpecZ(n,m)→ Spec Ω is smooth. By Lemma 18, this morphism is finitely
presented, and hence it is enough to show that SpecZ(n,m) → Spec Ω is formally smooth. Let S
be a commutative Ω-algebra, let I be an ideal of S with I2 = 0, and let φ : Z(n,m) → S/I be a
homomorphism of Ω-algebras. We show that φ can be lifted to a homomorphism φ′ : Z(n,m)→ S.

Let A = A(n,m) ⊗φ (S/I) and let σ be the involution induced by t on A. Then (A, σ) is an
Azumaya algebra with an orthogonal involution over S/I. The smoothness of PGOn → SpecZ[ 1

2 ] and
Lemma 19 (see also Section 1.3) imply that there is an Azumaya S-algebra with involution (A′, σ′)
such that (A, σ) ∼= (A′ ⊗S (S/I), σ′ ⊗S idS/I). We identify A with A′/A′I. For all 1 ≤ i ≤ Nm, write
ai = φ(Xi) and choose some a′i ∈ A′ whose image in A is ai. By Lemma 16, there is a morphism
of Ω-algebras with involution φ′ : (A0(n,Nm), t) → (A′, σ′) such that φ′(Xi) = a′i. The morphism
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φ′ extends uniquely to A(n,m) provided φ′(ω) ∈ A′×. This holds because φ′(ω) + A′I = φ(ω) ∈ A×
(since φ(ω)−1 = φ(ω−1)) and A′I is nilpotent. We have shown φ′ : A(n,m)→ A′ is a homomorphism
of Azumaya algebras, and therefore it restricts to a homomorphism on the centers φ′ : Z(n,m)→ S,
which is the lift we required. �

Corollary 21. There exists an affine regular C-algebra R and an Azumaya R-algebra A of degree 2
without zero divisors such that A has no orthogonal involutions.

Proof. Let m0 to be the Formanek number of the Azumaya algebra constructed in Example 14. Take
Ω = C and let R = W (n,m0) and A = B(n,m0). �

5.2. Second Construction. This construction uses versal torsors in the sense of [15]. It lacks the
universal character of the first construction and it may have a non-regular center, but the Krull
dimension of the center is much smaller and can be effectively estimated.

We start by showing that weakly versal PGO2n-torsors and PGSp2n-torsors satisfy a slightly
stronger version of weak versality.

Let K be a field and let G be a smooth affine group scheme over K. Recall that a weakly versal
G-torsor is a K-scheme X together with a G-torsor T → X such for every field extension K ′/K with
K ′ infinite and every G-torsor T ′ → SpecK ′ there exists a K-morphism i : SpecK ′ → X such that
T ′ ∼= i∗T . The torsor T → X is called versal if, for every open immersion j : U → X, the restriction
j∗T → U is weakly versal. The minimal possible dimension of a base scheme of a versal torsor is equal
to the essential dimension of G, denoted edK(G). These versal torsors of minimal dimension can be
chosen to be integral and affine over K. See [8], [15] for further details and proofs.

Lemma 22. Let L be a field and let R be a commutative ring. Let E/L and A/R be Azumaya algebras
of degree n. Suppose that there is a subring E0 ⊆ E and a surjective ring homomorphism φ : E0 → A.
Then there exist elements s ∈ E0 ∩K× and x1, . . . , xm ∈ E0 such that:

(i) φ extends uniquely to a ring homomorphism E0[s−1]→ A.
(ii) Any subring E1 ⊆ E containing s−1 and x1, . . . , xm is Azumaya of degree n over its center.

In particular, E0[s−1] is an Azumaya algebra that specializes to A via φ.

Proof. Let N = 4n2 + 1 denote the number of variables of the Formanek central polynomial gn. Since
A is Azumaya of degree n, Theorem 15 implies that there are vectors v1, . . . , vt ∈ AN such that∑t
i=1 gn(vi) = 1. Choose u1, . . . , ut ∈ EN0 such that φN0 (ui) = vi for all 1 ≤ i ≤ t. Write m = tN

and define x1, . . . , xm via ui = (x(i−1)N+1, . . . , x(i−1)N+N ). In addition, let s =
∑t
i=1 gn(ui). Observe

that s ∈ Z(E) = L because gn is a central polynomial, and s 6= 0 because φ(s) = φ(
∑
i gn(ui)) =∑

i gn(vi) = 1A. We claim that s and x1, . . . , xm satisfy (i) and (ii). Indeed, extend φ to E0[s−1] by
defining φ(s−1) = 1A. That any E1 as in (ii) is Azumaya is similar to the proof of Theorem 17. �

Proposition 23. Let K ′/K be a field extension with K ′ infinite, and let G be PGOn or PGSpn. Let
T → X be a weakly versal G-torsor over K such that X is integral and affine over SpecK, and let
X ′ = X ×SpecK SpecK ′ and T ′ = T ×SpecK SpecK ′. Let R be a subring of K ′ and let U → SpecR
be a G-torsor. Then there are G-torsors T ′0 → X ′0, U ′ → Y and morphisms as illustrated

U

��

U ′

��

T ′0

��

T ′

��
SpecR

f // Y X ′0
joo i // X ′

such that i is an open immersion, j is dominant, and there are isomorphisms of G-torsors

U ∼= f∗U ′, j∗U ′ ∼= T ′0
∼= i∗T ′ .

If R contains a noetherian subring R0, then Y may be chosen to be of finite type over SpecR0 and f
may be chosen to be an R0-morphism.

Proof. We treat only the case G = PGOn. The other case is similar. If R0 is not specified, take it
to be the image of Z[ 1

2 ] in R. Since weak versality is preserved under base change, we may replace
T → X by T ′ → X ′ and assume that K ′ = K.
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Let (B, τ) be the involutary Azumaya algebra corresponding to T → X and let (A, σ) be the
involutary Azumaya algebra corresponding to U → SpecR. Since X is weakly versal, there is a K-
section g : SpecK → X specializing (B, τ) to (AK , σK) := (A⊗R K,σ ⊗R idK). Denote the induced
ring homomorphism by φ : B → AK . The map φ is onto because it is K-linear and any epimorphic
image of B is an Azumaya algebra of degree n. View A as a subring of AK and let E0 = φ−1(A).
Since φ is a homomorphism of rings with involution, we have τ(E0) ⊆ E0. Let ξ be the generic
point of X and let E/L be the Azumaya algebra induced by the PGOn-torsor Tξ. The involution
τ : B → B extends to an involution on E. We now apply Lemma 22 to get elements x1, . . . , xm ∈ E0

and s ∈ Z(E0) ∩ L×.
Let E1 = R0[s−1, x1, . . . , xm, τ(x1), . . . , τ(xm)]. Then E1 is Azumaya of degree n over its center,

and φ induces a specialization of Azumaya algebras from E1 to A. This specialization is compatible
with the involutions τ and σ, hence (E1, τ |E1) specializes to (A, σ). We therefore take Y = SpecZ(E1)
and X ′0 = SpecZ(B)[s−1], and let U and T ′0 be the PGOn-torsors corresponding to (E1, τ) and
(B[s−1], τ), respectively. The morphism i corresponds to the inclusion Z(B) ⊆ Z(B)[s−1], the mor-
phism j corresponds to the inclusion Z(E1) ⊆ Z(E0)[s−1] ⊆ Z(B)[s−1], and the morphism f corre-
sponds to φ : Z(E1)→ Z(A) = R. When R0 is noetherian, Z(E1) is affine over R0 by Lemma 18. �

Proposition 23 also holds for PGLn-torsors; the proof is similar. We do not know whether the
proposition holds for torsors of general smooth affine group schemes.

We now use Proposition 23 to show that any Azumaya algebra with involution (A, σ) over a domain
R is a specialization of an involutary Azumaya algebra without zero divisors.

Lemma 24. Let K be a field and let T → X be a versal PGOn-torsor (resp. PGSpn-torsor). Suppose
that X is integral and affine, X = SpecR, and let (A, σ) denote the Azumaya algebra with involution
corresponding to T → X. If n is a power of 2, then A has no zero divisors.

Proof. It is well-known that there exists a field extension K ′/K such that K ′ is infinite and a central
simple K ′-algebra with an orthogonal (resp. symplectic) involution (D, τ) of degree n such that D is
a division ring; see [38, Thm. 29], for instance.

Suppose that a, b ∈ A satisfy ab = 0. View A as a sheaf of algebras over X and let Za and Zb
be the vanishing loci of a and b, respectively. Let U = X \ (Za ∪ Zb) and assume for the sake of
contradiction that U is nonempty. Shrinking U if necessary, we may assume U = SpecR[r−1] for
some 0 6= r ∈ R. By the versality of T → X, the algebra (A[r−1], σ) specializes to (D, τ) over K, and
by the construction of U , the images of a and b in D are nonzero. This means D has zero divisors, a
contradiction. Consequently U must be empty and since X is irreducible, either Za = X or Zb = X.
This implies that either a = 0 or b = 0, since X is reduced. �

Theorem 25. Let (A, σ) be an Azumaya algebra of degree 2n with an orthogonal (resp. symplectic)
involution over a domain R. Then there exists an Azumaya algebra of degree 2n with an orthogonal
(resp. symplectic) involution (B, τ) such that B has no zero divisors and (B, τ) specializes to (A, σ).
If R is an affine algebra over a field k, then (B, τ) can be chosen such that Z(B) is affine over k and

dimZ(B) ≤ dimR+ edK(G)

where G = PGO2n (resp. G = PGSp2n) and K is the fraction field of R.

Proof. We prove only the orthogonal case.
Let U → SpecR be the torsor corresponding to (A, σ). Choose a versal PGO2n -torsor T → X

over K such that X is an affine, integral K-scheme and dimX = edK(PGO2n). We now apply
Proposition 23 with K ′ = K (and R0 = k, if necessary) to obtain U ′ → Y , T ′ → X ′0, f , i, j as in the
proposition.

Let (B, τ) and (E, θ) be the Azumaya algebras with involution corresponding to U ′ → Y , and
T → X, respectively. By Lemma 24, E has no zero divisors. Since i is an open immersion and
j is dominant, this means B has no zero divisors. Finally, if R is affine over k, then dimZ(B) =
trdegkK(Y ) ≤ trdegkK(X) = trdegkK + trdegKK(X) = dimR+ edK(PGO2n). �

We note that Theorem 25 gives an Azumaya algebra whose center is a priori not regular.
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Corollary 26. There exists an Azumaya algebra B/S of degree 2 without zero divisors that admits
only symplectic involutions. The ring S can be taken to be an affine C-algebra with dimS ≤ 7.

Proof. This follows from Example 14 and Theorem 25 since edC(PGSp2) ≤ 2. �
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