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Abstract

We derive a formula for the unramified Brauer group of a general class
of rationally connected fourfolds birational to conic bundles over smooth
threefolds. We produce new examples of conic bundles over P3 where
this formula applies and which have nontrivial unramified Brauer group.
The construction uses the theory of contact surfaces and, at least implic-
itly, matrix factorizations and symmetric arithmetic Cohen–Macaulay
sheaves, as well as the geometry of special arrangements of rational
curves in P2. We also prove the existence of universally CH0-trivial
resolutions for the general class of conic bundle fourfolds we consider.
Using the degeneration method, we thus produce new families of ra-
tionally connected fourfolds whose very general member is not stably
rational.

1. Introduction

One of the fundamental problems in the birational classification of algebraic

varieties is to distinguish between varieties that are in some sense close to

Pn—e.g., stably rational, unirational, or rationally connected—and varieties

in the birational equivalence class of Pn itself. Conic bundles over rational

varieties are a natural class to study in this respect, and the literature on them

is prodigious. For example, conic bundles over rational surfaces were used in

[AM72] to produce varieties that are unirational but not stably rational (hence

a fortiori not rational), and in [B-CT-S-SwD] to produce stably rational, but

nonrational varieties. In [CT-O], the unramified cohomology groups were

introduced to give a more systematic treatment of, and greatly generalize,

the examples in [AM72]. There is also a whole body of work on conic bundles
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that are birationally rigid, taking its departure from the groundbreaking works

[Sa80], [Sa82], [Is87]; see [Pukh13] for a survey.

Conic bundles are important from a deformation-theoretic perspective as

well, as they usually come in families, making them amenable to the degen-

eration method introduced and developed in the seminal articles [Voi15] and

[CT-P16]. The method relies on the ability to obstruct the universal triviality

of the Chow group of 0-cycles on a mildly singular central fiber of such a

family. Then the very general fiber of the family will be similarly obstructed,

and in particular, will not be stably rational. The degeneration method has

broadened the range of applicability of previously known obstructions such

as unramified invariants and differential forms in positive characteristic, and

notably, has very recently led to examples of families of smooth fourfolds with

rational and nonrational fibers [HPT16].

The present article started from a close analysis of the example in [HPT16]

of a quadric surface fibration over P2 with nontrivial unramified Brauer group,

defined as divisor of bi-degree (2, 2) in P2 × P3. While the projection to P2

gives the quadric surface fibration structure over P2, the other projection gives

a conic bundle over P3. The structural features of this conic bundle helped us

find the statements of the general results of Section 2 about the unramified

Brauer group and of Section 6 about the singularities of conic bundles over

threefolds. We also provide new constructions, in Sections 3, 4, and 5, of

conic bundles where these results apply. One application is the following (see

Theorem 6.6).

Theorem. A very general conic bundle Y → P3 over C, defined by a

homogeneous 3× 3 matrix with entries of degrees⎛
⎝7 4 4

4 1 1

4 1 1

⎞
⎠

is not stably rational.

For further developments and more recent results on conic bundles with

small discriminants see [ABB19], [ABB18], [BB17].

Let us describe the contents of the individual sections in more detail.

In Section 2, we provide a formula for the unramified Brauer groups of

the total spaces of certain conic bundles over smooth projective threefolds B

with Br(B)[2] = 0 and H3
ét(B,Z/2) = 0 over an algebraically closed field k

of characteristic not 2. The formula (given in Theorem 2.6) depends on the

geometry and combinatorics of the components of the discriminant divisor

and their mutual intersections, as well as the structure of their double covers

induced by the lines in the fibers of the conic bundle. If the discriminant is
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irreducible, the unramified Brauer group of the conic bundle is trivial. The

formula can be viewed as a higher dimensional analogue of a formula due to

Colliot-Thélène (see [Pi16, Thm. 3.13]) for conic bundles over surfaces; see

also [Zag77]. Such formulas are naturally stated in the language of Galois

cohomology, algebraic K-theory, and Bloch–Ogus theory, but we go on to

reinterpret ours in a geometric way in Corollary 2.9. This is fundamental for

finding, in Sections 4 and 5, the geometric examples of conic bundles where

the formula applies. In particular, we refer the reader to the roadmap at the

start of Section 5 showing how we achieve this.

In Section 3, we introduce a method to produce fourfold conic bundles with

reducible discriminants via taking double covers branched in surfaces that are

contact to discriminants of simpler conic bundles. We analyze the example

in [HPT16], of a divisor of bidegree (2, 2) in P2 × P3, as a conic bundle over

P3 from this perspective, yielding an independent proof that this variety has

nontrivial unramified Brauer group.

In Section 4, we introduce another method to construct fourfold conic bun-

dles over P3 with reducible discriminants. It is again based on the theory

of contact of surfaces developed largely in the fundamental paper [Cat81], as

well as on the theory of matrix factorizations as in [Ei80] and the theory of

symmetric determinantal representations of hypersurfaces [Cat81], [Beau00],

[Dol12, Chapter 4]. While the latter two theoretical tools are not used logi-

cally in our proof, they were very important in finding the result.

In Section 5, we complete the construction of new examples of fourfold

conic bundles over P3 with nontrivial unramified Brauer group. These are,

hence, not stably rational. They are part of natural families of conic bundles

of specific graded-free-types over P3.

Finally, in Section 6, we analyze the singularities of the total spaces of a

quite general class of conic bundle fourfolds, proving that they admit univer-

sally CH0-trivial resolutions. This is aided by a classification of local analytic

normal forms for the singularities that can appear. The degeneration method

of [Voi15] and [CT-P16] can then be applied to yield an obstruction to stable

rationality of the very general member of families in which our new exam-

ples appear. In particular, this provides a simpler proof that the example

considered in [HPT16] admits a universally CH0-trivial resolution.

As a final note, it may be interesting to remark that we were only able

to construct the examples in Sections 4 and 5 by translating virtually every

algebraic concept entering in Theorem 2.6 into geometry. In this respect, hy-

persurfaces with symmetric rank 1 arithmetic Cohen–Macaulay sheaves are

better than determinants, contact of surfaces is a more versatile concept than

reducibility of polynomials, and special configurations of rational curves are
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more concrete than the analysis of functions becoming squares when restricted

to a curve. On the other hand, the arithmetic function field and Galois co-

homological point of view is far superior if one wants to prove an abstract

general result such as Theorem 2.6. The main difficulty is then constructing

examples. One reason why it is so much more difficult to find conic bundles

over threefolds with prescribed discriminant, as opposed to over surfaces, is

that the theory of maximal orders in quaternion algebras over threefolds is

more complicated. Instead of relying on the theory of maximal orders, which

was utilized in [AM72], we rely on geometry to construct our examples.

Conventions. The letter k will usually denote an algebraically closed

ground field of characteristic not 2, unless explicitly stated otherwise. As

usual, the term variety over k means a separated, integral scheme of finite-

type over k. A conic bundle is a flat projective surjective morphism of varieties

with (geometric) fibers isomorphic to plane conics and general fiber smooth.

2. Brauer group of conic bundles over threefolds

We first recall a few facts from Galois cohomology.

Let L be the function field of an integral variety Z defined over k. At

this point we do not even have to assume that k is algebraically closed, but

k should have characteristic different from 2. The first Galois cohomology

group H1(L,Z/2) := H1(Gal(L),Z/2), with constant coefficients Z/2, can be

identified via Kummer theory with the group of square classes

H1(L,Z/2) � L×/L×2.(1)

The second Galois cohomology group H2(L,Z/2) can be identified with the

2-torsion subgroup of the Brauer group of L

H2(L,Z/2) � Br(L)[2].(2)

For a, b ∈ L×, we denote by the symbol (a, b) ∈ Br(L)[2] the Brauer class of

the quaternion algebra generated by x, y with relations x2 = a, y2 = b, and

xy = −yx. This is the same as the Brauer class associated to the plane conic

over L defined by ax2 + by2 = z2. It also coincides with the cup product of

the square classes of a and b via the identification (1).

Now suppose D is a prime divisor of Z such that Z is regular in the generic

point of D; thus D corresponds to a unique discrete divisorial valuation vD of

L with residue field k(D). The two residue maps (homomorphisms) that will
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be relevant to us,

∂1
D : H1(L,Z/2) → H0(k(D),Z/2) = Z/2,

∂2
D : H2(L,Z/2) → H1(k(D),Z/2),

(3)

can be defined in the following manner: if a class in H1(L,Z/2) is represented

by an element a ∈ L× according to (1), then ∂1
D(a) = vD(a) (mod 2); if a

class in H2(L,Z/2) is represented by a symbol (a, b) according to (2), then

∂2
D(a, b) = (−1)vD(a)vD(b)avD(b)/bvD(a),(4)

where avD(b)/bvD(a) ∈ H1(k(D),Z/2) = k(D)×/k(D)×2 is the square class

of the unit avD(b)/bvD(a) ∈ L× in the residue field. In fact ∂2
D is uniquely

determined by the formula ∂2
D(π, u) = u for any uniformizer π and unit u in

the valuation ring of vD. For u ∈ L×, we sometimes write u|D := u for the

residue class.

One also defines the map ∂1
D in the more general case when Z is potentially

singular at the generic point of D, so that the local ring of Z at the generic

point of D is not necessarily a discrete valuation ring. In that case, we de-

fine ∂1
D following Kato [Ka86, p. 151]. If Z ′ → Z is the normalization and

D1, . . . , Dμ are the irreducible components lying over D corresponding to the

discrete divisorial valuations of L with center D, then for a ∈ L× we define

∂1
D(a) =

μ∑
i=1

[k(Di) : k(D)]vDi
(a) (mod 2).(5)

The unramified cohomology group H2
nr(L/k,Z/2), which depends on the

ground field k, is the subgroup of H2(L,Z/2) consisting of those elements that

are annihilated by all residue maps ∂2
v : H

2(L,Z/2) → H1(κ(v),Z/2) where

v runs over the divisorial valuations of L that are trivial on k. Here κ(v)

is the residue field of v. Clearly, formula (4) makes sense for any divisorial

valuation v of L, not only those vD that have a divisorial center D on Z. The

nontriviality of the unramified cohomology group is an obstruction to stable

rationality of L over k.

If Z is smooth and proper over k, then there is a natural isomorphism

Br(Z)[2] → H2
nr(L/k,Z/2), where Br(Z) = H2

ét(Z,Gm) is the cohomologi-

cal Brauer group of Z, cf. [CT95, Prop. 4.2.3(a)]. In general, we refer to

H2
nr(L/k,Z/2) as the 2-torsion in the unramified Brauer group, and write it

as Brnr(L/k)[2].

In practice one uses complementary results to narrow down the set of divi-

sorial valuations required to check in the definition of unramified cohomology
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to those corresponding to prime divisors on a fixed model of L. Such re-

sults are implied by so-called “purit” [CT95] and we will use a variant of

[CT95, Thm. 3.82]; see also [Pi16, Prop. 3.2].

Proposition 2.1. Let O be the local ring of a smooth (scheme-theoretic)

point on a variety over a field k of characteristic not 2, and let L be the field

of fractions of O. Let γ ∈ Hi(L,Z/2) be some class such that ∂i
v(γ) = 0

for all valuations corresponding to height one prime ideals of O (hence prime

divisors in Spec(O)). Then γ is in the image of the natural map

Hi
ét(Spec(O),Z/2) → Hi(L,Z/2).

The following corollary, which employs an argument due to Bloch and

Ogus [BO74], is a little more geometric; cf. [CT95, Prop. 2.1.8(d)].

Corollary 2.2. Suppose Zsm is a smooth integral variety over a field k

of characteristic not 2, and let L be the function field of Zsm. Then every

element in Hi(L/k,Z/2) that is unramified with respect to divisorial valuations

corresponding to prime divisors on Zsm is also unramified with respect to all

divisorial valuations that have centers on Zsm.

We will often apply the corollary above to the smooth locus Zsm := Z\Zsing

of a proper variety Z over k, where Zsing is its singular locus.

Let K be an arbitrary field (possibly of characteristic 2) and let C be a

smooth projective curve of genus zero over K. The anticanonical class on C

defines an embedding C → P2
K as a smooth plane conic; we call C a smooth

conic over K. As remarked earlier, a smooth conic C determines a Brauer

class α ∈ Br(k)[2]. We say that C is nonsplit if C(K) = ∅, equivalently,

α is nontrivial. As before, we set Br(C) := H2
ét(C,Gm). Since Br(K) =

H2(K,Gm) = H2
ét(SpecK,Gm) for any field K, we have a pullback map

Br(K)
ι−→ Br(C). We will need the following.

Lemma 2.3. Let C be a smooth nonsplit conic over an arbitrary field K.

Then the pullback map induces an exact sequence

0 → Z/2 → Br(K)
ι−→ Br(C) → 0(6)

where the kernel is generated by the Brauer class α ∈ Br(K)[2] determined

by C.

Assuming that K has characteristic not 2 and that −1 is a square, then

(6) restricts to an exact sequence

0 → Z/2 → Br(K)[2] → Br(C)[2] → Z/2 → 0,(7)

and any class in Br(C)[2] is contained in the image of Br(K)[4] → Br(C)[4].

Proof. The proof of (6) is well known, but we summarize it here for con-

venience, cf. [CT-O, Prop. 1.5]. The identification of the kernel of ι is due

to Witt [Wit35], and follows from the fact that C is a Severi–Brauer variety
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associated to the Brauer class α. The proof of the surjectivity of ι follows

an argument with the Hochschild–Serre spectral sequence going back to the

work of Lichtenbaum [Lic69], Iskovskikh, and Manin. We recall this argu-

ment here for convenience. Let Ks be a separable closure of K and let Γ be

the Galois group of Ks/K. The exact sequence of low degree terms of the

Hochschild–Serre spectral sequence and Hilbert’s theorem 90 gives

0 → Pic(C) → Pic(CKs)Γ → Br(K) → ker
(
Br(C) → Br(CKs)

)
→ H1(Γ,Pic(CKs)).

Since C is a smooth conic, it has a separable splitting field by [BrauerIII,

Cor. 1.3], hence CKs ∼= P1
Ks . For the vanishing of Br(P1

Ks), one can appeal to

(a generalization of) Tsen’s theorem on the vanishing of the Brauer group of

the function field of a curve over a separably closed field. We also use the fact

that Pic(P1
Ks) = Z has trivial Galois action and H1(Γ,Z) = 0, while Pic(C) is

generated by ω∨
C , which has degree 2, when C is a nonsplit conic. Hence the

above sequence of low degree terms collapses to the desired exact sequence.

As for the second part, the fact that any element of Br(C)[2] is in the

image of Br(K)[4] → Br(C)[4] follows immediately from (6), since the kernel

has order 2. For the calculation of the cokernel of ι, the short exact sequence

of group schemes 1 → μ2 → μ4 → μ2 → 1 (assuming thatK has characteristic

not 2) induces a long exact sequence in Galois cohomology

· · · → H1(K,μ2) → H2(K,μ2) → H2(K,μ4) → H2(K,μ2)

→ H2(K,μ2) → · · ·

where the boundary maps are given by cup product with the class (−1) ∈
H1(K,Z/2); cf. [Kah89, Lemmas 1,2]. Hence all boundary maps are zero if

−1 is a square in K. Since K has characteristic not 2, we have Br(K)[n] =

H2(K,μn) for n a power of 2. We then have the following commutative

diagram with exact rows:

0 �� Br(K)[2] ��

��

Br(K)[4] ��

��

Br(K)[2] ��

��

0

0 �� Br(C)[2] �� Br(C)[4] �� Br(C)[2]

and the snake lemma yields that

coker
(
Br(K)[2] → Br(C)[2]

) ∼= ker
(
Br(K)[2] → Br(C)[2]

) ∼= Z/2
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as desired; cf. [KRS98, §7]. We use the fact that Br(K)[4] → Br(C)[4] maps

onto Br(C)[2] to see that the map

coker
(
Br(K)[2] → Br(C)[2]

)
→ coker

(
Br(K)[4] → Br(C)[4]

)
is zero, even though coker

(
Br(K)[4] → Br(C)[4]

)
might itself be nonzero. �

Definition 2.4. Let π : Y → B be a conic bundle over a smooth projective

threefold B over an algebraically closed ground field k of characteristic not

2. Let S be its discriminant locus with its natural determinantal scheme

structure. Let S1, . . . , Sn be its irreducible components.

We call the discriminant locus S good if S is reduced and if for each i,

the fiber Ys for general s ∈ Si consists of two distinct lines, and the natural

double covers S̃i → Si determined by π in that case are irreducible.

Remark 2.5. Keeping the notation of the previous definition, if S is good

and α ∈ H2(K,Z/2) is the Brauer class corresponding to the generic fiber of π,

then the surfaces Si are precisely those surfaces Σ ⊂ B such that ∂2
Σ(α) �= 0.

If we drop the assumption that the cover S̃i → Si be irreducible, then we

could get a trivial class in H1(k(Si),Z/2) = k(Si)
×/k(Si)

×2.

We can now go back to our geometric situation and state an algebraic

version of the theorem that computes H2
nr(k(Z)/k,Z/2) for us in many cases.

Theorem 2.6. Let k be an algebraically closed field of characteristic not

2 and let π : Y → B be a conic bundle over a smooth projective threefold B

over k. Let α ∈ Br(K)[2] be the Brauer class in K = k(B) corresponding to

the generic fiber of π. Assume that the discriminant locus of π is good with

components S1, . . . , Sn. We will also assume the following:

a) The vanishing Br(B)[2] = 0 and H3
ét(B,Z/2) = 0 holds.

b) Through any irreducible curve in B, there pass at most two surfaces

from the set S1, . . . , Sn.

c) Through any point of B, there pass at most three surfaces from the set

S1, . . . , Sn.

d) For all i �= j, Si and Sj are factorial at every point of Si ∩ Sj.

Put

γi = ∂2
Si
(α) ∈ H1(k(Si),Z/2).

Define a subgroup Γ of the group
⊕n

i=1 H
1(k(Si),Z/2) by

Γ =

n⊕
i=1

〈γi〉.

Thus Γ � (Z/2)n. We will write elements of Γ as (x1, . . . , xn) with xi ∈ {0, 1}.
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Let H ⊂ Γ consist of those elements (x1, . . . , xn) ∈ (Z/2)n such that xi =

xj for i �= j whenever there exists an irreducible component C of Si ∩Sj such

that either

i) ∂1
C(γi) = ∂1

C(γj) = 1 or

ii) ∂1
C(γi) = ∂1

C(γj) = 0, and γi|C and γj |C are not both zero in

H1(k(C),Z/2).

Then the 2-torsion of the unramified Brauer group H2
nr(k(Y )/k,Z/2) of Y

contains the subquotient H/〈(1, . . . , 1)〉 by the “diagonal subgroup” 〈(1, . . . , 1)〉
of Γ, and is equal to it under the following additional geometric assumption

iii) If ∂1
C(γi) = ∂1

C(γj) = 0 for some irreducible component C of the inter-

section Si∩Sj, then Si and Sj intersect generically transversally along

C and the rank of the conics in the fibers of Y is generically 2 over C.

Later, we will reformulate various portions of Theorem 2.6 more geomet-

rically. Before embarking on the proof, a few explanatory remarks are in

order.

Remark 2.7. We do not know if the assumption iii) is necessary or re-

dundant, i.e., whether we have equality H2
nr(k(Y )/k,Z/2) = H/〈(1, . . . , 1)〉

without it. It is conceivable that in any case there is a conic bundle Y ′ → B,

birational to Y over B, such that iii) is satisfied. However, for us iii) serves

as a harmless simplifying assumption.

Remark 2.8. Conditions b) and c) are obviously simplifying assumptions

on the intersection graph of the S1, . . . , Sn. They could be replaced by differ-

ent ones, but this would make the description of the unramified Brauer group

H2
nr(k(Y )/k,Z/2) messier. On the other hand, condition d) is a hypothesis

on the local algebraic structure, and something of that sort is probably in-

dispensable in any version of Theorem 2.6. Condition a) is needed to glue

certain Galois H1-classes into Brauer classes on B as we will see below.

Proof of Theorem 2.6. It is a bit lengthy and we divide it into steps to

make the logic clearer.

Step 1. Inducing all potentially unramified Brauer classes in

H2
nr(k(Y )/k,Z/2) from Brauer classes on B that are glued from a compat-

ible set of γi = ∂2
Si
(α). The first question is how we can describe a totality

of classes in H2(k(Y ),Z/2) that are the only candidates to yield unramified

classes in H2
nr(k(Y )/k,Z/2). This is done via the following commutative dia-

gram:



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
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0

Z/2

��

0 �� H2
nr(k(Y )/Y, Z/2) �� H2

nr(k(Y )/K, Z/2)

��

⊕∂2
T �� ⊕

T∈Y
(1)
B

H
1
(k(T ), Z/2)

Brnr(K)[2] = 0 �� H2(K, Z/2)=Br(K)[2]

⊕∂2
S ��

ι

��

⊕

S∈B(1)

H
1
(k(S), Z/2)

τ

��

⊕∂1
C �� ⊕

C∈B(2)

H
0
(k(C), Z/2)

〈α〉

��

K

��

0

��

0

��

(8)

We will start by explaining the new pieces of notation: H2
nr(k(Y )/Y,Z/2)

denotes all those classes in H2(k(Y ),Z/2) which are unramified with respect

to divisorial valuations corresponding to prime divisors (threefolds) on Y .

Note that the singular locus of Y has codimension ≥ 2 by our assumptions.

By Corollary 2.2, we can also characterize H2
nr(k(Y )/Y,Z/2) as all those

classes in H2(k(Y ),Z/2) that are unramified with respect to divisorial val-

uations which have centers on Y which are not contained in Ysing. Moreover,

H2
nr(k(Y )/K,Z/2) is the subset of those classes in H2(k(Y ),Z/2) which are

unramified with respect to divisorial valuations that are trivial on K, hence

correspond to prime divisors of Y dominating the base B (since π is of relative

dimension 1).

In the upper row, T runs over all irreducible threefolds, i.e., prime divisors,

in Y that do not dominate the base B, hence map to some surface in B. We

call this set of irreducible threefolds Y
(1)
B . Then the upper row is exact by the

very definitions.

In the lower row, S runs over the set of all irreducible surfaces B(1) in

B and C over the set of all irreducible curves B(2) in B. Thus this row

coincides with the usual Bloch–Ogus complex for degree 2 étale cohomology

associated to B. The ith cohomology group of this complex is computed

by the Zariski cohomology Hi(B,H 2) of the étale cohomology sheaf H i,

which is the sheafification of the Zariski presheaf U 
→ H2
ét(U,Z/2Z); see

[BO74, Thm. 6.1]. In particular, the lower row is exact in the first two places

because H0(B,H 2) = Br(B)[2] = 0 and H1(B,H 2) ⊂ H3
ét(B,Z/2) = 0 by

hypothesis, where the later inclusion arises from the sequence of low terms
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associated to the Bloch–Ogus spectral sequence Hi(B,H j) ⇒ Hi+j
ét (B,Z/2);

cf. [Kah95, §1.1].
Now let us discuss the vertical arrows. The left vertical column is Lemma

2.3. The map τ , defined by pullback under the field extensions k(T ) ⊃ k(S),

coincides with the induced k(S)×/k(S)×2 → k(T )×/k(T )×2. If the generic

fiber of T → S is geometrically integral, then k(S) is algebraically closed

inside k(T ), hence this induced map is injective. This is the case if S is not

contained in the discriminant locus, since then the generic fiber of T → S

is a smooth conic. If S = Si is a component of the discriminant locus, then

the generic fiber of Ti → Si is geometrically the union of two lines; Stein

factorization displays this generic fiber as a line over the quadratic extension

F/k(Si) defined by the residue class γi ∈ H1(k(Si),Z/2). In this case, the

restriction-corestriction exact sequence in Galois cohomology implies that the

kernel of the natural map H1(k(Si),Z/2) → H1(F,Z/2) is generated by γi
(and also the natural map H1(F,Z/2) → H1(F (t),Z/2) is injective). We

conclude that the kernel of τ is

K � 〈γ1〉 ⊕ · · · ⊕ 〈γn〉 = Γ.(9)

We argue that even though ι is not surjective, the subgroup

H2
nr(k(Y )/Y,Z/2) ⊂ H2

nr(k(Y )/K,Z/2)

is in the image of ι. By Lemma 2.3, any element

ζ ∈ H2
nr(k(Y )/K,Z/2)

not in the image of ι lifts to some ξ ∈ H2(K,Z/4) of order 4. Then at least

one residue ∂2
S(ξ) ∈ H1(k(S),Z/4) must have order 4, since the map ⊕∂2

S is

injective (i.e., we consider the lower row of diagram (8) with Z/4 coefficients

now). Since K is an elementary abelian 2-group and also equals the kernel

of the map τ for Z/4 coefficients

τ :
⊕

S∈B(1)

H1(k(S),Z/4) →
⊕

T∈Y
(1)
B

H1(k(T ),Z/4),

τ (∂2
S(ξ)) ∈ H1(k(T ),Z/4) cannot be trivial. Since the diagram commutes, we

see that ∂2
T (ζ) is nontrivial, hence ζ cannot lie inH2

nr(k(Y )/Y,Z/2). This same

diagram chase for the diagram (8) yields that the group H2
nr(k(Y )/Y,Z/2)

can be described as the quotient by 〈(1, . . . , 1)〉 of the subgroup H ′ ⊂ (Z/2)n

defined only using condition i) of the definition of H in the statement of

Theorem 2.6. Note also that we use assumption b) (namely, each C determines

a unique pair Si, Sj such that C is a component of Si ∩ Sj) to ensure that

elements in H ′ make up the kernel of ⊕(⊕∂1
C) in diagram (8).
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Step 2. Figuring out which classes in H ′ give classes in H2
nr(k(Y )/k,Z/2)

by checking whether they are unramified with respect to all divisorial valuations

ν of k(Y ): A case-by-case analysis depending on the dimension and location

of the center of ν on B.

We pick a class β ∈ H2(K,Z/2) corresponding to an element in H ′, and

denote by β′ the image of β in H2(k(Y ),Z/2). We want to show that β′ is

unramified on Y if and only if β is in H. We first prove the if part by a

case-by-case analysis, and the only if part in Step 3 below.

Step 2(a). The center of ν on B is not contained in the intersection of

two or more of the discriminant components. Denote by O the local ring

of the center Z of ν on B. Then β − α is in the image of H2
ét(O,Z/2) by

Proposition 2.1. But ι(β − α) = ι(β), so this class is also unramified with

respect to ν in this case.

Step 2(b). The center ν on B is a curve C that is an irreducible component

of Si ∩ Sj.

Let O be the local ring of C in B. If β has xi = xj = 1, then again β−α is

in the image of H2
ét(O,Z/2) by Proposition 2.1, and we conclude as before. So

we can assume xi = 1, xj = 0 and then also ∂1
C(γi) = 0. This condition means

that a function representing γi = ∂2
Si
(β) ∈ H1(k(Si),Z/2) = k(Si)

×/k(Si)
×2

has a zero or pole of even order along C. Moreover, γj can be represented by

1 in k(Sj)
×. Passing to the inverse of the function representing γi if necessary

(multiplying by squares does not change its class in H1(k(Si),Z/2)), we can

assume that it is contained in the local ring OSi,C of C in Si. Call this function

fγi
. Choose a local equation t for C in OSi,C . Note that Si is factorial along

C, so C is a Cartier divisor on Si.

Then fγi
/(tvC(fγi )) is a unit in OSi,C , hence any preimage in O will be a

unit. Call this preimage uγi
. For uγj

we could take 1. Now viewing uγi
as a

rational function in K, the function field of B, and choosing a local equation

πSi
for Si in O (also viewed as a function in K) we can form the symbol

(uγi
, πSi

) ∈ H2(K,Z/2). Using formula (4), we conclude that

∂2
Si
(β) = γi = ∂2

Si
(uγi

, πSi
)

by construction of uγi
. Moreover, β − (uγi

, πSi
) is then in the image of

H2
ét(O,Z/2) using Proposition 2.1 again. Here we are using that we have

lifted fγi
to a unit uγi

to ensure that ∂2
S(uγi

, πSi
) = 0 for every other surface

S different from Si through C. Hence

∂2
ν(ι(β − (uγi

, πSi
))) = 0,
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so we will have shown that ∂2
ν(ι(β)) = ∂2

ν(β
′) = 0 once we know ∂2

ν(ι(uγi
, πSi

))

= 0. By formula (4) we have (up to a sign)

∂2
ν(ι(uγi

, πSi
)) = u

ν(πSi
)

γi /π
ν(uγi

)

Si
= u

ν(πSi
)

γi ∈ H1(κ(ν),Z/2),(10)

where the second equality follows because uγi
is a unit along C; note that

here we are viewing all rational functions in K as functions in k(Y ) via the

natural extension K ⊂ k(Y ).

On the other hand, (up to a sign)

∂2
C(γi, t) = γ

νC(t)
i /tνC(γi) = uγi

|C ∈ H1(k(C),Z/2),(11)

where the second equality follows because fγi
and the function uγi

|Si
on Si

differ by a square, by construction.

But since the term in (11) is zero by assumption, so is the term in formula

(10).

Step 2(c). The center of ν is a point p ∈ C as in Step 2(b), and Si, Sj

are the only surfaces among the S1, . . . , Sn passing through p.

Let O denote the local ring of p in B. If xi = xj = 1 we conclude as

above by looking at β − α. So assume xi = 1, xj = 0. Then ∂1
C(γi) = 0.

Note that we can find a local equation t for C in OSi,p since C is Cartier

by the hypothesis that Si is factorial along C. Pick a function fγi
∈ k(Si)

representing γi. Moreover, for any other irreducible curve C ′ passing through

p, either in Si ∩ Sj or lying entirely on Si or Sj , we will have ∂1
C′(γi) = 0,

too. Let C1, . . . , CN be all irreducible curves through p along which fγi
has a

zero or pole, and pick a local equation tι in OSi,p for every Cι. The rational

function fγi
/{tvC1

(fγi )
1 · · · tvCN

(fγi )

N } on Si does not vanish or have a pole on

any curve on Si that passes through p. Hence, since S is assumed to be

factorial, in particular, normal in p, this function is a unit locally around p,

and can be lifted to a unit in O. We call this uγi
again. Repeating the rest of

the proof in Step 2(b) verbatim, with k(C) replaced by k(P ), and using that

every element in k(P ) is a square since k is algebraically closed, we see that

∂ν(β
′) = 0 here as well.

Step 2(d). The center of ν is a point p that lies on exactly three surfaces

Si, Sj , Sk.

Then p ∈ Si ∩ Sj ∩ Sk. If we have xi = xj = xk = 1, we can again pass

to β − α and argue as above, so we can assume xi = 1, xj = xk = 0, or

xi = 0, xj = xk = 1. Moreover, without loss of generality, we can assume β is

of type xi = 1, xj = xk = 0 since if it is of type xi = 0, xj = xk = 1, β − α

will be of type xi = 1, xj = xk = 0, and ∂ν(ι(β − α)) = ∂ν(ι(β)). Let O be

the local ring of p in B again. Since every curve C on Si passing through p,

either on Si ∩ Sj or Si ∩ Sk, or only on Si, is Cartier on the surface Si, we



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
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can find a unit uγi
in O that, when restricted to Si, has the same class as

γi in H1(k(Si),Z/2). We just repeat the argument in Step 2(b). The rest of

the argument is then verbatim as in Step 2(b) (or Step 2(c)) with k(C) again

replaced by k(P ).

Step 3. Proving that a class β in H ′ yields an unramified class β′ on Y

only if β ∈ H.

We have to prove that if β has xi = 1 and xj = 0, so that ∂1
C(γi) =

∂1
C(γj) = 0 for every irreducible component C of Si ∩ Sj , and if γi|C and

γj |C are nonzero in H1(k(C),Z/2), then β′ is ramified with respect to some

divisorial valuation ν of k(Y ).

We now make use of assumption iii). Because of this, a local calculation,

done later in Proposition 6.7, shows the following: there is a unique irre-

ducible curve C ′ in which Y is singular and which dominates C in this case.

Also, the map C ′ → C is generically one-to-one. Moreover, blowing up Y

in C ′ yields an exceptional divisor E that is generically a P1 × P1 bundle

over C ′, hence birational to P1 × P1 × C ′. Let ν = νE be the associated

valuation. Looking back at the computations in Step 2 above, and keeping

the notation there, we see from formula (10) and the fact that νE(πSi
) = 1

(again a local calculation) that ∂2
ν(β

′) is equal to ūγi
, viewed as an element

of H1(k(E),Z/2). Hence, this is nothing but the image, under the natu-

ral map H1(k(C),Z/2) → H1(k(E),Z/2), of ūγi
, viewed as an element of

H1(k(C),Z/2). But a nonsquare in a field cannot become a square in a purely

transcendental extension of that field, hence ∂2
ν(β

′) �= 0 in this case. �

We can reformulate parts of Theorem 2.6 to obtain the following geometric

corollary that gives sufficient conditions for a conic bundle π : Y → B to have

nontrivial H2
nr(k(Y )/k,Z/2).

Corollary 2.9. Let k be again some algebraically closed ground field of

characteristic not equal to 2, π : Y → B a conic bundle over a smooth projec-

tive threefold B with Br(B)[2] = H3
ét(B,Z/2) = 0.

Suppose that the discriminant locus S =
⋃n

i=1 Si of π is good and n ≥ 2

and suppose that assumptions b), c), d) in Theorem 2.6 are satisfied.

Suppose that for all i �= j and every irreducible component C of Si ∩ Sj,

the fibers of π over a general point of C are still two distinct lines, and that

the corresponding double cover C̃ → C (inside S̃i or S̃j) is reducible.

Then the unramified Brauer group of Y is nontrivial.

Proof. The fact that the fibers of π over a general point of C are still two

distinct lines means ∂1
C(γi) = ∂1

C(γj) = 0. The condition that C̃ is reducible

means that ∂2
C(γi, u) and ∂2

C(γj , u) are zero. �



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

CONIC BUNDLES WITH NONTRIVIAL UNRAMIFIED BRAUER GROUP 299

3. Reducibility of the discriminant: 1st method

Subsequently, we will usually restrict our attention to conic bundles of

graded-free-type over P
3, informally, those defined by a graded symmetric

3× 3 matrix. We now make this precise.

Definition 3.1. Fix a triple of nonnegative integers

(d1, d2, d3) ∈ N
3 such that di ≡ dj (mod 2) ∀ i, j.

Consider a symmetric matrix of homogeneous polynomials on P3

A =

⎛
⎝a11 a12 a13
a21 a22 a23
a31 a32 a33

⎞
⎠

where

aij = aji, deg(aii) = di, deg(aij) =
di + dj

2
.(12)

Put

d =
∑
i

di, ri =
d− di

2
, si =

d+ di
2

,(13)

E = O(r1)⊕ O(r2)⊕ O(r3).(14)

Then A determines a symmetric map between graded free bundles

A : E (−d) = O(−s1)⊕O(−s2)⊕O(−s3) → E ∨ = O(−r1)⊕O(−r2)⊕O(−r3)

hence a line bundle valued map

Sym2E → O(d)

determining a conic bundle Y ⊂ P(E ) → P
3 if the entries of A do not vanish

simultaneously in any point of P3. Such a conic bundle will be called of

graded-free-type.

Example 3.2. If Y ⊂ P
5 is a cubic hypersurface containing a line � ⊂ P

5

the projection P5 ��� P3 from � is resolved by the blowup P̃5 of P5 along �.

The resulting morphism P̃5 → P3 has the structure of a projective bundle

P(E ), where E = O(1) ⊕ O(2) ⊕ O(2). Restricting this morphism to the

blowup Ỹ ⊂ P̃5 of Y along �, then Ỹ → P3 is a conic bundle of graded-free-

type (3, 1, 1), cf. [Tog40]. It does not seem possible to apply Theorem 2.6 to

degenerations of conic bundles of this type.

We now derive a result saying that certain discriminant surfaces F of conic

bundles of graded-free-type over P3 split if pulled back via a suitable double

cover.
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Definition 3.3. A point p on a surface F in P3 is called a node if

ÔF,p � k�x, y, z�/(xy − z2).

Proposition 3.4. Let F be a surface in P3 with at most nodes as singu-

larities. Suppose that for a desingularization F̃ of F , H1
ét(F̃ ,Z/2) = 0, or

equivalently, H1
nr(k(F )/k,Z/2) = 0. Let G be a “contact surface” to F , i.e.,

as schemes G∩F = 2C for some curve C on F , and suppose, moreover, that

G has even multiplicity αi at every node pi of F (this also allows αi = 0 of

course, whence G does not pass through that particular node). Assume that

G has even degree. Then F splits in the double cover of P3 branched in G.

Proof. The double cover of P3 is defined by adjoining a square root of

T := G/XdegG
0 to the function field k(P3) = k(X1/X0, X2/X0, X3/X0). Let

t ∈ k(F ) be the restriction of T to F . We claim that t viewed as an element

of

H1(k(F ),Z/2) = k(F )×/k(F )×2

is unramified with respect to every divisorial valuation ν of k(F ). Since we

assumed that H1
nr(k(F ),Z/2) = 0, this will imply that t is a square, and the

cover of F determined by t splits. By Proposition 2.1 we only have to check

ν’s corresponding to irreducible curves on a smooth model π : F̃ → F where

we have blown up all nodes pi to (−2) curves Ai. Then the claim follows since

π∗(2C) ≡ 2C ′ +
∑
i

αiAi,

where C ′ is the strict transform of C on F̃ . See also [Cat81, proof of Prop.

2.6]. �
Remark 3.5. If G, F meet all the requirements of Proposition 3.4 except

that some αi is not even, say αi = 1 so that G is smooth at pi, then the cover

of F will not split since t will vanish to order 1 along Ai in that case. In

particular, the intersection curve C cannot locally analytically look like one

line of a ruling in a cone at a node pi if we want the splitting.

Remark 3.6. In the nicest situation, the hypotheses of Proposition 3.4

will be satisfied in such a way that at a node p, C locally analytically looks

like two lines of the ruling of a cone.

Example 3.7. We will now analyze the example in [HPT16], which is

a divisor YHTP of bi-degree (2, 2) in P2 × P3, in light of Proposition 3.4. In

[HPT16], the authors used the structure of YHPT as a quadric surface fibration

over P
2, given by the projection onto the first factor. We will use its conic

bundle structure over P
3 given by projection onto the second factor. More
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precisely, YHPT is defined by

Y Z S2 +XZ T 2 +XY U2 + (X2 + Y 2 + Z2 − 2(XY +XZ + Y Z))V 2 = 0,

(15)

where we denote homogeneous coordinates (S : T : U : V ) in P3 and

(X : Y : Z) in P
2.

This conic bundle over P
3 is defined, after rescaling the coordinate

V 
→
√
2V , by the graded matrix (up to a scalar multiple)⎛

⎝ V 2 U2 − V 2 T 2 − V 2

U2 − V 2 V 2 S2 − V 2

T 2 − V 2 S2 − V 2 V 2

⎞
⎠ .(16)

The discriminant is a sextic surface D ⊂ P
3 defined by the determinant

4V 6 − 4(S2 + T 2 + U2)V 4 + (S2 + T 2 + U2)2V 2 − 2S2T 2U2 = 0(17)

which has two irreducible cubic surfaces as components D±, defined by

2V 3 − V (S2 + T 2 + U2)±
√
2STU = 0.(18)

Each component D± has four nodes and no other singular points, hence up

to projective equivalence, is isomorphic to the Cayley nodal cubic surface. In

fact, given their equations, the surfaces D± are in the family of tetrahedral

Goursat surfaces [G1887], which constitute one of the standard forms for the

Cayley nodal cubic. The nodes of the component D± are at the points

(1 : 1 : 1 : ± 1√
2
), (1 : −1 : −1 : ± 1√

2
), (−1 : 1 : −1 : ± 1√

2
), (−1 : −1 : 1 : ± 1√

2
).

(19)

Over each node of the component D±, the quadratic form q has rank 1. The

only other points where the rank of q drops to 1 are the six points

Σ := {(±
√
2 : 0 : 0 : 1), (0 : ±

√
2 : 0 : 1), (0 : 0 : ±

√
2 : 1)}.

Away from these 14 points, q has rank 2 on D.

The components of the discriminant meet in a curve D+ ∩D−, which is a

strict normal crossings curve of degree 9 in P
3, composed of an arrangement

of 3 conics and 3 lines as in Figure 1. The equations of the components of

D+ ∩D− are:

M̃1 : (U = S2 + T 2 − 2V 2 = 0), L̃1 : (U = V = 0),(20)

M̃2 : (T = S2 + U2 − 2V 2 = 0), L̃2 : (T = V = 0),

M̃3 : (S = T 2 + U2 − 2V 2 = 0), L̃3 : (S = V = 0).

Each two of the three conics intersect in two points, and the resulting set of

six points coincides with Σ.
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Figure 1. The arrangement of components of the intersec-

tion of irreducible components D+ ∩D− of the discriminant
of the conic bundle associated to the example YHPT in

[HPT16].

Although we will verify it more easily in our geometric discussion below,

placing this example in the context of Proposition 3.4, the algebraically in-

clined reader can verify already at this stage that Theorem 2.6 applies to

YHPT, as follows.

By taking successive quotients of increasing minors, we can diagonalize the

quadratic form q over k(P3) (though still using homogeneous coordinates) as

q ∼ 〈V 2, (−U2 + 2U2V 2)/V 2, D/(−U2 + 2U2V 2)〉

where by abuse of notation, D denotes the homogeneous equation for the

discriminant. Hence, we have

α = (U2 − 2V 2, D)

in Br k(P3). Hence over the generic point of each component D± ofD, we have

residue γ± = ∂D±α = (U2−2V 2). We know that each residue γ± is nontrivial.

Indeed, one verifies that γ± ramifies along valuations that are centered at the

isolated singular points of D±, i.e., along the exceptional divisors of a minimal

resolution of D±.

It is easy, but cumbersome, to check that γ± has no further residues along

components of D+ ∩D− (which follows from the fact that the quadratic form

q has rank 2 generically over each component of D+ ∩D−) and that for each

component C of D+ ∩ D−, the residue class is a square in the residue field

k(C). Hence, Theorem 2.6 gives that YHPT has unramified Brauer group

Z/2Z.
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We now analyze the conic bundle YHPT in a more geometric way, estab-

lishing the connection to Proposition 3.4.

The first observation is that if we take another copy of P3 with coordinates

X0, X1, X2, X3 and consider the matrix

M =

⎛
⎝X0 X1 X2

X1 X0 X3

X2 X3 X0

⎞
⎠ ,(21)

then M defines a linear determinantal conic bundle over that P3 with discrim-

inant detM a Cayley cubic F with nodes at

ν0 = (1 : 1 : 1 : 1), ν1 = (1 : −1 : −1 : 1),

ν2 = (1 : 1 : −1 : −1), ν3 = (1 : −1 : 1 : −1).

The conic bundle given by the matrix (16) is the pull-back of this linear

determinantal conic bundle via the degree 8 cover

ϕ : P3
(S:T :U :V ) → P

3
(X0:X1:X2:X3)

(22)

(S : T : U : V ) 
→ (X0 : X1 : X2 : X3) = (V 2 : U2 − V 2 : T 2 − V 2 : S2 − V 2).

The branch locus of this cover is given by a tetrahedron of planes in P3

given by

G0 = {X0 = 0},(23)

G1 = {X0 +X1 = 0},
G2 = {X0 +X2 = 0},
G3 = {X0 +X3 = 0}.

We write G =
⋃

i Gi. Let us give names to six lines on the Cayley cubic F

M1 = {X0 +X1 = 0, X2 +X3 = 0},(24)

M2 = {X0 +X2 = 0, X1 +X3 = 0},
M3 = {X0 +X3 = 0, X2 +X1 = 0},
L1 = {X0 = X1 = 0},
L2 = {X0 = X2 = 0},
L3 = {X0 = X3 = 0}

and write

L =
⋃
i

Li, M =
⋃
j

Mj .

Then L and M are two triangles of lines in F that are “circumscribed

around each other”, in the sense that Li meets Mi in a point different from
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the vertices of M , and Li does not meet Mj for i �= j. Moreover, the nodes

ν1, ν2, ν3 form the vertices of the triangle M . We have the following scheme-

theoretic intersections:

G0 ∩ F = L,(25)

Gi ∩ F = 2Mi + Li, i = 1, 2, 3,

G ∩ F = 2L+ 2M.

So the Gi, i = 1, 2, 3, are tangent to F in Mi, and G itself is singular along

L, Gi ∩ G0 = Li, i = 1, 2, 3. Note that the curve C := L + M is Cartier

everywhere, even at the nodes. The node ν0 = (1 : 1 : 1 : 1) is not in G at all.

In other words, F , G, and C verify all the hypotheses of Proposition 3.4!

The eight to one cover ϕ in (22) factors into a double cover to which Proposi-

tion 3.4 applies, and a residual four to one cover. This explains the splitting

of the discriminant conceptually for the example YHPT.

The eight singular points of D+ and D− (both Cayley cubics) are the

preimages under ϕ of ν0. In fact, the cover is étale locally above ν0. The

following formulas hold for the (reduced, set-theoretic) preimages:

ϕ−1(Li) = L̃i,(26)

ϕ−1(Mi) = M̃i.

We have

ϕ−1({ν1, ν2, ν3}) = Σ.

Let us now verify that the double covers of the curves L̃i and M̃j induced

by the conic bundle given by (16) decompose into two components. Indeed,

look at the double covers of the Li induced by the conic bundle given by (21)

first. Then these already split into two components, as is easy to see. For

example, taking the line L1 with homogeneous coordinates X2, X3, and fiber

coordinates (a : b : c) in the trivial P2 bundle that the conic bundle given by

(16) naturally embeds into, the preimage of L1 decomposes as

c = 0, X2a+X3b = 0.

Similarly for L2, L3. So also the double covers of the curves L̃i decompose.

The double covers of the curves Mj on the contrary are irreducible conics

M �
j , the covers M �

j → Mj being branched in the two nodes of F lying on

Mj . However, if we pull-back the cover M �
j → Mj via the cover M̃j → Mj ,

then it becomes reducible (since M̃j factors through a double cover square

isomorphic to M �
j over Mj). So all the hypotheses of Corollary 2.9, including

the “splitting condition” for the curves arising as irreducible components of
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some Si ∩ Sj , are verified. So we see again that the unramified Brauer group

of YHPT is equal to Z/2Z.

In [HPT16], the authors show that YHPT has a Chow universally trivial

resolution of singularities, by an explicit computation. The results of Section 6

give a new streamlined proof of this result. Using [Voi15] and [CT-P16], one

obtains that the very general divisor of bi-degree (2, 2) in P2×P3 is not stably

rational. On the other hand, some such hypersurfaces, even smooth ones, are

shown to be rational in [HPT16].

Remark 3.8. The difficulty in using this approach, or, more precisely,

Proposition 3.4, for the construction of new examples to which Theorem 2.6

applies is that the double cover B of P3 branched in G is usually both nonra-

tional and has nontrivial H3
ét(B,Z/2). In cases where B is at least unirational,

one can pull back further to a rational B′ dominating B, but also this will

usually have H3
ét(B

′,Z/2) nontrivial.

4. Reducibility of the discriminant: 2nd method

There is another construction of conic bundles, again using the theory of

contact of surfaces, to which Corollary 2.9 potentially applies. The advantage

of this method is that it works over the base B = P3 and that it produces

conic bundles of graded-free-types with reducible discriminant surfaces di-

rectly, and such that the conics will generically be two distinct lines over the

intersections of discriminant components. The subtle condition one must still

somehow ensure (e.g., by adjusting the free parameters in the construction) is

the splitting condition on the covers of the curves that make up the irreducible

components of the intersection of two discriminant surfaces. But this can also

be translated entirely into the projective geometry of the configuration, and

we will deal with it at the end of this section.

Proposition 4.1. Consider symmetric matrices over P3

A =

⎛
⎝a0,0 a0,1 a0,2
a0,1 a1,1 a1,2
a0,2 a1,2 a2,2

⎞
⎠ , B =

(
b c

c d

)
,

defining symmetric maps between graded-free vector bundles. Let

N =

⎛
⎝c2a0,0 − b detA ca0,1 ca0,2

ca0,1 a1,1 a1,2
ca0,2 a1,2 a2,2

⎞
⎠ .
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If in this situation

d = det

(
a1,1 a1,2
a1,2 a2,2

)
,

then N also gives a symmetric map between graded-free vector bundles and

detN = −(detA)(detB).

Proof. First notice that

2 deg(c) + deg(a0,0) = deg(b) + deg(d) + deg(a0,0)

= deg(b) + deg(a1,1) + deg(a2,2) + deg(a0,0)

= deg(b) + deg(det(A)).

Then evaluate detN and compare. �
Remark 4.2. For the interested reader we sketch how the above construc-

tion was found. Even though the concepts are not used in the proof, this

construction relies on matrix factorizations and Catanese’s theory of contact

of surfaces [Cat81]:

The minimal free resolution of a coherent sheaf on a hypersurface X =

{f = 0} ⊂ Pn over the coordinate ring of X becomes periodic after a finite

number of steps. If the sheaf is arithmetically Cohen–Macaulay (ACM) with

support equal to X, the resolution is periodic. The differentials are given by

square matrices P , resp., Q corresponding to maps from F to G, resp., G to

F for some graded free modules F and G, with PQ = f idG and QP = f idF .

Furthermore the determinants of P and Q vanish on X. The pair (P,Q) with

the above properties is called a matrix factorization of f [Ei80, Thm. 6.1].

Dolgachev [Dol12, Section 4.2] observes that one obtains symmetric matri-

ces in this way if one starts with an arithmetically Cohen–Macaulay symmet-

ric sheaf. So our problem of finding a symmetric matrix with given reducible

determinant X can be reduced to finding an appropriate sheaf on X.

On the other hand, Catanese observed that for a symmetric graded n× n

matrix each diagonal (n− 1)× (n− 1) minor defines a contact surface to the

determinant of the matrix. Furthermore the square root of the contact curve

is defined by the (n−1)× (n−1) minors of the (n−1)×n matrix obtained by

deleting the line that is not involved in the minor defining the contact surface.

In our construction above

d = det

(
a1,1 a1,2
a1,2 a2,2

)
is a contact surface to both detA and detB. The contact curves are defined

by the 2× 2 minors of (
a0,1 a1,1 a1,2
a0,2 a1,2 a2,2

)
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and the 1× 1 minors of (
d c

)
.

The ideal sheaves of these curves are ACM (since they are determinantal) and

symmetric (since they are contact curves).

Notice now that d is also contact to (detA)(detB). Furthermore the con-

tact curve is the union of the two contact curves above. If this union is also

ACM we can obtain a symmetric matrix N whose determinant vanishes on

(detA)(detB) via matrix factorization.

In our case the union of the curves is defined by(
ca0,1 a1,1 a1,2
ca0,2 a1,2 a2,2

)
.

Indeed, if c is nonzero, we obtain the equations of the first curve. If c = 0

two of the minors vanish automatically and the third is just d. So we obtain

d = c = 0 as the second component. This shows that the union of contact

curves is again ACM and we obtain the above formula via matrix factorization.

In a certain sense this is a generalization of the construction of Artin and

Mumford in [AM72] to P
3.

Note that N defines a conic bundle of graded-free-type if the rank of N is

never zero in a point of P3.

Remark 4.3. Notice that if in the above construction A, B, and N define

conic bundles, then the restriction of the conic bundle defined by N to detA

is birationally the same as the one defined by A.

Remark 4.4. In order to apply our Theorem 2.6, or rather Corollary 2.9,

to the situation above we must find A and B such that

a) detA and detB are irreducible (this is an open condition);

b) detA and detB are smooth in the intersection curve D = {detA =

detB = 0} (this is an open condition);

c) the double cover of detA and detB induced by N is nontrivial (this is

also an open condition);

d) N has rank 2 generically on each component of D;

e) the double cover of the intersection curve D induced by N is trivial

(this is a closed condition).

The hard part here is the last condition. In the next section we will show

how one can satisfy this closed condition via an appropriate construction.

The open conditions will then be checked by a computer program for a single

example.
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5. Triviality of the conic bundle on the intersection curve

The purpose of this section is to construct examples of conic bundles with

the properties listed in Remark 4.4 so that we can apply Corollary 2.9. The

roadmap for this section is as follows.

• Proposition 5.1 is a sufficient geometric condition to ensure property e)

of Remark 4.4 will be satisfied.

• The construction proceeds by taking one of the irreducible components

of the discriminant to be a Cayley cubic surface. The results from

Proposition 5.2 to Example 5.8 are classical facts about the Cayley

cubic surface needed in what follows.

• Using a rational parametrization of the Cayley cubic surface, we subse-

quently construct, on P
2, a candidate for the intersection curve of the

Cayley cubic with the sought-after second discriminant component that

has the right determinantal format for Proposition 4.1 to apply, and

such that the components of the intersection curve satisfy the condition

of Proposition 5.1.

• Proposition 5.9 to Remark 5.13 are conditions for curves in P2 to have

a determinantal representation that makes them candidates for inter-

section curves of discriminant components. These results also give a

method to construct such determinantal representations.

• The rest of the section is then concerned with the construction of our

example.

Proposition 5.1. In the notation of Proposition 4.1 let

D = {detA = detB = 0} ⊂ P
3

be the intersection curve of the two discriminant components. If all com-

ponents of D are rational and do not intersect the rank 1 locus of A, and,

moreover, N has rank 2 generically on each component of D, then the double

cover of each component of D induced by N is trivial.

Proof. By Remark 4.3 the double cover of D induced by N is birationally

the same as the one induced by A. Since D does not intersect the rank 1 locus

of A this double cover is étale. Since there are no nontrivial étale double covers

of P1 and D consists of rational components, the double cover induced by A,

and with it the one induced by N , is trivial. �
For the remainder of this section we restrict to the case where all ai,j are

linear and detA is the Cayley cubic. We can change coordinates so that the

Cayley cubic is in the form (21), and equivalently, find an invertible matrix S
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such that

SASt =

⎛
⎝x0 x1 x2

x1 x0 x3

x2 x3 x0

⎞
⎠ .

For our construction we will use the fact that the Cayley cubic is rational.

Proposition 5.2. Let L1, . . . , L4 be 4 general linear forms defining 4 gen-

eral lines in P
2 intersecting in 6 distinct points. Consider the cubic polyno-

mials

Yi =
∏
i �=j

Lj

and

X0 = −Y0 + Y1 + Y2 + Y3,

X1 = −Y0 − Y1 − Y2 + Y3,

X2 = Y0 − Y1 + Y2 + Y3,

X3 = Y0 + Y1 − Y2 + Y3.

Then the image of P2 under the rational map ϕ : P2 ��� P3 defined by the

linear system |〈X0, X1, X2, X3〉| is the Cayley cubic.

Proof. Setting xi = Xi in SASt, the evaluation of the determinant gives

zero. �
Remark 5.3. Recall the following facts from classical algebraic geometry:

a) The Cayley cubic has 4 nodes. They form the rank 1 locus of A.

b) The four lines L1, . . . , L4 are contracted by ϕ. Their images are the 4

nodes.

c) The 6 base points are blown up and their images are 6 lines in P3.

These 6 lines form a tetrahedron with the 4 nodes as vertices.

Notation 5.4. Let σ : P̃2 → P
2 be the blowup of P2 in the 6 base points

above. With this we have the following diagram:

P̃2

σ

����
��
��
��

π

���
��

��
��

��

P2 ϕ ��������� X3 ⊂ P3

where X3 ⊂ P3 denotes the Cayley cubic. If C ⊂ P2 is a plane curve, we

denote by C̃ ⊂ P̃
2 its strict transform and by

C := π(C̃) ⊂ X3 ⊂ P
3
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the image of C̃ in P3. Furthermore, denote by Ei,j ⊂ P̃2 the exceptional

divisor over the intersection point of Li and Lj , and by H the class of the pull

back of a line in P2 to P̃2.

We are interested in curves on the Cayley cubic that do not intersect the

nodes.

Lemma 5.5. Let C̃ ⊂ P̃
2 be the strict transform of a curve C in P

2 not

containing any of the Li as components, and suppose its class is

C̃ ≡ αH −
∑
i<j

βi,jEi,j .

Then the image C = π(C̃) ⊂ P3 avoids the nodes of the Cayley cubic if and

only if βi,j = βk,l for all indices with {i, j, k, l} = {1, 2, 3, 4} and α =
∑

j βi,j

for every i.

Proof. Since the preimage of the nodes are the lines Li we want C̃.L̃i = 0

for all i where L̃i is the strict transform of Li on the blowup. This gives the

following linear system of equations:⎛
⎜⎜⎝
1 −1 0 −1 0 −1 0

1 −1 0 0 −1 0 −1

1 0 −1 −1 0 0 −1

1 0 −1 0 −1 −1 0

⎞
⎟⎟⎠ · (α, β1,2, β3,4, β1,3, β2,4, β1,4, β2,3)

t = 0.

The solution of this system is the one claimed above. �
Definition 5.6. We call a curve C ⊂ P2 of type (b1, b2, b3) if its strict

transform has class

C̃ ≡ (b1 + b2 + b3)H − b1(E1,4 + E2,3)− b2(E2,4 + E1,3)− b3(E3,4 + E1,2).

If C does not contain any of the lines Li as components, then the image

C ⊂ P3 of such a curve avoids the nodes of the Cayley cubic by Lemma 5.5.

We collect some numerical facts about these curves.

Lemma 5.7. Let C ⊂ P2 be a curve of type (b1, b2, b3) and let C̃ be its

strict transform and C ⊂ P3 its image. Then

a) The degree of C is deg(C) = b1 + b2 + b3.

b) The arithmetic genus of C is ga =
(
b1+b2+b3

2

)
− (b21 + b22 + b23) + 1.

c) The expected number of moduli of C is deg(C) + ga.

Proof. For the first two items we work on P̃2. The linear system of ϕ has

class −K = 3H−
∑

Ei,j there; i.e., it consists of curves of type (1, 1, 1). This

is also the anticanonical system. We have

degC = −K.C̃ = 3(b1 + b2 + b3)− 2b1 − 2b2 − 2b3 = b1 + b2 + b3.

The arithmetic genus of C is given by the adjunction formula

2ga − 2 = K.C̃ + C̃2 = −b1 − b2 − b3 + (b1 + b2 + b3)
2 − 2b21 − 2b22 − 2b23.
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For the number of moduli, we work with plane curves. The dimension of

the space of degree b1 + b2 + b3 curves in P2 is
(
b1+b2+b3+2

2

)
, the number of

conditions for a bi fold point is
(
bi+1
2

)
. Therefore the expected number of

moduli is (
b1 + b2 + b3 + 2

2

)
−

3∑
i=1

(
bi + 1

2

)
,

which simplifies to the formula above. �
Example 5.8. We have for examples:

type image in P3

(1, 0, 0) a line

(1, 1, 0) a plane conic

(1, 1, 1) a plane cubic

(2, 1, 1) an elliptic normal curve of degree 4

(2, 2, 2) a canonical curve, i.e., degree 6 and genus 4

(1, 2, 3) a sextic curve of genus 2

Let us now look at a contact quadric to the Cayley surface.

Proposition 5.9. Let Q ⊂ P3 be a contact quadric defined by a generalized

2 × 2 diagonal minor of A. Then there exists a line Lc ⊂ P2 such that the

transform σ∗π
∗(Q ∩X3) of Q on P2 is

q = L2
c + L1 + L2 + L3 + L4.

Proof. The contact quadric passes through all nodes of X3 (it is one of the

minors defining the ideal of the nodes), so its transform contains the lines

L1, . . . , L4. Outside of the nodes the contact quadric intersects the Cayley

cubic with multiplicity 2. It follows that the transform has the form

L2
c + L1 + · · ·+ L4.

Since the transform of any quadric is of degree 6 it follows that Lc must be a

line. �
Notice that the transform of {detB = 0} on P

2 is just the transform of

the intersection curve D on P2. To keep with our convention, we denote

this by D. In other words, on P2, we have that D is the determinant of the

matrix obtained by forming the transforms of all the entries in B. In view

of Proposition 5.1, we would like D to be a union of rational curves. The

idea of the construction is now to start with such a D and then try to write

it as a determinant. Again we would like to mimic the construction of Artin

and Mumford. For this we need a slight generalization of their method to the
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case where the contact curve is not reduced. For this we need the following

technical lemma.

Lemma 5.10. Let D be a curve of type (d, d, d) with d ≥ 4 even and 3d
2

ordinary nodes on Lc. Let f be a generator of the ideal of D and let s be

a generator of the ideal of Lc. Suppose that Lc does not pass through any

of the base points and that D avoids the intersection points of Lc with the

exceptional lines. Let Z ⊂ P
2 be the subscheme consisting of all the base

points with multiplicity d
2 − 2. Assume that the natural map

H0

(
P
2,OP2

(
3d

2
− 6

))
→ H0

(
P
2,OZ

)
(27)

is surjective.

Then there exists a polynomial g on P2 such that

a) f ≡ g2 mod s2,

b) the curve
√
D defined by {g = 0} is of type (d2 ,

d
2 ,

d
2 ).

Proof. Choose homogeneous coordinates u, v, s in P2. Since D has only

ordinary nodes on Lc = {s = 0}, hence, in particular, intersects Lc in a

divisor that is divisible by 2, there exists a polynomial g0 ∈ k[u, v, s] with

g20 ≡ f mod s.

More precisely, we choose g0 such that it vanishes at the nodes of D on Lc and

has multiplicity d
2 in all base points. This is clearly possible for d ≥ 4 since

an ordinary multiple point of order e imposes e(e+ 1)/2 conditions on plane

curves, and g0 has degree 3d/2. We therefore have a polynomial f1 ∈ K[u, v, s]

such that

f − g20 = f1s.

Taking the derivative with respect to s we get

df

ds
− 2g0

dg0
ds

= f1 +
df1
ds

s.

For every point P ∈ Lc ∩ D all derivatives of f vanish (since D has a node

there). Also g0 vanishes at all such points by construction. Therefore the

equation above also gives f1(P ) = 0. This implies that g0 divides f1 modulo

s; i.e., there exists a g1 such that

2g0g1 ≡ f1 mod s.

We obtain

(g0 + g1s)
2 ≡ g20 + 2g0g1s ≡ g20 + f1s ≡ f mod s2.

We now want to find a g2 ∈ K[u, v, s] such that

g = g0 + g1s+ g2s
2
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defines a curve of type (d2 ,
d
2 ,

d
2 ). Notice that this leads to an affine linear

system of equations for the coefficients of g2. To prove the solvability of this

system we have to analyze the geometric situation in more detail.

First notice that {f1 = 0} is a curve of degree 3d − 1 that passes with

multiplicity d through each base point (since Lc does not contain any of

the base points). Now there are 3 base points on each exceptional line. It

follows by Bezout’s theorem that {f1 = 0} contains all 4 exceptional lines as

components. We can therefore write

f1 = f ′
1l1l2l3l4

where li is an equation for Li. Furthermore, since none of the exceptional

lines pass through any of the nodes of D, we have that g0 divides not only f1,

but also f ′
1 modulo s. It follows that there is a polynomial g′1 with

2g0g
′
1 ≡ f ′

1 mod s

and

g1 = g′1l1l2l3l4.

We have deg g1 = deg f1 − deg g0 = 3d− 1− 3d
2 = 3d

2 − 1 and therefore

deg g′1 =
3d

2
− 5.

Now, the surjectivity of the map (27) implies the existence of a g′2 of degree
3d
2 − 6 such that

g′1 + sg′2

has multiplicity d
2 −2 in each base point. With g2 := g′2l1l2l3l4 we obtain that

{g1 + sg2 = 0}

passes through all base points with multiplicity d
2 . Since the same is true for

g0 we get that

g = g0 + sg1 + s2g2

defines a curve of type (d2 ,
d
2 ,

d
2 ). �

With this, we get an instance of our generalized version of the Artin–

Mumford method.

Proposition 5.11. Let D be a curve of type (d, d, d) with d ≥ 4 even.

Assume that D has 3d
2 ordinary nodes on Lc, Lc contains none of the base

points, D avoids the intersection points of Lc with the exceptional lines, and

that the map (27) is surjective. Then there exists a matrix

B =

(
q r

r t

)
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with {q = 0} the transform of the contact quadric Q, {r = 0} defining
√
D,

and {t = 0} of type (d− 2, d− 2, d− 2), such that D is defined by detB.

Proof. Let f be a defining equation of D. By Lemma 5.10 there exists a

curve
√
D with defining equation r = 0 such that f ≡ r2 mod s2. Therefore

f −r2 is divisible by s2. Now f −r2 vanishes on each line Li with multiplicity

d in the three base points that lie on Li. Furthermore f − r2 vanishes with

multiplicity 2 on the intersection Lc∩Li. So f − r2 vanishes with multiplicity

at least 3d + 2 on Li. Bezout’s theorem implies then that f − r2 vanishes

also on Li. In total f − r2 vanishes on {q = 0} = L2
c + L1 + · · · + L4 and is

therefore divisible by q. Set

t := −f − r2

q
.

With this we get

−f = qt− r2 = det

(
q r

r t

)
.

�
Lemma 5.12. The map (27) is surjective for d = 6.

Proof. For d = 6 the scheme Z is the union of all base points P1, . . . , P6

with multiplicity 1 and the map (27) is

H0
(
P
2,OP2 (3)

)
→ H0

(
P
2,OZ

)
.

For the surjectivity of this map we construct cubics Ci that pass through all

Pj with j �= i but not through Pi.

For this, notice that there is no quadric that passes through all six Pi.

Indeed, assuming the contrary we would get a quadric Q that passes through

3 points on every exceptional line and must therefore contain all 4 such lines

as a factor, which is a contradiction.

For each i ∈ {1, . . . , 6} there exists a quadric Qi �= 0 passing through the

five Pj with j �= i. Since there is no Q through all six base points, we have

Qi(Pi) �= 0. Now choose a line that does not pass through Pi and we get

cubics Ci = LiQi with the desired properties. �
The next problem in our construction is to find curves D of type (d, d, d)

with all components rational.

Remark 5.13. The existence of such curves D of type (d, d, d), with com-

ponents rational, and with 3d
2 nodes on Lc is expected. Indeed, the arithmetic

genus ga of the image of D in P3 is

ga =

(
3d

2

)
− 3d2 + 1 =

3d(3d− 1)

2
− 3d2 + 1 =

3

2
d2 − 3

2
d+ 1 = 3

(
d

2

)
+ 1,



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

CONIC BUNDLES WITH NONTRIVIAL UNRAMIFIED BRAUER GROUP 315

in particular ga > 3d
2 . For D to be rational we need it to have ga nodes. This

poses ga conditions. Furthermore, 3d
2 of them should lie on Lc. This poses a

further 3d
2 condition. So we have 3d

2 + ga conditions and 3d+ ga moduli. So

we expect such curves to exist.

Unfortunately, this is not enough to apply Theorem 2.6. For this we must

also show that a number of open conditions are satisfied. We propose to do

this by constructing a concrete example over a finite field Fp along the lines

suggested so far in this section and then check the open conditions for this

example.

Now, finding a rational curve as described above explicitly is hard, since

the conditions above are highly nonlinear. For example, having a node some-

where means that a certain discriminant of high degree in the coefficients of

D vanishes. This is a highly nonlinear codimension 1 condition. Having a

node at a given point on the other hand is a linear codimension 3 condition.

So one might try to construct such a curve by prescribing ga nodes at given

points (some of them on Lc). Unfortunately this poses

3ga > ga + 3d

conditions, which is larger than the number of moduli.

So we must choose our curves more carefully, which takes up the remainder

of this section.

Construction 5.14. Consider the case d = 6 with reducible D = D1 +

D2 +D3 and Di of type (1, 2, 3), (2, 3, 1), and (3, 1, 2), respectively.

a) Choose points P1, . . . , P6 and Q1 on Lc.

b) Choose a curve D1 of type (1, 2, 3) with nodes at P1 and P2 and van-

ishing at Q1. This is possible since the number of projective moduli of

such curves is d+ ga − 1 = 6+ 2− 1 = 7 and the number of conditions

imposed is 3 + 3 + 1 = 7. So generically there is only one such curve.

c) D1 has degree 6 and of the 6 intersection points with Lc we have pre-

scribed 5 so far. Let Q2 be the remaining intersection point.

d) Choose a curve D2 of type (2, 3, 1) with nodes at P3 and P4 also passing

through Q1. Again there is generically one such curve.

e) Let Q3 be the remaining intersection point of D2 with Lc.

f) Choose a curve D3 of type (3, 1, 2) with nodes P5 and P6 and passing

through Q2.

g) Let Q4 be the remaining intersection point of D3 with Lc.
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We can summarize the construction so far in the following table:

P1 P2 P3 P4 P5 P6 Q1 Q2 Q3 Q4

D1 2 2 1 1

D2 2 2 1 1

D3 2 2 1 1

D 2 2 2 2 2 2 2 2 1 1

Now if Q3 = Q4 this gives a curve D with 9 nodes on Lc. This is at most

a codimension 1 condition. Furthermore for each i ∈ {1, 2, 3} the curve Di is

of arithmetic genus ga = 2 and therefore of geometric genus zero.

Remark 5.15. For reasons not clear to us, the condition Q3 = Q4 was

automatically satisfied in all examples we tried.

Proposition 5.16. There exists a conic bundle Y → P3, defined over a

finite field k0 = Fp, p = 10007, defined by a homogeneous 3 × 3 matrix with

entries of degrees ⎛
⎝7 4 4

4 1 1

4 1 1

⎞
⎠

such that Corollary 2.9 predicts a nontrivial unramified Brauer class for

the base change of Y to the closure k of k0; hence Y is not stably rational

(over k).

Proof. Construct a curveD = D1+D2+D3 as in Construction 5.14 over the

finite field k0 using a computer algebra program. Denote byD = D1+D2+D3

the image of the strict transformation of the previous curves in P3.

Calculate a matrix representation detB for D using Proposition 5.11. Find

a preimage B of B in P3. The determinant of B defines a sextic hypersurface

X6 ⊂ P
3. Use Proposition 4.1 to construct a matrix N with the degrees

claimed. Then check the following:

a) X6 is irreducible. We do this by checking that the singular locus is

finite.

b) X6 is smooth along D.

c) The Cayley cubic is smooth along D.

d) The rank 1 locus of N is finite.

e) The rank 0 locus of N is empty.

f) The curves Di are indeed irreducible and rational. (Our calculation of

the geometric genus above relied on the assumption of D being irre-

ducible or at least connected.) We do this by explicitly calculating a

parametrization P1 → Di.

g) The double cover induced by N is nontrivial on the Cayley cubic and

X6. We do this using Lemma 5.17.
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This shows that we can apply Theorem 2.6 in this situation.

A Macaulay2 program for performing the above calculations can be found

at [ABBP16]. �
Lemma 5.17. Let π : Y → B be a conic bundle defined over k0 = Fp. Let

S be an irreducible surface in B, defined over k0, over which the fibers of Y

generically consists of two distinct lines. Let S̃ → S be the natural double

cover of S induced by π. Then S̃ is irreducible if the following hold: there

exist two k0-rational points p1, p2 ∈ S such that the fiber of Y over p1 splits

into two lines defined over k0 whereas the fiber over p2 is irreducible over k0
(and splits in a quadratic extension of k0 only).

Proof. Under the assumptions the double cover S̃ → S is defined over k0.

Suppose, by contradiction, that S̃ were (geometrically) reducible. Then the

Frobenius morphism F would either fix each irreducible component of S̃ as

a set, or interchange the two irreducible components. But since S is defined

over k0, this would mean that F either fixes each of the two lines as a set

in every fiber over a k0-rational point of the base, or F interchanges the two

lines in every fiber over a k0-rational point. This contradicts the existence of

p1, p2. �

6. Desingularization of conic bundle fourfolds

The conic bundles considered above are singular. In this section, we prove

a criterion for the existence of a universally CH0-trivial desingularization for

such conic bundles. Let k be an algebraically closed field of characteristic not

2. First recall the following notion from [A-CT-P] and [CT-P16].

Definition 6.1. A projective variety X over a field k has universally trivial

CH0 if for any extension L ⊃ k, the degree homomorphism deg : CH0(XL) →
Z is an isomorphism. A morphism f : Ỹ → Y of projective varieties over k

is called universally CH0-trivial if for any overfield L ⊃ k, the pushforward

f∗ : CH0(ỸL) → CH0(YL) is an isomorphism.

We will make use of the following criterion to check that a resolution of

singularities is universally CH0-trivial.

Proposition 6.2. A projective morphism f : Ỹ → Y of projective varieties

over k is universally CH0-trivial if for any scheme-theoretic point ξ of Y , the

fiber Ỹξ, as a scheme over the residue field κ(ξ), is a projective variety over

κ(ξ) with universally trivial CH0.

This is [CT-P16, Prop. 1.8]. Moreover, we use this in combination with the

following result; cf. [HPT16, Ex. 2].



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
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Proposition 6.3. A projective, possibly reducible, geometrically connected

variety X =
⋃
Xi over a field k has universally trivial CH0 if each Xi is

geometrically irreducible, k-rational with isolated singularities, and each in-

tersection Xi ∩Xj is either empty or has a zero cycle of degree 1.

Now we are ready to state our main result about the existence of universally

CH0-desingularizations of conic bundle fourfolds. If Y → B is a conic bundle,

we colloquially say that Y has a given rank over a point of B to mean that

the fibral conic has that rank at the respective point.

Theorem 6.4. Let Y → P3 be a conic bundle with reducible discriminant

X = X ′ ∪X ′′. Let D = X ′ ∩X ′′ be the intersection curve. Assume:

• X ′ and X ′′ are smooth along D.

• X ′ and X ′′ have only isolated nodes as singularities.

• The rank of Y at all nodes of X ′ and X ′′ is 1.

• D = D1 ∪ · · · ∪Dn with Di irreducible reduced.

• D has only nodes as singularities.

• The rank of Y along D is 2 outside of the nodes of D.

• The rank of Y is 1 on each node of the irreducible components Di of D

(but not necessarily on the intersection points between two irreducible

components Di and Dj of D).

Then Y has a universally CH0-trivial desingularization.

Remark 6.5. Notice that both the Hassett–Pirutka–Tschinkel example

from [HPT16] (see Example 3.7) and our new example (see Proposition 5.16)

satisfy these conditions. See [ABBP16] for computational details concerning

our new example.

Theorem 6.6. A very general conic bundle Y → P3 over C, defined by a

homogeneous 3× 3 matrix with entries of degrees⎛
⎝7 4 4

4 1 1

4 1 1

⎞
⎠

is not stably rational.

Proof. Follows from Proposition 5.16, Theorem 6.4, Remark 6.5, and the

specialization principle in unequal characteristic [CT-P16, Thm. 1.12], as em-

ployed in the proof of [CT-P16, Thm. 1.20]. �
To prove the above theorem, some local computations are unavoidable.

Proposition 6.7. Let Y → P3 be a conic bundle with reducible discrim-

inant X = X ′ ∪ X ′′. Let D = X ′ ∩X ′′ be the intersection curve and let X ′

and X ′′ be smooth along D. Let D be reduced. Assume furthermore that the

conic bundle has rank 2 over the smooth locus of D. Finally let P ∈ D be a

point. Then we have the following local analytic normal forms:
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Geometry of D at P Rank of Y at P Normal form

smooth 2 x2 + sty2 − z2 = 0

node 2 x2 + sqy2 − z2 = 0

node 1 x2 + 2syz + (ty + uz)2 = 0

Here q = s+ tu is quadratic in the completion A = k�s, t, u� of the local ring

at P and (x : y : z) are homogeneous coordinates for P
2
A.

Proof. Let M be a 3× 3 matrix over A representing Y locally analytically

around P .

First assume that Y has rank 2 at P . Then M has rank 2 at P and we

can, after a coordinate change on P2
A, assume that

MP =

⎛
⎝1 0 0

0 0 0

0 0 −1

⎞
⎠ .

Therefore, the first 2 diagonal entries are units in A and we can, after a further

coordinate change, assume that

M =

⎛
⎝1 0 0

0 d 0

0 0 −1

⎞
⎠

with d in A a local equation for the discriminant of Y .

Case 1. In the first case of the proposition, D is smooth at P and therefore

X ′ and X ′′ intersect transversally around P . Consequently, we can change

coordinates in A to obtain X ′ = {s = 0} and X ′′ = {t = 0} with s, t linear

forms, i.e., d = st. This gives the first normal form.

Case 2. In the second case, D has a node at P and therefore X ′ and X ′′

are tangent at P . Let X ′ = {s = 0} and X ′′ = {q = 0}. Since X ′ is smooth

at P , we can assume s to be linear. Since D = {s = q = 0} has a node in P ,

it has two smooth normal crossing branches there. We choose t and u to be

local linear equations of these branches on {s = 0}. Then
q = tu mod s,

and we can write

q = αs+ tu.

Now since X ′′ is smooth at P , we see that α must be a unit. Absorbing α

into s we obtain d = s(s+ tu), which gives the second normal form.

Case 3. In the third case, Y has rank 1 at P . By evaluating M at P and

changing coordinates on P2
A as above we can assume

M =

(
1 0

0 N

)
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320 A. AUEL, C. BÖHNING, H-C. BOTHMER, AND A. PIRUTKA

with N a symmetric 2× 2 matrix with entries in the maximal ideal of A.

Since D has a node at P we can, as before, assume that the discriminant

detN = −sq with q = s + 2tu and s, t, u linear as above. (The minus sign

and the 2 will be convenient later on.)

Now M has rank 2 on {s = 0} outside the origin, and rank 1 in the origin.

In other words, N is a matrix, defined locally around the origin in the

(t, u)-plane, and has rank 1 everywhere in that plane except at the origin,

where it has rank 0 (i.e., vanishes). Let

N =

(
α β

β γ

)
(28)

so that α(t, u)y2 + 2β(t, u)yz + γ(t, u)z2 is the associated quadratic form.

Hence we must have

αγ − β2 ≡ 0(29)

identically. Now consider the prime factorizations of α, β, γ: if some prime π

divides α to odd order, it must divide γ to odd order, too, since it divides

the square β2 to even order. Hence, in that case, π divides all three of them,

which contradicts our assumption that the rank of N does not drop to 0 on

an entire curve germ through the origin in the (t, u)-plane. Hence, α, γ are

coprime squares, and we can write

(y z)N(y z)t ≡ (t′y + u′z)2 mod s ⇐⇒ N ≡
(
t′2 t′u′

t′u′ u′2

)
mod s

with t′, u′ at least of degree 1, since both vanish at P , and coprime. It follows

that we can write N as

N =

(
sf sg

sg sh

)
+

(
t′2 t′u′

t′u′ u′2

)
.

Then the discriminant of Y is

detM = detN = s
(
s(fh− g2) + (ht′2 + 2gt′u′ + fu′2)

)
.

Since this is equal to −s2 − 2stu, and t′, u′ are power series of degree at least

1 in u, t, comparing coefficients yields fh− g2 = −1. We can therefore, after

changing the fiber coordinates y and z, assume that(
f g

g h

)
=

(
0 1

1 0

)
.

The same coordinate change applied to (t′y + u′z) gives (t′′y + u′′z). We

obtain

detM = s
(
−s+ 2t′′u′′).
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Comparing coefficients with detM = −sq above we see that we can take

α = −1, t′′ = t, and u′′ = u. Then

M =

⎛
⎝1 0 0

0 t2 s+ tu

0 s+ tu u2

⎞
⎠ , detM = −s(s+ 2tu),

and we get the claimed normal form. �
Now we desingularize in these local coordinates.

Proposition 6.8. Let Y → P3 be a conic bundle with reducible discrim-

inant X = X ′ ∪ X ′′. Let D = X ′ ∩X ′′ be the intersection curve and let X ′

and X ′′ be smooth along D. Assume furthermore that the conic bundle has

rank 2 over the smooth locus of D. Finally let P ∈ D be a point. With the

normal forms from Proposition 6.7 we have

Geometry of D at P rank of Y at P Singular Locus Desingularization

smooth 2 a line blow up line

node 2 2 intersecting lines blow up lines in
arbitrary order (but

not at the same time)

node 1 2 disjoint lines blow up lines in
arbitrary order or at

the same time.

In all three cases we have the following geometry. Consider the points

P ∈ D where Y has rank 2. The fiber YP over P consists of two lines which

intersect in a point P ′ ∈ YP . Let D′ ⊂ Y be the closure of the locus of all

such intersection points P ′. Then D′ is the singular locus of Y . Furthermore

the covering D′ → D is 1 : 1 over smooth points of D and 2 : 1 over rank 1

nodes of D. Over rank 2 nodes of D, D′ also has a node.

Proof. These are all straightforward calculations. See [ABBP16] for a

Macaulay2 script to perform them. �
Remark 6.9. Blowing up the intersection point of the two lines in the

case of a rank 2 node does not improve things. While the strict transforms

of the two singular lines are separated we obtain a new singular line in the

exceptional divisor passing through both of the strict transforms.

Lemma 6.10. Let π : Y → P3 be a conic bundle with discriminant X a

surface having a node at P ∈ X. Assume Y has rank 1 at P and has rank

2 on X � {P} locally around P . Then Y is smooth over P and has a local

analytic normal form

x2 + sy2 + 2tyz + uz2 = 0

where (x : y : z) are homogeneous coordinates on P
2
A with A = k�s, t, u�.
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Proof. Let M be a 3× 3 matrix over A representing Y locally analytically

around P . By evaluating M at P and changing coordinates on P2
A as above

we can assume

M =

(
1 0

0 N

)
with N a symmetric 2× 2 matrix with entries in the maximal ideal of A. Let

N =

(
a b

b c

)
.

The lemma follows if we can show that a = b = c = 0 defines P as a reduced

point because then we can choose a, b, c as local coordinates. Since P is

assumed to be a node det(N) = 0, we have that the Jacobian ideal J of

det(N) defines P as a reduced point. Since J ⊂ (a, b, c) by the product rule

for derivatives, our claim follows. The fact that the total space of Y is smooth

above P is then a direct calculation. �
Proof of Theorem 6.4. We have to verify the hypotheses of Propositions 6.2

and 6.3 for the resolutions Ỹ → Y that we produced in Proposition 6.8.

Since the singular locus ofX ′ andX ′′ consists only of isolated nodes at rank

1 points outside of D, the conic bundle Y is smooth outside of the preimage

of D by Lemma 6.10.

Let D′ be the closure of the locus of intersection points of lines in fibers

over D. By our assumptions in Theorem 6.4 the conditions of Propositions 6.7

and 6.8 are satisfied. Furthermore, the local normal forms studied in these

propositions are the only ones that occur. It follows that the singular locus of

Y is D′. Let D′ = D′
1+ · · ·+D′

n be its decomposition into irreducible compo-

nents. By Proposition 6.8 these components are birational to the components

of D.

We want to blow up the D′
i in arbitrary order to obtain a desingularization.

According to Proposition 6.8, the only problem with our plan of blowing up the

D′
i in arbitrary order is that over a rank 2 node ofDi both branches ofD′ could

get blown up at the same time if this node is on only one irreducible component

D′
i0
. This would not lead to a desingularization over rank 2 nodes. With our

assumption that Y has rank 1 over all nodes of irreducible components of D

we avoid this problem and obtain a smoothing Ỹ of Y .

It remains to describe the geometry of the fibers of σ : Ỹ → Y . We start

by looking at fibers over closed points. For this we consider the normal forms

of Proposition 6.7.

Case 1. The normal form of Y around a smooth point of D is

x2 + sty2 − z2 = 0.
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In these local coordinates D′ = {s = t = x = z = 0}. The Hessian matrix of

second derivatives of this normal form is⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 y2 0 0 2ty 0

y2 0 0 0 2sy 0

0 0 0 0 0 0

0 0 0 2 0 0

2ty 2sy 0 0 2st 0

0 0 0 0 0 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

At (0 : 0 : 0 : 0 : 1 : 0) ∈ D′ this matrix has rank 4. Therefore the fiber of σ

over this point is a P
1 × P

1.

Case 2. The normal form of Y around a singular rank 2 point of D is

x2 + s(s+ tu)y2 − z2 = 0.

The curve D′ consists of two lines that intersect in the point

y = (0 : 0 : 0 : 0 : 1 : 0) ∈ D′.

We blow up in two steps

Ỹ
σ2−→ Y ′ σ1−→ Y

with σ1 blowing up one of the lines and σ2 blowing up the strict transform of

the other line.

The Hessian matrix of the above normal form has rank 3 in y. Therefore

the fiber of σ1 over y is a quadric cone C. Now, the strict transform of the

other line intersects this quadric cone in one point. After a coordinate change,

Y ′ has the same normal form as Case 1 above. Therefore the Hessian matrix

at the intersection point y′ of C with the strict transform of the second line

has rank 4. So the fiber of σ2 over y′ is a P1 × P1. The fiber of σ = σ2 ◦ σ1

over y consists then of the strict transform of the quadric cone C under σ2

and a P1 × P1.

Case 3. The normal form of Y around a singular rank 1 point of D is

x2 + 2syz + (ty + uz)2 = 0.

The curve D′ consists again of two lines, but this time these lines do not

intersect. Over the singular point of D we have therefore 2 points on D′,

namely

y = (0 : 0 : 0 : 0 : 0 : 1) and y′ = (0 : 0 : 0 : 0 : 1 : 0).

The Hessian matrix of the normal form above has rank 4 in each point and

therefore the fiber of σ is P1 × P1 in both cases.

It remains now to consider the fibers over components of D′. By the above

calculations the fibers over smooth points of D′ are isomorphic to P
1 × P

1.
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324 A. AUEL, C. BÖHNING, H-C. BOTHMER, AND A. PIRUTKA

The fibers over each curve component of D′ are therefore birational to P1×P1-

bundles. By Tsen’s theorem, these P1 × P1 bundles are Zariski locally trivial

over the components D′
i, so we conclude using Proposition 6.2. �
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compléments (French), Dix exposés sur la cohomologie des schémas, Adv.
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