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Abstract

Alexander Duality is a crucial result in Algebraic Topology formally relating a topo-

logical object to its complement when embedded in a sphere. In this paper we modern-

ize J. W. Alexander’s proof of the Jordan Arc Theorem and Jordan Curve Theorem.

These easily generalize to his original proof of Alexander Duality, which we also mod-

ernize. We then dive into a study of Alexander’s Horned Sphere, an object invented

by Alexander to disprove an earlier conjecture of his that no wild sphere embeddings

existed in E3. We specifically study the non-trivial crumpled cube in the complement

of Alexander’s Horned Sphere through the lens of homotopy groups and geometric

group theory, and show that it is equivalent to a thickened infinite height genus 1

grope. We also present a potentially novel visualization of this grope in context with

Alexander’s Horned Sphere. Finally, we explore variant horned spheres and present a

particularly interesting case, Lindsey’s Horned Sphere, which has a significantly more

complex crumpled cube complement.
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Chapter 1

Introduction

Alexander Duality is a well-known result of Algebraic Topology, usually proved with

diagram chasing as a corollary of Poincaré duality, as in [Hat02]. However, When

J. W. Alexander first came up with Alexander Duality, homology, cohomology, and

category theory did not exist. Alexander’s proof, just over 100 years old now, in fact

laid the groundwork for the entire field of cohomology.

Of course, Alexander Duality did not emerge from a vacuum; instead it was

an easy generalization of another beautiful proof of Alexander’s: a proof of Jor-

dan’s Curve Theorem. Jordan’s Curve Theorem (JCT) seems straightforward to

non-mathematicians: a circle separates the plane into two components. However it

was surprisingly difficult to prove and there still exists controversy about whether

Jordan’s original proof is valid. Alexander approached the problem with a highly

generalizable approach that introduced chains (an older analogue of CW-complexes)

and unequivocally proved the JCT.

Just two years later, he published his description and proof of Alexander Du-

ality in arbitrary dimension, at the time stated in terms of connectivity numbers
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Introduction

(Betti numbers + 1), whereas the modern form is stated in terms of homology and

cohomology groups.

The next three chapters of this thesis will modernize Alexander’s proof of the Jor-

dan Curve Theorem, Jordan Arc Theorem (JAT) in higher dimensions, and Alexander

Duality in the case of spheres, respectively. Then, we will discuss Alexander’s Horned

Sphere, a wild embedding of the 2-sphere in E3. Finally we will conclude by discussing

the wide world of variant Horned Spheres.

This thesis, and mathematics as a whole, owe much to J.W. Alexander and his

contemporaries such as Oswald Veblen. My hope is that the first few chapters of

thesis will communicate some of Alexander’s genius, while the last few expand into

the world of wild surfaces that are rarely studied since the prolific publications of

James W. Cannon in the mid-late 20th century.
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Chapter 2

The Jordan Curve Theorem

Section 2.1

Alexander’s Approach to the JCT

J.W. Alexander provided a fairly straightforward proof of the Jordan Curve Theorem,

that a simple closed curve divides the plane into two components, using the Jordan

Arc theorem and other intermediary lemmas, in [Ale20]. His argument is based on

the property of systems of line segments forming polygonal shapes. In this paper we

aim to recount his proof using more modern terminology and ideas, while maintaining

the same structure and ideas that Alexander proposed.

Alexander’s proof is of particular note because it generalizes to higher dimensions

and implies the basic ideas of homology and Alexander duality, as well as providing

one of the first largely accepted proofs of the Jordan Curve theorem, whose history

is fraught with controversy.
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2.2 Chains

Section 2.2

Chains

We will use the idea of chains to represent generalized polygonal shapes which will

simplify our proof. A chain is a finite number of non-intersecting edges (line segments

or rays) and vertices (the points at the end of each edge) where each vertex must

have an even number of edges terminating at it. Note a chain does not have to be

connected.

Any two points on a chain that can be connected through the chain can be con-

nected through at least two different paths through the chain which only intersect in

a finite number of points. This is because if one path exists, deleting that path will

leave two vertices with an odd number of edges terminating at it. But within any

connected group, the total degree of all the vertices must be even, hence the vertices

still belong to the same connected piece and can be joined.

Like a polygon has an interior and exterior, chains also have two ‘sides’, though

each side need not be connected. Any point in a plane not in a chain k can be can be

separated into two distinct classes relative to the chain k, and we call those classes

‘sides’. See Figure 2.1 for a visual example, and the appendix for more information

on how those sides are defined.

Lemma 2.1. Given any two chains k1 and k2, the set of points on given sides of both

k1 and k2 can be subdivided into finitely many convex regions.

Therefore, the set is bounded by a chain composed of the sum, modulo 2, of the

boundaries of the convex regions. By adding this chain with the original chain, we

can obtain another new chain.
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2.3 Jordan’s Theorem

Figure 2.1: A chain, with the two sides marked. One side is shaded orange, the other
is left blank (white). Note the side shaded white also includes all the space outside
the shape.

Section 2.3

Jordan’s Theorem

Definition 2.2. A region is a open, path-connected set of points.

Alexander’s original paper uses open triangles around points in a region, but

semantically that is equivalent to open balls, and by the equivalence of p-metrics,

open squares as well.

A corollary to this definition is that any two points Y and Z in a region can

be connected within the region by a broken line l with a finite number of points in

common with any preassigned finite system of lines. This follows from the Heine-Borel

theorem and path-connectedness.

Definition 2.3. A simple arc is the image of an injective continuous function f :

[0, 1]→ R2.
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2.3 Jordan’s Theorem

Lemma 2.4. Let ACB be a simple arc passing through C, ending at points A and

B, and let Y and Z be any two points in the plane not on the arc ACB. Then if

the points Y and Z are not separated by either sub-arc AC or BC, then they are not

separated by ACB.

Since it is not separated by either sub-arc, there are broken lines a and b connecting

Y to Z such that a does not intersect AC and b does not intersect BC.

Then, by the corollary to the definition of a region, b can be chosen to meet a at

only a finite number of points. Then, we can combine a and b to form a chain k.

Now, consider the closed subset X of BC such that they either intersect k or are

on the opposite side of k as C. Each of these points can be encased in an open square,

each of which can be constructed to neither meet nor enclose any points on AC or

b. Since X is closed, we can enclose all of X within a finite number of these open

squares, by the Heine-Borel theorem.

Now, let us add modulo 2 to k the boundaries of the union of these open squares

to create a new chain k′, which still contains all of b, and a supplementary piece a′,

made of arcs which neither meet nor end on the arc ACB.

Therefore, since Y and Z are on the chain k′, they can be joined by a broken line

which includes the piece a′ which does not meet the arc ACB.

See Figure 2.2 for the diagram of this construction in a simple case.

Theorem 2.5. Jordan Arc Theorem: The points of the plane not on a simple arc

AB do not form more than one connected region.

We will show any two points Y and Z not on the arc can be joined by a path

which does not meet the arc AB.
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2.3 Jordan’s Theorem

Figure 2.2: Example of Lemma 2.4 in a simple case. Imagine a′ to be the union of
the finite open squares around points in X as described in the proof. k = a + b,
k′ = a′ + b + the required extra parts of a to complete the chain. k′ clearly avoids
BC, and therefore a′ constructs a path from Y to Z that avoids all of ACB.

Take any point C on the arc AB. We can always construct an open square around

C which does not include Y and Z. Within this open square, we can make an sub-arc

of AB which passes through C, does not separate the points Y and Z, and ends at

C only if C is A or B.

Thus the arc AB can be covered by a set of overlapping sub-arcs, and by Heine-

Borel, by a finite number of those sub-arcs, none of which separate Y and Z. Then,

by inductively applying Lemma 2.4 to each of these finite number of sub-arcs, the arc

AB constructed out of their union cannot separate Y and Z either. Thus Y and Z

are in the same region.
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2.3 Jordan’s Theorem

Definition 2.6. A simple closed curve is the image of an injective continuous function

f : S1 → R2.

Theorem 2.7. The points of the plane not on a simple closed curve do not form

more than two connected regions.

We will show for any three points X, Y, Z not on a simple closed curve, at least

two of them are in the same region.

Let A,B,C be three distinct points on the simple closed curve. Then, by the

Jordan Arc Theorem (Theorem 2.5), the points Y and Z, Z and X, and X and Y

can be joined by three broken lines, a, b, and c respectively, which do not meet the

arcs CAB, ABC, and BCA respectively. Also, a, b, and c can be chosen so that they

each intersect each other only at a finite number of points. Then they form a chain

k = a+ b+ c. See Figure 2.3 for a diagram of this chain.

Now by the pigeonhole principle, at least two of A,B,C must be on the same side

of k. Assume without loss of generality it is A and B. Then by the proof to Lemma

2.4, substituting BCA for the arc AC and the broken line ab for b, X and Y can be

connected by a broken line which does not meet the curve. Therefore, they are in the

same region, so there are at most two regions.

Theorem 2.8. The points of the plane not on a simple closed curve form at least

two connected regions.

Choose any two points A,B on the curve and denote the two arcs separated by

those points as AB and BA. Then any line l which separates the points A and B

meets the arcs AB and BA in two closed sets of points respectively, X and Y .

Every point in X is interior to some interval of line l which contains no point of

the arc BA, so by Heine-Borel theorem, the entire set can be covered by a finite set of

8



2.3 Jordan’s Theorem

Figure 2.3: Given the curve ABC and the points X, Y, Z, we construct the chain
k = a + b + c which has A and B on one side (the ‘exterior’) and C on the other
side (the ‘interior’). Then, using the same logic as the proof to Lemma 2.4, we can
create a broken line connecting X and Y that does not touch the curve (such as c),
therefore they are in the same region.

such intervals. Furthermore, we can arrange it so no such intervals overlap or touch.

We can prove that the end points of this set of intervals i are not all within the same

region by showing that any broken line connecting the end points will intersect the

curve.

Assume by contradiction that there is a system of broken lines connecting the

endpoints of the intervals i such that none meets the line l or another broken line in

the system in more than a finite number of points. Then this can be combined with
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2.3 Jordan’s Theorem

the intervals i to form a chain k. If we add l to k, we get a another chain k′ made

of broken lines combined with segments s of the line l complementary to i. Then, by

definition of sides of a chain, either k separates A and B, or k′ separates A and B.

If k separates A and B, it must meet BA, but BA cannot meet any of the intervals

i so must meet one of the broken lines. Similarly if k′ separates A and B, AB must

meet one of the broken lines. So no matter what, the curve meets one of the broken

lines, which is a contradiction therefore the intervals do not all belong to the same

region. So there are at least two regions.

Theorem 2.9. The points of the plane not on a simple closed curve form exactly two

regions.

Follows from the last two theorems.

Corollary 2.10. A point Z not on a simple closed curve may be connected to any

arc of the curve AB by a broken line z which, except for one end point, lies wholly

within the same region as Z.

Let Y be any point on the opposite side of the curve from Z. Then, by the Jordan

Arc Theorem (Theorem 2.5), Y and Z may be connected by a broken line which

passes through AB but not BA. This broken line must include the desired broken

line z connecting Z to AB.

Corollary 2.11. In the neighborhood of any point A on a simple closed curve there

are points from each side of the curve.

This follows from the previous corollary since Z can be chosen on either side of

the curve and the arc AB can be made arbitrarily small.
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Chapter 3

Generalizing Jordan’s Theorems

How do Jordan’s Arc and Curve Theorem Generalize to higher dimensions? In fact,

there is quite an obvious way to state these generalized theorem: simply use the

higher-dimensional analogues of an arc and a circle, an i-disc (Di) and an i-sphere

(Si) respectively. A fun and easy exercise is generalizing the JAT and JCT backwards

to 1-dimensional objects, where one can note that the relationship still holds and the

proof mirrors the 2D proof in interesting ways.

For 1D JAT, one must show that the complement of point p immersed in S1 has

one connected component: this is obvious since S1−{p} = R1. Interestingly, the im-

mersion in is S1, the compactification of R1, not R1 itself. This is required to maintain

the same spirit has the JAT: if it was in R1, a point would separate its complement

into two distinct components, whereas in S1 it does not. This is one demonstration

of why Alexander Duality is always done immersed in the compactification of Rn,

an n-sphere and not Rn directly. For 1D JCT, one must show the complement of a

0-sphere (two points {p, q}) immersed in S1 must have two connected components;

which is again trivial. These are restatements of T 0 and X0 with n = 1, respectively.
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3.1 Background Information

However, in this section we will be focusing on arbitrary dimension. Before we can

formally state and prove these theorems, we must cover some background information.

Section 3.1

Background Information

Several logical extensions of ideas we used in the 2D JCT and JAT Proof will be

used in the generalized proof. One of the most important is the continued use of

chains. The chains of arbitrary dimension are slightly different than the simple piece-

wise linear ones defined in the 2D proof, instead defined through selectings cells from

planar subdivisions of a sphere, but the spirit remains the same.

The important information to note is that ‘chain’ is for most intents and purposes

interchangeable with ‘CW-complex’, and in modern formulations of Alexander Dual-

ity, it is even more general than that. Note that discs and spheres of any dimension

are themselves chains.

3.1.1. Special Types of Chains

There are certain subclasses of chains and terminology we will use to describe chains

that will make this proof significantly more concise.

An i-chain will be a chain that is built only out of i-cells and their boundaries. For

example a graph would be a 1-chain, but a graph with an extra disconnected point

added would not be a 1-chain, since that extra disconnected point is not a 2-cell and

is not in the boundary of any 2-cells in the chain.

A cellular i-chain is an i-chain consisting only of a single i-cell: in other words, it

is an i-disc Di.
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3.1 Background Information

Any i-chain is said to be the sum modulo 2 of all the i-cells that make it up. This

makes sense because the boundary between two touching cells is no longer a boundary

of the chain, and since it gets added to itself (one for each of the two touching cells),

modulo two it goes away. Using this, we can express an i-chain as a sum of i-cells:

Ki = K0 +K1 + · · ·+Kn

and the sum of two chains can be calculated by adding their cell-sum forms modulo

two. For the equation above, and all other following cell-sum equations, assume they

are done modulo 2.

An i-chain is closed if each of its (i−1) cells belong to an even number of its i-cells,

otherwise it is called open. An open chain will have a boundary, and it boundary will

be exactly the (i− 1)-cells that belong to an odd number of i-cells of the chain. We

will denote the (i − 1)-chain ∂Ki as the boundary of the i-chain Ki. If ∂Ki = 0,

then Ki has no boundary and is a closed chain. In homology terminology, a closed

chain is a cycle, and an open chain is not. Since we are using modulo 2, a 0-chain

(collection of disjoint points) will be open or closed if the number of points is odd or

even, respectively.

It can be easily shown ∂2X = 0 for any X, so any boundary is automatically

closed. It is also intuitive that the sum of two closed chains is itself closed.

For more information on chains and their properties, see [Ale22].

3.1.2. Betti Numbers and Connectivity Numbers

The connectivity number is an old-fashioned relative of the Betti Numbers, which

are themselves an old-fashioned version of Homology groups. There is a connectivity

13



3.2 Generalizing Jordan’s Arc Theorem

number in each dimension for a chain. We will denote the i-th connectivity number

of a chain with the number Ri.

Connectivity numbers and Betti number have an important relation that makes

them easier to understand. With b̄i as the reduced i-th Betti number of some chain:

Ri = b̄n + 1

Note that R0 is the number of separate connected components of the chain. For

a description and more concrete proof of how connectivity numbers relate to Betti

numbers and actual topological information, see [Ale22].

Also note that if the i-th connectivity number of a chain is 1, then any closed i-

subchain is the boundary of some open (i+1)-subchain; we say then that the i-chain

bounds. From a modern perspective, this is intuitive because if the Betti number in

the i-dimension is 0, then there are no (excluding torsion) nontrivial i-cycles, which

is to say no closed i-chain that is not the boundary of some higher dimensional chain.

Thus all closed i-chains must bound some higher dimensional chain.

Due to some intricacies of Alexander Duality, some of which even emerge in the

1-dimensional case as discussed before, all of the following chains will immersed in

Sn, the compactification of Rn.

Section 3.2

Generalizing Jordan’s Arc Theorem

We can now show a generalized version of JAT.

Theorem 3.1. T i. Let Ci be a cellular i-chain (an i-disc) immersed in the n-sphere

14



3.2 Generalizing Jordan’s Arc Theorem

Sn. Then the connectivity numbers of the complement Sn − Ci are all 1. In other

words, every closed chain Lk of Sn − Ci bounds.

We will prove this using induction. The proof of T 0 is trivial: if i = 0, C0 is a

single point, and thus no matter what n is, every closed chain in Sn − C0 bounds

since you can just perturb an open chain bounded by the closed chain to avoid C0.

(See [Ale22] for a slightly more rigorous proof of this).

For the inductive step, however, we will need the help of more machinery. It is

notable that the heavy lifting of the JCT proof is done by the lemma allowing us

to ‘combine’ two arcs without separating the residual space into two complements

(Lemma 2.4). Then, as shown in the previous chapter, by using compactness we can

easily expand this to the Jordan Arc Theorem, and can use that to prove that there

are at least 2 regions in the complement of a closed curve, which is the difficult part

of proving the JCT.

Therefore, it is not surprising that in the generalized case of higher dimensions,

and also the true generalization of Alexander Duality, the lemma that does the ‘heavy

lifting’ allows us to combine 2 discs without separating the residual space:

Lemma 3.2. U i. Let the cellular i-chain Ci (an i-disc) be subdivided into two cellular

i-chains A and B, meetings in a cellular (i− 1)-chain Ci−1. Then every k-chain Lk

of Sn − Ci which bounds in both Sn − A and Sn −B must also bound in Sn − Ci.

There are two main cases: k = n−1, and k < n−1. The first case is trivial, since

any closed (n − 1)-chain bounds two regions of Sn, and all of Ci = A + B must be

in the same region (once again, see [Ale22] for a rigorous explanation). The second

case is the interesting one.
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3.2 Generalizing Jordan’s Arc Theorem

Assume k < n−1, so there exists chains in Sn of dimension k+2. Then there are,

by the statement of the lemma, two open k+1 chains X and Y such that ∂X = Lk in

the complement of A (Sn−A), and ∂Y = Lk in the complement of B (Sn−B). Since

they have the same boundary, the chain Z = X + Y has no boundary, so ∂Z = 0

means Z is a closed chain.

This is exactly the higher dimension version of the step in the proof of Lemma

2.4 where we combine a and b into the chain k.

We will assume that X and Y meet B and A respectively, otherwise the theorem

is automatically true.

Then by the inductive use of theorem T i−1, there exists some open (k+2)-chain M

such that ∂M = Z in the complement of Ci−1. Note that this chain will potentially

intersect A and B. If it does, it will do so in mutually exclusive closed sets of points.

Now due to compactness, we can take M̄ to be the close of the points of M that

intersect A and not B. Now we can take the modulo 2 sum of M +M̄ ; this effectively

cuts out the points from M where it would touch A. Consider the boundary of this:

∂(M + M̄) = ∂M + ∂M̄ = (X + Y ) + ∂M̄ = (Y + ∂M̄) +X (in Sn − Ci−1)

Of course, since ∂2 = 0, it is known that ∂((Y + ∂M̄) + X) = 0. But therefore,

∂(Y + ∂M̄) = ∂X = Lk, since modulo 2 they must cancel to zero.

And we already know that Y +∂M̄ meets neither A nor B, because Y is designed

not to meet B, and ∂M̄ never touches B (because M̄ doesn’t) and touches A in all

the same places that Y does, and no others, so modulo 2 they cancel out. Therefore,

Y + ∂M̄ is in Sn − Ci. So the chain (Y + ∂M̄) has boundary Lk and lies in the

complement of Ci, proving the lemma.
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3.2 Generalizing Jordan’s Arc Theorem

Proving T i then follows naturally from a contradiction argument (see [Ale22] for a

more rigorous explanation): if T i is false for some disc Ci, then by the contrapositive

of U i it must be false for one of two halves of that disc A or B. Repeating this

infinitely, you create a sequence of smaller and smaller discs that ends on a single

point that must violate T 0. But we have shown in the base case that T 0 works for a

point, which is a contradiction.

One can notice that each step of the proof of U i is the direct higher-dimensional

analog of the steps used in proving Lemma 2.4 in 2D. The ease with which that

proof can be generalized to higher dimensions, then to full Alexander Duality soon

after, which itself implies the entire machinery of cohomology, shows how powerful

Alexander’s original ideas on the Jordan Curve Theorem were.
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Chapter 4

Generalizing the Jordan Curve

Theorem

Corollary 4.1. W i. Let C be the sum of Ci−1 be the intersection of two closed sets

of points A and B. Then every closed k-chain Lk when k < n − 1 of Sn − C which

bounds a chain Lk+1
A in Sn−A and a chain Lk+1

B in Sn−B must also bound a chain

in Sn − C provided the chains Lk+1
A and Lk+1

B may be chosen so that (Lk+1
A + Lk+1

B )

bounds in Sn−C−1. Moreover, the corollary is valid even if k = n− 1 unless Ci−1 is

the null set.

Proved by induction on i. This is a generalized form of Lemma U i and uses

effectively the exact same proof as it, just with some relabeling.

Theorem 4.2. X i. (Alexander duality in the special case of spheres) Let Ci be an

i-sphere immersed in an n-sphere Sn. Then the connectivity numbers Rs of Ci are

related to the connectivity numbers of the complement Sn − Ci by the equations

Ri = R̄n−i−1 = 2, Rs = R̄n−s−1 = 1 (s ̸= i)

18



4.1 Jordan Curve Theorem Reformulated

This theorem states, in other words, that there exists exactly one independent

closed non-bounding chain in Sn − Ci which will be of dimension (n − i − 1). This

chain will be said to link the i-sphere Ci.

We will show certain specific cases of this theorem before moving on to a full

proof.

Section 4.1

Jordan Curve Theorem Reformulated

The Jordan Curve theorem is a corollary of X1, since for a 1-sphere (circle, i = 1) in

2D (n = 2), showing that R̄n−i−1=0 = 2 is equivalent to saying the complement of the

immersed circle has two components.

Due to the inductive nature of the proof of X i, we will first have to prove X0.

4.1.1. X0

In the case i = 0, the 0-sphere C0 is just a pair of points, so the theorem is trivial

since the (n−1)-chain linking C0 is any closed (n−1) chain L such that one of the two

points lies in each of the two chains bounded by L, such as a (n− 1)-sphere around

one point which doesn’t contain the other. All chains of lower dimension bound in

the complement.

4.1.2. Back to Jordan Curve Theorem

Let us subdivide the sphere C1 into two cellular 1-chains (1-discs) A and B which

meet in a (i− 1) = 0-sphere Ci−1. Note we will be focusing on the case n = 2.

By induction, there is a chain L1 of Sn−C0 which links C0, and necessarily meets

A and B in mutually exclusive, closed sets of points: because if it failed to meet A,
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4.1 Jordan Curve Theorem Reformulated

for example, it would bound in Sn − A by theorem T i, and therefore in Sn − C0 as

well since C0 ⊂ A, contrary to the hypothesis that L1 links Sn − C0.

Therefore, the chain L1 can be written as a sum of two open chains (similar to

proof of U i) such that

L1 = L1
A + L1

B

Lying in Sn−A and Sn−B respectively, and having a common boundary, a chain L0

in Sn−C1. Then the chain L0 links C1. See Figure 4.1 for a diagram of the described

situation.

Figure 4.1: Here we see the linking diagram of the immersed circle C1 = A + B.
In this figure, C0 = {C,D}. L1, which is guaranteed to exist and link C0 by the
inductive step, = LA +LB, and the linking chain L0 = {X, Y }. L0 having two points
demonstrates that there are at least two components in the complement of the circle.

If it did not link C1, then there would be an open chain L̄1 bounded by L0 in

Sn − C1. Then either L̄1 + L1
A or L̄1 + L1

B would have to link C0, because their sum

L̄1 + L1
A + L̄1 + L1

B = L1
A + L1

B = L1 does. Assume without loss of generality that
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4.1 Jordan Curve Theorem Reformulated

L̄1+L1
A links C0. This is a contradiction, because to link C0, the chain must intersect

A, but both L̄1 ∈ Sn − C1 ⊂ Sn − A and L1
A is specifically constructed to avoid A.

Therefore L0 links C1. See Figure 4.2 for a diagram of the why no L̄ exists in this

situation.

Figure 4.2: Here we see why L0 = {X, Y } must link C1: if it did not, there would
exist an open chain L̄1 (labelled L′ on the diagram), which does not intersect A or
B, such that either L′ + LB or L′ + LA linked C0 (in this case, L′ + LB links C0).
However that is not possible since however you draw L′ to do so it must intersect
C1 = A+B.

Finally to show the independence of L0. Assume there is another linking chain

M0. Then there is a closed chain M1
A+M1

B defined relative to M0 in the same manner

as L1
A+L1

B are relative to L0. Then there is a chain associated with L0+M0 as well:

(L1
A +M1

A) + (L1
B +M1

B)

which cannot link C0. Then by corollary W i, L0 +M0 bounds in Sn − C1 and M0
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4.2 Arbitrary Dimension

is dependant on L0, thus L0 is an independent linking chain. See Figure 4.3 for a

diagram of the why L0 is independent.

Figure 4.3: In this figure we image another chain linking C1 = A + B: the chain
M0 = {M,N}. We can see that the chain M0 + L0 = {M,N,X, Y } bounds in
S2 − C1, as shown in the diagram, and therefore their sum cannot link. So L0 is
independent.

Section 4.2

Arbitrary Dimension

We have explicitly proved X1 because its 2-dimensional nature makes visual aids

easier, but the inductive case for an arbitrary dimension i is easy to extract from

what is written above: simply replace any time I have a specific dimensional value

with i, k or n (each ±1 or 2) as appropriate.
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4.3 Full Alexander Duality

Section 4.3

Full Alexander Duality

Proving full Alexander Duality in the modulo 2 system we’ve been operating in is both

unnecessary, as it in done in [Ale22], and beyond the scope of this thesis. However,

the proof follows a very similar path of logic to the proof of X i, which is itself a

specific case of general Alexander Duality.

For the remainder of this thesis we will be using the full, modern formulation of

Alexander Duality, which is as follows: For a compact, locally contractible, nonempty

proper subspace X ⊂ Sn, then for all i:

H̃i(S
n \X) ∼= H̃n−i−1(X)

where H̃i is the ith reduced homology group and H̃j is the jth reduced cohomology

group. A nice proof of this using algebraic topology can be found in Hatcher ([Hat02]).
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Chapter 5

Alexander’s Horned Sphere

Alexander’s Horned Sphere is a interesting wild object that was invented by Alexander

to disprove his own conjecture (the 3D analog of the Schoenflies theorem): it is an

example of an immersion of the 2-sphere in S3 such that its interior and exterior are

not both homeomorphic to 3-discs. See Figure 5.1 for a fairly standard embedding

into 3-space.

The construction of the horned sphere ends in a set of wild points that form a

Cantor set, which is clearly visible in Figure 5.2.

Section 5.1

What makes the Horned Sphere special

The interesting part of the Horned Sphere is its complement, specifically the exterior

component, which is what makes it a counterexample to the 3D analogue of the

Schoenflies theorem.

We will define Alexander’s Horned Ball (AHB) to be Alexander’s Horned Sphere

(AHS) with the simply connected interior filled in. This is homeomorphic to a ball
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5.1 What makes the Horned Sphere special

Figure 5.1: An embedding of Alexander’s Horned Sphere
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5.1 What makes the Horned Sphere special

Figure 5.2: An embedding of Alexander’s Horned Sphere showing the Cantor set of
wild points at the top. Reprinted from [Ché19], originally designed by Bob Edwards.
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5.1 What makes the Horned Sphere special

i 0 1 2
H i(AHB) Z 0 0

H̃ i(AHB) 0 0 0

H̃i(S
3 − AHB) 0 0 0

Hi(S
3 − AHB) Z 0 0

bi(S
3 − AHB) 1 0 0

Table 5.1: Cohomology and homology groups of the Alexander Horned Ball and its
complement, respectively.

(D3). We will be focusing on describing the wild complement: S3 − AHB, the non-

simply connected exterior of the AHS.

This complement is automatically what known as a crumpled cube:

Definition 5.1. Take some object X ⊂ Sn+1 which is homeomorphic to Sn. Let U

be a component of Sn−X. Then C = Closure(U) is a crumpled cube with boundary

X. Note that an n-crumpled cube may not necessarily be the same as an n-cube.

For example, when X is just the standard embedding of a 2-sphere in S3, both

crumpled cubes it generates are simply 3-discs, and homeomorphic to 3-cubes. How-

ever, when X is Alexander’s Horned Sphere, one crumpled cube (the interior one) is

just a disc, but the other (the exterior S3 − AHB) is not homeomorphic to a disc,

and is the subject of our study in this chapter. See [Can78] for more information on

crumpled cubes.

Since the Horned Ball is homeomorphic to a 2-ball, we can use Alexander Duality

to examine the homology groups and Betti numbers of the crumpled cube (S3−AHB).

As we can see in Table 5.1, the homology of the complement tells us nothing:

through homology and cohomology alone, the complement of Alexander’s Horned Ball

is indistinguishable from a disc. So instead of relying on the nice, abelian homology

groups, we must instead turn to the fundamental group to find our answer. See
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5.1 What makes the Horned Sphere special

[Hat02, p172] for a formal construction of the Horned Sphere and the fundamental

group of its complement.

The fundamental group can be determined by applying Wirtinger’s process for

knots at various levels of recursion, then taking the direct limit of the groups as you

add more and more levels of the AHS. For example, we can see the result with one

level of recursion in Figure 5.3, which shows that the bottommost grasping curve is

a commutator of higher ones.

Figure 5.3: The Wirtinger process applied to one level of the AHB. There are no
relations between b and d, so this is the free group of rank 2 ({b, d} = F2), which
makes sense since this image is homotopic to the complement of a punctured torus,
which is known to have fundamental group F2.

Then, by taking the direct limit, we can determine the full fundamental group

28



5.1 What makes the Horned Sphere special

of S3 − AHB to be as follows (see [BF50] for a rigorous proof): Let α be a finite

sequence α = α1α2 . . . αl of length l(α) = l over the alphabet ai ∈ {1, 2}. The string

α1 = α1α2 . . . αl1 and a similar construction exists for α2. Then the fundamental

group is given by:

π1(S
3 − AHB) = {zα : l(α) ≥ 0, zα = [zα1, z

−1
α2 ]}

Where [a, b] = aba−1b−1 is the commutator. This group has several interesting

properties: it is a locally free group, has infinite generators, and is a perfect group

(π1 = [π1, π1]).

Like all perfect groups, this group has trivial abelianization. This is exactly what

we expect, since the first homology group H1(S
3−AHB) is always the abelianization

of the fundamental group, and in this case both are trivial.

For a more intuitive understanding of what this fundamental group means, con-

sider each α as selecting a specific handle of the Horned Sphere after going down a

path and making left/right decisions at each decision point based on the string α.

Then the relation zα = [zα1, z
−1
α2 ] becomes clear: if zα is a grasping curve around a

handle of the Horned Sphere, that curve can be visually verified as equivalent to the

commutators of the grasping curves of that handles’ children. See Figure 5.4 for a

visual example showing the specific case of z0 = [z1, z
−1
2 ], where z0 has α = ∅.

Now that we know the fundamental group and the homology groups of S3−AHB,

can we figure out exactly what the complement actually is? A useful method, similar

to how Hatcher derives the fundamental group, may be to construct the complement

at each iteration of construction of Alexander’s Horned Ball, then take the limit of

those constructions.
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5.1 What makes the Horned Sphere special

(a) The commutator [z1, z
−1
2 ] = z1z

−1
2 z−1

1 z2 shown on a visually simplified AHS. The rest
of the recursive steps of the AHS have been removed so it is easier to see what is going on,
but imagine that loops cannot be dragged over the end of the claps. See (b) for why the
full AHS prevents that.

Figure 5.4: Continued on next page.
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5.1 What makes the Horned Sphere special

(b) The multicolored curve in (a) is homotopic to the blue curve in this image, which can
be seen by mentally shrinking the sections of the curve that return to the basepoint until
they are ‘tight’ against the hull of the AHS. This blue curve is then clearly homotopic to
z0. Unlike in (a), the rest of the AHS has been shown in this image.

Figure 5.4: Here we see a simple visual proof that z0 = [z1, z
−1
2 ] = z1z

−1
2 z−1

1 z2. The
same logic applies at any depth, and since it is a recursive infinite structure, all
elements are then the commutator of some other two elements.
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5.2 Connecting back to T i

Section 5.2

Connecting back to T i

In a nice callback to our earlier chapter on the proof of Alexander Duality and related

theorems, one theorem, T i, states that any closed k-chain in the complement of a disc

but bound some open (k + 1)-chain in the complement.

Since a sphere with a hole in it is a disc, we can punch a hole in Alexander’s

Horned Sphere, which results in a topological disc. The grasping curve around the

bottom of the resulting (which is exactly z0 in Figure 5.4) is a closed 1-chain, so it

must bound some 2-chain in the complement. What this 2-chain is can grant us some

insight into the complements true nature. The ‘punching of the hole’ is not important

to the result, but is instead only done so that we can directly apply T i.

Following the ‘instructions’ laid out in the proof of T i, we can figure out the shape

of the bounded surface: take the half of the AHS to the left of the grasping curve,

thicken it, and take the boundary of that. What you get is homotopic to a punctured

torus, since thickening the wild points fill in all the small holes.

See Figure 5.5 for how this punctured torus appears on a standard embedding of

the AHS, and Figure 5.6 for how this punctured torus appears on the upright, Cantor

set-displaying embedding, which I find much easier to mentally manipulate.

Due to the recursive nature of Alexander’s Horned Sphere, given any grasping

curve zα, we can find a punctured torus that covers all the children of the α-path. We

can stretch out the boundary of these punctured tori so they overlap exactly with a

generator of the previous generation’s punctured torus, and union all these punctured

tori together, taking the limit as l(α)→∞, to create an 2-complex which successively
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5.2 Connecting back to T i

Figure 5.5: The punctured torus in the complement of the AHB which is bounded by
the grasping curve z0. Reprinted from [Wei] with red shading the author’s own.

approximates a better and better exterior of the AHB.

Note that this object we’ve constructed is not a manifold, because where the

curves where different ‘generations’ touch each other touch two punctured tori at the

same time, which is not locally R2 and thus not a manifold.

Another notable property is that the punctured torus on the left and right side

link each other: this is important because it means they are killing one of each others

generators (the one that goes through the hole) if they were glued together. Therefore,

since the child punctured torus kills a generator of the parent, and the pair punctured

torus (left ←→ right) kills the other, all generators are killed, which would make the

fundamental group of this object perfect - exactly what we would expect from the

complement of the AHB.
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5.2 Connecting back to T i

Figure 5.6: The punctured torus in the complement of the upright embedding of the
AHB which is bounded by the grasping curve z0. This diagram clearly shows how
the AHS, its complement, and the punctured torus shown here both have rotational
symmetry around a vertical axis. Original image from [Ché19], red drawing the
author’s own.
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5.3 An Introduction to Gropes

Section 5.3

An Introduction to Gropes

Luckily, people have discovered objects like this before: objects built through this

recursively stitched-on punctured torus method are called gropes.

Definition 5.2. A grope is a 2-dimension complex with one boundary circle that is

a union of surfaces. These surfaces are assumed to be compact oriented connected

2-manifolds with a single boundary circle. A new surface may only be adding to an

existing one so that the boundary circle of the new surface is attached exactly to a

generator of the fundamental group of the existing surface.

The height of a grope G is the length of the longest chain of ‘stitched-on’ surfaces.

Therefore, a height 1 grope is just a surface, whereas a height 2 grope is shown in

Figure 5.7, and a height 3 grope would be if any of the already stitched on surfaces

in Figure 5.7 had another surface stitched on them.

Figure 5.7: A grope of height 2. Note that the smaller punctured tori are each glued
with their boundary going around a generators of the genus 2 base surface. Reprinted
from [Tei04].

Note that gropes are not manifolds themselves, but have been described as being

‘the next easiest thing after surfaces’ because the singularities that arise are always
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5.4 Alexander’s Grope

in simple curves [Tei04].

In our case, due to the infinite nature of Alexander’s Horned Sphere (the very

thing that makes it wild), we will only be dealing with gropes of infinite height.

However, finite height gropes can be used for many applications in knot theory and

group theory, as in discussed in [Tei02].

Gropes are used in geometry group theory as the geometric analogues of commuta-

tors groups, which is exactly what we want, albeit with a rather complex commutator

groups [Can78]. We will show that the complement of the AHB is a thickened grope

- in other words, the grope is the spine of the crumpled cube.

Section 5.4

Alexander’s Grope

We can extrapolate from Figure 5.6 that the complement’s boundary has two inter-

locking handles at each level of recursion. If we build such an object in Mathematica,

as we did in Figure 5.8 we can clearly see how it fits in with a different embedding of

the AHB.

Each of the two interlocking clasps of each layer of the AHB fit through each of

the two interlocked handles of the grope (the handles shown in a rectangular form in

Figure 5.8), so that with infinite regression, the grope will form a shell directly over

all the clasps of the AHB. The images shown in the figure look the same at every

level of regression, just scaled and rotated.

Therefore, by noting thing about the top level, we can note things about the entire

object. For example, this grope has exactly the fundamental group we want it to:

each disc portion is the commutator of its children handles’ central disc portion; so
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5.4 Alexander’s Grope

(a) The grope shown with succes-
sive depths of iteration in different
colors (red, green, then blue) with
the clasps of the AHB shown as the
tubes.

(b) The grope shown in gray with
successive depths of iteration having
their edges in different colors (red,
green, then blue) with the clasps of
the AHB shown as the tubes.

Figure 5.8: The grope ‘spine’ of the crumpled cube, from two different perspectives,
with an embedding of the AHB inside it to demonstrate how they perfectly fit to-
gether. Note that all open (white) space on the outside of the model includes the
unshown the final connecting piece of the AHB that joins the two biggest clasps
together.
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5.4 Alexander’s Grope

in the diagram, the generator of the red plane is the commutator of the generators of

the two green planes inside the red handles. This visual representation of this grope

is a potentially novel creation done for this thesis.

Therefore we can form the full crumpled cube adding a 3-disc with this grope as

its boundary. We have thus completely identified S3 −AHB; we know its boundary,

fundamental group, and visually can embed it.
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Chapter 6

Variants of Alexander’s Horned

Sphere

In my studies of the Horned Sphere, we struggled to find an image that really repre-

sented the beauty of the mathematical object in an aesthetically pleasing way. One

particular image online stood out as nice to my advisor, Professor Peter Doyle: Figure

6.1, generated by Professor Kathryn Lindsey of Boston College during her undergrad-

uate years [Lin07].

Interestingly, Lindsey’s rendering is not identical to the normal Alexander’s Horned

Sphere embedding (e.g. Figure 5.1). There is a link between the two halves that does

not normally exist, which can be seen in the upper middle part of Figure 6.1. How-

ever, it is still a completely valid immersion of S2 into R3, and since it is clear to

see that, like the AHS, its exterior is not simply connected, Lindsey’s Horned Sphere

qualifies as a wild sphere.

We were curious about the properties of this Lindsey’s Horned Sphere (LHS)

variant of the AHS. Was the complement of Lindsey’s Horned Ball (LHB) - obviously
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Variants of Alexander’s Horned Sphere

Figure 6.1: Kathryn Lindsey’s Horned Sphere (taken from [Lin07])
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Variants of Alexander’s Horned Sphere

some kind of crumpled cube - the same as the complement of the AHB? If not, how

did the differ? Are the fundamental groups of the complements of the LHB and AHB

the same?

I began by remaking the LHS on my own, to see how the recursive generation

process was different. The resulting image is Figure 6.2a. The only difference in

generation is certain parameters (arc length, scaling between iterations), but this

leads to that extra link occurring not just at the top level, but at every level.

Since the Cantor set-showing model of the AHS was so useful for understanding,

I created a modified version of the model from [Ché19] for the LHS. In this image,

Figure 6.2b, you can clearly see the extra link, which happens a generation after the

two sides originally interacted.

Finding a nice presentation of fundamental group is no longer such a easy process:

our method in Figure 5.4 will no longer work since a curve around the two arms of

the same handle (in other words, the two copies of z1 in Figure 5.4) are no longer

homotopic when placed on the LHS. This can easily be seen on the upright embed-

ding as well. Nonetheless, we know the fundamental group must still be perfect,

because its abelianization is trivial (by Alexander Duality), and thus all elements are

commutators or products of commutators (all generators are commutators).

We can do the same process as we did with the AHS and apply T i to find a surface

bounded by the grasping curve around the bottom of the LHS. While for the AHS

we got a punctured torus, for the LHS we get a genus 2 punctured torus. See Figure

6.3 for a visual representation of this surface.

Examining deeper levels of the LHS, we can see that grasping curves around an

arm of the LHS at any depth also bound genus 2 punctured tori.
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Variants of Alexander’s Horned Sphere

(a) My recreation of the LHS using Mathematica.

(b) An upright embedding
of the LHS, which shows
the Cantor set at the top
and the extra link that ex-
ists at each stage. Modified
by the author from [Ché19].

Figure 6.2: Two models of the LHS
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Variants of Alexander’s Horned Sphere

Figure 6.3: The genus 2 punctured torus that is bounded by the grasping curve
around the bottom of the LHS, shown on the upright model of the LHS. Modified
from [Ché19].
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Variants of Alexander’s Horned Sphere

The perfect nature of the fundamental group, and levels of punctured tori seem

to suggest a grope is at play here: the complement is likely homotopic to a tapered

grope. However, gropes are very hard to visualize, and unfortunately we were not

able to see the exact nature of the grope or create a diagram of it.

We can again attempt the Wirtinger process. See Figure 6.4 to see what results.

Unfortunately, we were not able to find a nice presentation resulting from this. The

LHS provides extra challenges in that there is non perfect symmetry: there are some

branches with more links than other, which makes it hard to find a starting point

for a knot diagram like this since there will likely be interactions with non-pictured

parts (hence why a ̸= b). However, if you add the relations c = g−1 (which implies

the equivalent relations h = f−1, x = v−1, y = w−1), then the group of that first

level collapses exactly to the fundamental group of the complement of the AHB:

F2 = {c, e}. Therefore, we can at least conclude that the fundamental group of

S3 − LHB maps onto π1(S
3 − AHB).

44



Variants of Alexander’s Horned Sphere

Figure 6.4: Wirtinger process applied to a level of the LHB. After significant simplifi-
cation, I achieved the result a = cf−1vw−1v−1wc−1f , which is related to commutators.
Also, note the relations implied by the diagram: gc = hf = xv = yw.
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Chapter 7

Future Work

The primary avenue of future work is in finding and categorizing different variant

types of the AHS, such as we have done with the LHS. For example, without the

restrictions on having the embedding be built out of tori with proper arcs, any kind

of knot can be placed in each generation, which ties into knot theory.

Similarly, like the LHS, we can add links between that do not happen until later

generations - the LHS has an extra link between left and right sides one generation

after their initial link, but that could instead be done after 2 generations, or at

both the 1st and 2nd generation, or any possible combination. This would lead to

increasingly more and more complex complements and wild spheres.

For example, while constructing a nice model of the AHS where the arms are titled

45 degrees relative to the previous generation, (see Figure 5.1), I made a version of

the LHS that uses the same. Interestingly, there are now two links between the left

and right halfs a generation after their original link; this can be seen in Figure 7.1

This would further complicate the structure of the complement.

A promising line of work would be to categorize, formalize, and further study all
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Future Work

Figure 7.1: A variant horned sphere modified from the LHS where each generation
has two links with its chiral pair from the previous generation, in addition to the
normal link with its own chiral pair.
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Future Work

these variants of Alexander’s Horned Sphere, which would certainly have ties to knot

theory, grope theory, geometry group theory and more. I believe this would yield a

deep relationship between wild spheres, gropes, and commutator groups, each of which

have further applications: For example, in [AK13], they argue that wild surfaces such

as these are instrumental to a particular perspective on quantum physics; Freedman

and Quinn use gropes in [Fre90] to explore 4-dimensional manifolds.

James W. Cannon has done much excellent work on the topic of wild surfaces like

these and it would be highly interesting to read through his full list of publications

to understand our current bredth of understanding on the topic.

Finally, Mike Freedman raised the question at the crux of these variants: is any

crumpled cube a tapered grope? I myself wonder what, if it is not the case, delineates

the wild sphere of the crumpled cubes that are gropes against those that are not.
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Appendix A

Chains

The specifics of chains sides are cited by Alexander from a paper by Veblen [Veb05],

a quick summary will be made below.

We can determine the sides as follows: complete the lines to which the edges of

the chain k belon and thus obtain a system of lines which subdivide each other into

a finite number of line segments and rays b1, b2, . . . , bn, and subdivide the plane into

a finite number of convex region a1, a2, . . . , am. Now, the boundaries of each ai are

chains made of elements of bj and their end points. We can form the expressions

ai = bi1 + · · ·+ bik (i = 1, 2, . . .m)

to designate the boundary chain of each region ai. The expressions for any ai, aj can

be combined by adding corresponding members and reducing the coefficients modulo

2.

It can be shown that any chain such as k composed of elements bi and their

endpoints can be derived from the elementary chains (defining each ai) in two and
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Chains

only two possible ways. For example, consider a simple case, let k be the boundary

of a simple shape, such as a regular polygon. For simplicity, I will use an equilateral

triangle, but any will suffice. Extend each side to a line. Label the exterior regions,

A, B, C, and the internal region X. Then label each line segment and ray, so that

none intersect at more than a finite number of points. As described above, we can

form expressions for each of A,B,C,X out of sums of these line segments. The chain

k can clearly be made in exactly two ways (up to modulo two coefficients of each

member) out of the regions we have defined. k = X or k = A + B + C. These two

options define our two sides. If a point is inside X, it is on one side, let’s call ‘inside’

of k. If the point is instead in A,B,C, it is on the other side, ‘outside’.

This construction argument can be applied to any chain, even if it is not a regular

polygon, since with a chain there will always be a finite number of rays and line

segments generated by extending all segments of the chain to lines. More generally,

for any region ai formed by the extended lines of the chain, the boundary of each

ai occurs in exactly one of those two ways. So the points of the plane fall into two

classes according to if they belong in the interior or boundary of a region in the first

combination or the second. These two classes are what we will refer to as sides. The

labels of interior and exterior are arbitrary and, unlike the two classes of side, are

not well-defined, since both regions may contain points at infinity due to the use of

rays so neither can be specified as exterior. Therefore, we simply call them the two

distinct sides.
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Appendix B

Mathematica Code to Generate

Horned Spheres and Related

Objects

The following code was used to generate the initial AHS model, and was tweaked to

create the LHS, other variants such as Figure 7.1, and in combination with a model

of each stage of the grope to create Figure 5.8.

In order to create the LHS, change the ‘endpts’ variable to 2.40 and the thickness

of the tube to 0.1 (the line a=Tube[toruspts,0.1];a=Tube[toruspts,0.1];a=Tube[toruspts,0.1];). The variant such as Figure 7.1

was created by changing the rotation transforms to be 45 degrees instead of 90.

(*Get points up to a chosen level along a torus*)(*Get points up to a chosen level along a torus*)(*Get points up to a chosen level along a torus*)

quality = 500; (*Number of points along each arc of the torus*)quality = 500; (*Number of points along each arc of the torus*)quality = 500; (*Number of points along each arc of the torus*)

endpts = 2.47; (*Angle of each side of arc of torus*)endpts = 2.47; (*Angle of each side of arc of torus*)endpts = 2.47; (*Angle of each side of arc of torus*)

toruscurve[u ]:={−Cos[u], 0, Sin[u]};toruscurve[u ]:={−Cos[u], 0, Sin[u]};toruscurve[u ]:={−Cos[u], 0, Sin[u]};

toruspts = Table[{1, 0, 0}+ toruscurve[i ∗ endpts/quality], {i,−quality, quality, 2}];toruspts = Table[{1, 0, 0}+ toruscurve[i ∗ endpts/quality], {i,−quality, quality, 2}];toruspts = Table[{1, 0, 0}+ toruscurve[i ∗ endpts/quality], {i,−quality, quality, 2}];
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Mathematica Code

a = Tube[toruspts, 0.08];a = Tube[toruspts, 0.08];a = Tube[toruspts, 0.08];

RegressR[a ]:=GeometricTransformation[a,Composition@@{RegressR[a ]:=GeometricTransformation[a,Composition@@{RegressR[a ]:=GeometricTransformation[a,Composition@@{

TranslationTransform[toruscurve[endpts] + {1, 0, 0}], (*Takes to target pt*)TranslationTransform[toruscurve[endpts] + {1, 0, 0}], (*Takes to target pt*)TranslationTransform[toruscurve[endpts] + {1, 0, 0}], (*Takes to target pt*)

ScalingTransform[{0.5, 0.5, 0.5}, {0, 0, 0}], (*Scales by scale factor*)ScalingTransform[{0.5, 0.5, 0.5}, {0, 0, 0}], (*Scales by scale factor*)ScalingTransform[{0.5, 0.5, 0.5}, {0, 0, 0}], (*Scales by scale factor*)

RotationTransform[{{0, 0, 1}, {1, 0, 0}}](*Rotates to new angle*)RotationTransform[{{0, 0, 1}, {1, 0, 0}}](*Rotates to new angle*)RotationTransform[{{0, 0, 1}, {1, 0, 0}}](*Rotates to new angle*)

}];}];}];

RegressL[a ]:=GeometricTransformation[a,Composition@@{RegressL[a ]:=GeometricTransformation[a,Composition@@{RegressL[a ]:=GeometricTransformation[a,Composition@@{

TranslationTransform[toruscurve[−endpts] + {1, 0, 0}], (*Takes to target pt*)TranslationTransform[toruscurve[−endpts] + {1, 0, 0}], (*Takes to target pt*)TranslationTransform[toruscurve[−endpts] + {1, 0, 0}], (*Takes to target pt*)

ScalingTransform[{0.5, 0.5, 0.5}, {0, 0, 0}], (*Scales by scale factor*)ScalingTransform[{0.5, 0.5, 0.5}, {0, 0, 0}], (*Scales by scale factor*)ScalingTransform[{0.5, 0.5, 0.5}, {0, 0, 0}], (*Scales by scale factor*)

RotationTransform[{{0, 0, 1}, {0, 1, 0}}], (*Rotates to new angle*)RotationTransform[{{0, 0, 1}, {0, 1, 0}}], (*Rotates to new angle*)RotationTransform[{{0, 0, 1}, {0, 1, 0}}], (*Rotates to new angle*)

RotationTransform[{{0, 1, 0}, {1, 0, 0}}]RotationTransform[{{0, 1, 0}, {1, 0, 0}}]RotationTransform[{{0, 1, 0}, {1, 0, 0}}]

}];}];}];

Regress[a , depth ]:=If[depth==1,Regress[a , depth ]:=If[depth==1,Regress[a , depth ]:=If[depth==1,

(*Base Case*)(*Base Case*)(*Base Case*)

{a}{a}{a}

,,,

(*False(iterative)Case*)(*False(iterative)Case*)(*False(iterative)Case*)

Join[{a},Regress[RegressR[a], depth− 1],Regress[RegressL[a], depth− 1]]Join[{a},Regress[RegressR[a], depth− 1],Regress[RegressL[a], depth− 1]]Join[{a},Regress[RegressR[a], depth− 1],Regress[RegressL[a], depth− 1]]

];];];

Graphics3D[Regress[a, 5],Boxed->False]Graphics3D[Regress[a, 5],Boxed->False]Graphics3D[Regress[a, 5],Boxed->False]
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