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Abstract

In this thesis, we begin working on a classification of all Legendrian knots of arc

index n = 10. Our approach uses a combinatorial presentation of a knot, called a grid

diagram. We begin by generating a set of grid diagrams guaranteed to contain at least

one grid representing every non-destabilizable Legendrian knot of arc index n = 10.

Next, we refine this set by removing destabilizable knots, finding pairs of Legendrian-

isotopic knots, and sorting by various topological and Legendrian invariants. Finally,

for each topological knot in our set, we compute its “mountain range,” a graphical

representation of the knot’s Legendrian representatives, plotted in space depending

on their classical invariants tb and r .
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Chapter 1

Introduction

This thesis tackles one of the simplest questions in knot theory: What knots are out

there? Unsurprisingly, this question is (way) too broad to be answered by a single

undergraduate thesis. Therefore, the specific goal of this thesis is to catalogue every

non-destabilizable Legendrian knot of arc index 10. By the end of this introduction,

I hope that readers will begin to understand what this means and why we care.

In a topological setting, knots are exactly what you might imagine: starting with

a length of string, tangle it up in any way you want, and then fuse the ends. Two

knots are ‘isotopic’ if you can stretch, twist, or otherwise deform the first knot into

the exact shape of the second. Since there is no limit to the amount of tangling, there

are infinitely many knots even in a purely topological setting. Therefore, to restrict

the scope of this thesis, we restricted ourselves to a certain class of ‘small’ knots.

Specifically, we focused on knots of arc index 10, meaning the set of knots that can

be represented by 2-dimensional pictures composed of vertical and horizontal strands

arranged on a 10× 10 grid.

Now, the set of topological knots of arc index 10 has already been tabulated;

see for example [JP10]. All but one have 16 of fewer crossings, and are catalogued

on KnotInfo [LM23]. However, the same cannot be said for the set of Legendrian
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Introduction Introduction

knots of arc index 10. A Legendrian knot is a knot that satisfies certain geometric

constraints from contact topology. Two Legendrian knots are ‘Legendrian isotopic’ if

they can be twisted and deformed into one another, while always satisfying the same

geometric constraints. Physically, this restricts the ways in which you are allowed

to manipulate the knots. As a result, two Legendrian knots might be topologically

isotopic but not Legendrian isotopic! In fact, every topological knot has infinitely

many distinct Legendrian representatives. To handle this issue, we focused only on

non-destabilizable Legendrian knots, which function as a generating set from which

any Legendrian representative can be easily built. In [CN13], Chongchitmate and Ng

and catalogued all non-destabilizable knots of arc index 9 or fewer; this thesis extends

their work to arc index 10.

As mentioned above, the problem of classification of Legendrian knots is hard.

Only a few special families of Legendrian knots have been fully classified. The number

of distinct knots increases rapidly with arc index, and searching for isotopies between

these knots requires exponentially-growing memory and time. As a result, so far only

a few small knots not in the special families mentioned above are well-understood.

This thesis presents a conjectural classification of all 604 distinct topological knots of

arc index 10, taking mirroring and orientation into account. These results are a major

step towards a complete classification of Legendrian knots of low crossing number.

We hope that these results will be useful to mathematicians working on conjectures

who are looking for examples.

The rest of this thesis is organized as follows. Chapter 2 provides a crash course

in the mathematical background needed to understand this thesis. Chapter 3 details

the algorithms and strategies employed to generate a minimal set of grids containing

at least one destabilizable Legendrian knot of arc index 10. Chapter 4 explains how

we computed successive layers of the mountain range for each topological knot type.
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Introduction Introduction

Finally, Chapter 5 provides a big-picture overview of results, and takes a deep-dive

into the results for a single topological type.

Thank you for reading all the way to the end of the introduction, and enjoy the

rest of the paper!
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Chapter 2

Background

In this chapter, we introduce the mathematical background that underlies this project.

The first section of this chapter discusses the basics of knot theory in a topological

setting, and the second section discusses the basics of knot theory in a Legendrian

setting.
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2.1 Topological Knot Theory Background

Section 2.1

Topological Knot Theory

Definition 2.1.1. A knotK is a smooth embedding of the closed loop S1 into another

manifold, typically R3 or S3.

Two knots K1 and K2 are equivalent if they are ambiently isotopic, which for-

malizes the notion of smoothly manipulating the knot strands without allowing them

to cross one another. Isotopy equivalence classes under this relation are called knot

types. Some familiar knot types include the unknot, the trefoil knot, and the figure-8

knot.

Mathematicians have developed countless tools to describe and characterize knots.

In this section, we will discuss the relevant topics of knot theory in a topological

setting. We will begin by describing knot diagrams and the Reidemeister moves.

Next, we will discuss grid diagrams and the grid moves. We will then finish by

defining the Alexander polynomial.

Knot Diagrams

A knot diagram D is a projection of a knot in R3 onto a two-dimensional plane,

such that three line segments never intersect at a single point. We write the knot K

described by diagram D as K(D). To determine when different diagrams represent

the same knot, we introduce the three Reidemeister moves, illustrated in Figure 2.1.

Two knot diagrams D1 and D2 represent topologically isotopic knots if and only if

D1 may be transformed into D2 via a sequence of Reidemeister moves and planar

isotopies.
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2.1 Topological Knot Theory Background

⇐⇒ ⇐⇒

⇐⇒

Figure 2.1: The top-left diagram illustrates a Type I Reidemeister move. The top-
right diagram illustrates a Type II Reidemeister move. The bottom-center diagram
illustrates a Type III Reidemeister move. Note that these moves do not depend on
strand orientation. Also note that reflected and/or rotated versions of these moves
are allowed as well.

Grid Diagrams

To make it easy for computers to work with knot diagrams, we want to combinatorially

encode the information stored in a diagram D. To do so, we introduce grid diagrams.

Definition 2.1.2. A grid diagram G is an n×n grid of squares on the plane R2, where

n of these squares are marked with an X and n are marked with an O. Furthermore,

these markings must satisfy the following three properties:

• There must be exactly one square marked with an X and one square marked

with an O in every column of squares.

• There must be exactly one square marked with an X and one square marked

with an O in every row of squares.

• No square may be marked with both an X and an O.

Any grid diagram that satisfies these three properties may be compactly described

by a pair of permutations (X,O) ∈ (Sn)
2. These permutations store the heights of
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2.1 Topological Knot Theory Background

the X- and O-markings; that is, the square in column i, row Xi
1 is marked with an

X (where columns are counted from the left, and rows are counted from the bottom).

Since it is so convenient to describe a grid diagram G with these permutations, we

often say that G = (X,O).

We can build a knot diagram from a grid diagram as follows. First, in each row,

draw an oriented horizontal line from the O to the X.2 Next, for each column, draw

an oriented vertical line from the X to the O. Finally, at each crossing, let the vertical

line pass over the horizontal line. Thus, a grid diagram G specifies a knot diagram D,

which in turn specifies a knot K; thus, we may speak of K(G), the knot described by

grid diagram G. Figure 2.2 illustrates this process for a 5×5 grid diagram describing

the left-handed trefoil.

X

X

X

X

X

O

O

O

O

O

Figure 2.2: Left: The grid diagram described by permutations X = (0, 1, 2, 3, 4),O =
(2, 3, 4, 0, 1). Right: The oriented knot diagram generated by the grid diagram at left.

To determine when different grid diagrams represent the same knot, we introduce

the grid moves, in analogy to the Reidemeister moves. The types of allowed moves are

row and column commutations (illustrated in Figure 2.3), and X-(de)stabilizations

(illustrated Figure 2.4). Row commutations swap two adjacent rows, and are allowed

only when when the horiztonal strands in the two rows span either disjoin or nested

intervals. Column commutations are defined similarly. Stabilization moves transform

1By convention, for any permutation P ∈ Sn, we let Pi denote P (i). Furthermore, we take indices
modulo n, so that Pm denotes P (m mod n).

2Note that we use the phrases ‘X-markings’ and ‘Xs’ interchangeably.
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2.1 Topological Knot Theory Background

X

X

O

O ⇐⇒

X

X

O

O

Figure 2.3: Left: A local picture of a grid diagram, showing X- and O-markings in
the squares in columns i and i + 1. Right: A local picture of the same grid diagram
after a column commutation of columns i and i + 1 has been performed. Note that
this column commutation is allowed, because the vertical strands these columns span
nested intervals.

a single X-marking into a three markings, increasing the grid size by one. There are

four different stabilization moves, distinguished by the way in which the three new

markings are created. Finally, destabilization moves are the inverse of stabilization

moves, transforming three markings into one and decreasing the grid size by one.

Two grid diagrams G1 and G2 represent topologically isotopic knots if and only G1

may be transformed into G2 via a sequence of grid moves.

Topological Invariants

To determine when two knot diagrams represent the same knot, it suffices to find a

sequence of Reidemeister moves connecting the two diagrams. On the other hand, to

determine when two knot diagrams represent distinct knots, we must introduce the

concept of knot invariants. Knot invariants are typically some sort of computable

property of a grid diagram – such as a number or a polynomial – that do not change

under the Reidemeister moves. Thus, these invariants are properties of not only the

knot diagram, but of the underlying topological knot type itself.

Therefore, these invariants can be used to test whether the knots represented by

two diagrams are distinct; if two diagrams D1 and D2 are found to have different
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2.1 Topological Knot Theory Background

X O

O
⇐⇒

X

X

O

O

O

X:NW

X

XO

O

O

X:NE

X

X

O

O

O

X:SW

X

X

O

O

O

X:SW

Figure 2.4: Stabilization and destabilization moves. Left: A local picture of
a grid diagram, showing the X- and O-markings in column c and row r. Right:
Four local pictures of the same grid diagram, after performing the four different
stabilization moves at the X-marking at column c, row r. These pictures show the
X- and O-markings in columns c, c+ 1 and rows r, r + 1.

values for a certain invariant, then K(D1) ̸= K(D2).

One well-known knot invariant is the (symmetrized) Alexander polynomial, which

we used in this project to rule out possible isotopies between grid diagrams. To define

the Alexander polynomial, we must first introduce the notion of skein relations. A

triple of oriented knot diagrams (L−, L0, L+) satisfies a skein relation if the three

diagrams only differ locally, as in Figure 2.5. At that location, L− has a negatively-

oriented crossing, L+ has a positively-oriented crossing, and L0 has no crossing at

all.
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2.1 Topological Knot Theory Background

L− L0 L+

Figure 2.5: Three diagrams corresponding to the local pieces of the knot diagrams

of L−, L0, and L+, centered at the location about which all three diagrams differ.

Note that these diagrams may specify multiple-component links or single-component

knots.

We now define the Alexander polynomial of a link L (denoted ∆L(t)) by the fol-

lowing three rules. First, the Alexander polynomial of any diagram of the unknot

is defined to be one. Second, the Alexander polynomial of any diagram of the un-

link (two disconnected unknots) is defined to be zero. Third, for any skein triple

(L−, L0, L+), we have:

∆L−(t)−∆L+(t) = (t−
1
2 − t

1
2 )∆L0(t)

Iteratively applying these rules allows us to compute the uniquely defined sym-

metrized Alexander polynomial of any link.
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2.2 Legendrian Knot Theory Background

Section 2.2

Legendrian Knot Theory

Knots in a purely topological setting are interesting in their own right. However, the

field becomes far richer if we impose additional structure on our knots. To do so, we

turn to the notion of contact structure from the field of contact topology. A contact

structure on a 3-manifold M is a 2-plane field ξ ⊂ TM . This thesis does not discuss

the basics of contact topology in a general setting. From here on, we only consider

the standard contact structure on R3,

ξstd = ker(αstd), αstd = dz − y dx.

We may visualize this contact structure as a plane at each point in R3, where the plane

at each point is perpendicular to the vector ⟨−y, 0, 1⟩. Using this contact structure,

we may now impose geometric constraints on the shape of a knot. This leads us to

the definition of Legendrian knots.

Definition 2.2.1. A Legendrian knot Λ in R3 is a knot that is everywhere tangent

to the standard contact structure on R3.

We say that two Legendrian knots Λ1 and Λ2 are Legendrian isotopic if they are

isotopic through a family of Legendrian knots, and define Legendrian knot types as

the equivalence classes under this relation. The universe of Legendrian knot types is

much less well understood than that of topological knot types.

In this section, we will introduce Legendrian knot theory, selecting topics that are

relevant to this thesis. We will begin by defining front projections and the Legendrian

Reidemeister moves. Next, we will return to grid diagrams, and show that they can be

used to specify Legendrian knots. Then, we will define the classical Legendrian invari-
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2.2 Legendrian Knot Theory Background

ants, the Thurston-Benneqin and rotation numbers, and discuss how these invariants

can be used to organize the universe of Legendrian knot types. We will conclude with

a discussion of stabilizations and symmetry transformations of Legendrian knots.

Front Projections

A front projection P is a projection of a Legendrian knot in R3 onto the xz-plane,

such that the y-axis points into the plane of the page. From every front projection

P , we may uniquely recover a Legendrian knot Λ(P) as follows: Parameterize P

as (x(t), z(t)) for t ∈ [0, 1]. Then, let Λ(P) be the knot in R3 parameterized by

(x(t), dz
dx
(t), z(t)). In other words, the slope of the strand of the front projection

encodes the y-coordinate of Λ(P). Note that this parametrization guarantees that

Λ(P) is everywhere tangent to ξstd, so it is indeed Legendrian. In this way, the slopes

of the strands encode crossing information: strands with a more negative slope pass

over strands with a less negative one. Finally, since y = dz
dx
, front projections cannot

have vertical tangencies, and must have cusps instead.

To determine when two front projections represent the same Legendrian knot, we

introduce the Legendrian Reidemeister moves, illustrated in Figure 2.6. Note that the

Legendrian Reidemeister moves are more restrictive than the topological Reidemeister

moves. This follows from the requirement that Legendrian knots be isotopic through a

family of Legendrian knots, which limits on the ways in which we can manipulate the

knots in R3. Two front projections P1 and P2 represent Legendrian isotopic grids if

and only if P1 may be transformed into P2 via a sequence of Legendrian Reidemeister

moves and cusp-preserving planar isotopies.

Grid Diagrams, Revisited

Grid diagrams can encode the information stored in a front projection. We may

obtain a front projection from a grid diagram as follows. First, for each row, draw

12



2.2 Legendrian Knot Theory Background

⇐⇒ ⇐⇒ ⇐⇒

Figure 2.6: Left: A Type I Legendrian Reidemeister mvoe; it also has a variant that
may be obtained by rotating the diagram by 180 degrees. Center: A Type II Legen-
drian Reidemeister move; it has three additional variants, obtained by horizontal and
vertical reflections. Right: A Type III Legendrian Reidemeister move.

an oriented horizontal line from the O to the X. Next, for each column, draw an

oriented vertical line from the X to the O. Next, rotate the entire grid diagram 45

degrees clockwise. Finally, smooth corners into horizontal tangencies where possible,

and into cusps otherwise. In this way, a grid diagram G specifies a front projection

P , which in turn specifies a Legendrian knot Λ. Therefore, we may speak of Λ(G),

the Legendrian knot described by grid diagram G. For an example of this process,

see Figure 2.7. Note that during this process, crossings that were positive in the

knot diagram D(G) became negative in the front projection P(G). Therefore, the

topological knot described by the front projection P(G) is equal to the mirror of the

topological knot described by the grid diagram D(G).

Figure 2.7: Left: The knot diagram generated by a grid diagram G. Right: The
front projection generated by the same grid diagram. Note that in front projections,
negatively-sloped strands pass over positively-sloped strands. Therefore each of the
crossings is flipped when moving from the knot diagram to the front projection.

The following theorem identifies the set of moves that may be performed on a grid

diagram G without changing Λ(G). Just as the Legendrian Reidemeister moves are a

13



2.2 Legendrian Knot Theory Background

subset of the topological Reidemeister moves, the allowed moves here are a subset of

the topological-type-preserving grid moves identified in Section 2.1. Note that cyclic

column permutations are defined as moving the leftmost column to the far right of

the grid diagram (or vice versa), and cyclic row permutations are defined identically.

Theorem 2.2.2. Two grid diagrams G1 and G2 represent Legendrian isotopic knots

if and only if G1 may be transformed into G2 via a sequence of row and column com-

mutations, X:NW,X:SE,O:NW,O:SE (de)stabilizations, and cyclic row and column

permutations.

Proof. This theorem summarizes results from [OSS15, Section 12.2].

Legendrian Knot Invariants

To determine when two front projections represent different Legendrian knots, we

introduce Legendrian knot invariants. The two ‘classical’ Legendrian invariants are

the Thurston-Benneqin number tb and the rotation number r .

Definition 2.2.3. Given an oriented front projection P , the Thurston-Benneqin num-

ber tb is defined as

tb(P) ≡ wr(P)− 1

2
#(cusps),

where the writhe wr is the number of positive crossings minus the number of negative

crossings. See Figure 2.5 for the definitions of positive and negative crossings. The

rotation number is defined as

r(P) ≡ 1

2

(
#(downward cusps)−#(upward cusps)

)
It it easy to show that these numbers are invariant under the Legendrian Rede-

meister moves. Therefore, given a Legendrian knot Λ, we may speak of tb(Λ) and

r(Λ) as Legendrian knot invariants.

14



2.2 Legendrian Knot Theory Background

Using these invariants, it is easy to show that the same topological knot may

have multiple Legendrian representatives. For example, the two front projections in

Figure 2.8 both topologically correspond to the unknot. However, they have different

values of tb and r , and therefore represent distinct Legendrian knots.

Figure 2.8: Left: A front projection of an unknot with tb = −1 and r = 0. Right: A
front projection of an unknot with tb = −2 and r = −1.

Distinct Legendrian representatives of the same topological knot are often re-

lated to one another by positive or negative Legendrian stabilizations, as defined in

[NOT08]. Given a Legendrian knot Λ, we obtain its positive stabilization S+(Λ) by

performing an X:NE or O:SW stabilization anywhere on any grid diagram G that rep-

resents Λ, and considering the knot represented by the resulting grid diagram [OSS15,

Propsition 12.2.7]. The negative stabilization S−(Λ) is defined similarly, except with

X:SW or O:NE stabilizations instead. These positive and negative stabilizations cor-

respond to local transformations of a front projection, as seen in Figure 2.9.

Note that these stabilizations are valid grid moves in a topological setting, meaning

that they always preserve topological type. However, they never preserve Legendrian

type, because they affect the classical Legendrian invariants. In general,

tb(S±(Λ)) = tb(Λ)− 1, r(S±(Λ)) = r(Λ)± 1.

These stabilizations allow us to organize the Legendrian representatives of a topo-

logical knot typeK into a single diagram, known as a mountain range. For an example

of a simple mountain range, see Figure 2.10; this diagram, reproduced from [CN13],

illustrates the mountain range of the right-handed trefoil. Although conventions dif-
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G

P(G)

O X

G−

P(G−)

O

X

X

O

G+

P(G+)

O X

O X

Figure 2.9: Positive and negative stabilizations of a Legendrian knot. Left: A
local picture of a grid G, showing theX- and O-markings in a single row. Immediately
below it, the the corresponding local piece of the front projection P(G). Top right:
A local picture of a grid G−, obtained by performing an X:SW stabilization on G
at the pictured X-marking. Immediately below it, the corresponding local piece of
the front projection P(G−). Observe that Λ(G−) = S−(Λ(G)). Bottom right: A
local picture of a grid G+, obtained by performing an X:NE stabilization on G at the
pictured X-marking. Immediately below it, the corresponding local piece of the front
projection P(G+). Observe that Λ(G+) = S+(Λ(G)).

fer from author to author, these diagrams are typically interpreted as follows. Each

individual dot on the diagram corresponds to a unique Legendrian representative of

K. The x-coordinate of a dot corresponds to the rotation number of that Legendrian

representative, and the y-coordinate corresponds to the Thurston-Benneqin number.

An arrow from representative Λ1 to representative Λ2 indicates that Λ2 is the positive

or negative stabilization of Λ1. Note that there may be multiple Legendrian repre-

sentatives with identical tb and r , and the stabilizations of these knots may be the

same or different.

Observe that these mountain ranges contain a number of ‘peaks’, points which

16



2.2 Legendrian Knot Theory Background

tb

r

−1

0

1

−2 −1 0 1 2

Figure 2.10: The topmost portion of a mountain range for the right-handed trefoil,
labeled 31 in the Rolfsen Knot Table. This mountain range tells us that K has a
single destabilizable Legendrian representative, with tb = −7 and r = 0. Positive and
negative stabilizations of this knot yield additional Legendrian representatives. Notice
that there is either one or zero Legendrian representative of K for each combination
of tb and r ; this property is not true in general.

have no arrows pointing to them. These peaks may occur at any tb, r , and can even

be in the interior of the range. By definition, every Legendrian representative of

some topological type K can be found by performing some sequence of positive or

negative stabilizations to one of these peaks. Therefore, we may reconstruct the entire

mountain range starting only from the peaks. We formalize the notion of these peaks

with the following definition.

Definition 2.2.4. A Legendrian knot Λ is non-destabilizable if it cannot be trans-

versely destabilized, which implies that it is not the positive or negative stabilization

of another Legendrian knot. The grid size n of a Legendrian knot Λ is the smallest

such n such that Λ may be represented by a size-n grid diagram, and is possibly

distinct from the arc index of the underyling topological type.

Any Legendrian knot can be constructed by performing a sequence of positive

and/or negative stabilizations on some non-destabilizable Legendrian knot. Further-

more, given two Legendrian representatives Λ1 and Λ2 of the same topological knot, it

is always possible to perform some sequence of positive and/or negative stabilizations

17



2.2 Legendrian Knot Theory Background

on Λ1, then peform another sequence on Λ2, and obtain Legendrian-isotopic knots.

Legendrian Symmetry Types

We now consider the behavior of Legendrian knots under a pair of important sym-

metry transformations.

First, consider transforming a Legendrian knot Λ into its orientation reversal

−Λ. On a grid diagram, this transformation is carried out by replacing Xs with

Os, and vice versa. Since this transformation preserves the crossing orientations and

the number of cusps, we have tb(Λ) = tb(−Λ). However, since the transformation

switches upward and downward cusps, we know that r(Λ) = − r(−Λ). Therefore, it

is possible for a Legendrian knot to equal its orientation reversal only if r(Λ) = 0.

Furthermore, notice that it is possible that taking the orientation reversal of a knot

changes its topological type. The number of these ‘non-invertible’ knots grows rapidly

with increasing grid size, and constitute about half of the knots considered in this

project.3 The important takeaway is that topological properties as well as the classical

Legendrian invariants can obstruct isotopies between Λ and −Λ.

Next, consider transforming a Legendrian knot into its ‘Legendrian mirror’ µ(Λ),

obtained by rotating Λ about the y-axis by 180 degrees. On a grid diagram, this

transformation is simply carried out by rotating the entire diagram 180 degrees. Just

like orientation reversals, this transformation preserves crossing orientations and the

number of cusps, but flips upward and downward cusps. Therefore, tb(Λ) = tb(µ(Λ))

and r(Λ) = − r(µ(Λ)), and so it is possible for a Legendrian knot to equal its Leg-

endrian mirror only if r(Λ) = 0. Just like with orientation reversals, it is possible for

the classical Legendrian invariants to obstruct isotopies between Λ and µ(Λ). For-

3The behavior of an oriented topological knot type under the operations of orientation reversal
and mirroring specifies its symmetry type. There are five possibly knot symmetry types: invertible,
fully chiral, fully amphicheiral, positive amphicheiral, and negative amphicheiral. For more on this,
see [sym23].
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2.2 Legendrian Knot Theory Background

tunately, we never have to worry about topological properties, since rotating a knot

always preserves its topological type.

Finally, consider combining an orientation reversal and a Legendrian mirror to

take −µ(Λ) (which is clearly equal to µ(−Λ)). Notice that under the composition of

these operations, the rotation number does not change, so the classical invariants will

never obstruct isotopies between Λ and −µ(Λ) for any Legendrian knot Λ. However,

topological properties can still obstruct these isotopies; it is impossible for a Legen-

drian representative of a non-invertible knot to equal the orientation reversal of its

own Legendrian mirror.

We conclude this section by considering how these symmetry transformations re-

late to positive and negative stabilizations. Notice that taking an orientation reversal

of a grid transforms an X:NE stabilization pattern to an O:NE stabilization pattern,

and similarly changes the other stabilization patterns. Therefore, positively stabiliz-

ing a grid and then taking the orientation reversal should be equivalent to taking the

orientation reversal and then negatively stabilizing. Similarly, taking the Legendrian

mirror of a grid transforms X:NE stabilizations into X:SW stabilizations, and taking

the orientation reversal of the Legendrian mirror of a grid transforms X:NE stabiliza-

tions into O:SW stabilizations patterns. Following this train of logic, we arrive at the

following theorem.

Theorem 2.2.5. The following equalities hold for any Legendrian knot Λ:

S+(−Λ) = −S−(Λ) S−(−Λ) = −S+(Λ)

S+(µ(Λ)) = µ(S−(Λ)) S−(µ(Λ)) = µ(S+(Λ))

S+(−µ(Λ)) = −µ(S+(Λ)) S−(−µ(Λ)) = −µ(S−(Λ))
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2.2 Legendrian Knot Theory Background

Proof. This theorem follows from studying the ways in which positive and negative

stabilizations, orientation reversals, and Legendrian mirrors are realized on a grid

diagram.
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Chapter 3

Generating the Set of Grids

In this section, we will describe the algorithms and computational techniques used

to generate a small set of grids containing every non-destabilizable Legendrian knot

of arc index 10. This chapter will be organized into three sections. The first section

will explain how we generated a large set of grids guaranteed to contain every non-

destabilizable Legendrian knot of arc index 10. The second will explain how we shrunk

that set of grids. The third will explain how we organized that set, to improve the

memory and runtime efficiency of our algorithms.
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Section 3.1

Generating Grids

As discussed in the introduction to this thesis, every Legendrian knot of arc index 10

can be described by a size-10 grid diagram, which can in turn be described by two

permutations in S10. Therefore, there is an upper bound of |S10|2 = (10!)2 ≈ 1014

possible distinct Legendrian knots of arc index 10, corresponding to every possible

pair of permutations. However, with a more sophisticated generation algorithm, we

can produce a candidate set much smaller than this upper bound. To achieve this

goal, we kept four principles in mind while designing a generation algorithm:

(a) We only want to generate valid grid diagrams, that is grids that do not have

X- and O-markings in the same grid square.

(b) We only want to generate grid diagrams corresponding to knots, and not links.

(c) We want to avoid generating two grid diagrams which are equivalent to one

another via cyclic row and column permutations, since these correspond to the

same Legendrian knot.

(d) We want to avoid generating grids which are immediately destabilizable.

Eventually, we settled on a three-step generation algorithm that kept these principles

in mind. First, we generated a list of X-permutations, none of which were equivalent

to one another via a cyclic permutation. Second, for each X-permutation, we found

all O-permutations corresponding to valid diagrams that were not immediately desta-

bilizable. Finally, for each grid G = (X,O), we verified that it represented a knot and

not a multiple-component link. By implementing this algorithm, we obtained a set

of approximately 89 million grids, significantly fewer than the upper bound of 1014.
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Listing X-Permutations

The first way we kept our set small was by finding a small subset of permutation

Σ ⊂ S10, such that we only needed to consider grids of the form (X,O) with X ∈ Σ.

To find this small set Σ, we implemented the following algorithm. 1

Algorithm 3.1.1. Generate X-Permutations

On any input:

1. Let Σ be the set of all permutations X ∈ S10 such that X0 = 0.

2. For each X ∈ Σ:

a. Consider the grid GX described by X created by marking the square

(i,Xi) with an X for each i ∈ [10].

b. For each column col ∈ [n]:

i. Define row = Xcol , then construct the following permutation:

X′
i = (Xi+col − row) mod 10

Remember that were are taking indices mod 10. Note that this

permutation describes a gridGX′ , obtained by cyclically permuting

the rows and columns of GX so that the X-marking at square

(col ,Xcol) is moved to the bottom-left corner.

ii. If X′ ̸= X and X′ ∈ Σ, remove X′ from Σ.

3. Return Σ.

In plainer English, this algorithm generates a small subset of permutations Σ ⊂

S10, and then further shrink it by removing permutations corresponding to grids that

1Throughout this algorithm and the rest of this thesis, [n] shall denote the set {0, 1, ..., n− 1}.
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are related by cyclic row and column permutations. We now show that we can build

any Legendrian knot of arc index 10 out of an X-permutation in this set.

Theorem 3.1.2. Let Σ ⊂ S10 be the set of permutations returned by Algorithm 3.1.1.

Every Legendrian knot Λ of Legendrian grid size 10 can be represented by a grid

diagram G = (X,O), where X ∈ Σ and O ∈ S10.

To prove this theorem, we must first introduce some notation, and then prove a

pair of lemmas. Let Λ(X) denote the set of Legendrian knots described by planar

grid diagrams of the form G = (X,O). Then, given a set of permutations Σ, let

Λ(Σ) =
⋃

X∈Σ Λ(X). Next, consider the following lemmas:

Lemma 3.1.3. Every Legendrian knot of arc index 10 can be represented by a planar

grid diagram with an X in the bottom left corner.

Proof. Let Λ be any arc-index 10 Legendrian knot. Choose an arbitrary size-10 planar

grid diagram representing Λ, denoted G = (X,O). Next, move the bottom row of G

to the top X0 times, so that the resulting grid G′ has an X in the bottom left corner.

By Theorem 2.2.2, Λ(G) = Λ(G′) = Λ. Thus, Λ is represented by the planar grid

diagram G′ which has an X in the bottom left corner.

Lemma 3.1.4. Let X and X′ be permutations in S10, and let GX (GX′) be the grid

diagram obtained by marking the grid square in column i, row Xi (X′
i) with an X.

Suppose GX and GX′ are related by a sequence of cyclic row and column permutations.

Then Λ(X) = Λ(X′).

Proof. Let Λ be an arbitrary Legendrian knot in Λ(X), and choose a planar grid

diagram of the form G = (X,O) that represents Λ. Now, transform G by performing

the same sequence of cyclic row and column permutations that relate GX and GX′ .

This will transform G into a grid of the form G′ = (X′,O′), but by Theorem 2.2.2 does
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not chance the Legendrian knot type. Consequently, Λ ∈ Λ(X′), so Λ(X) ⊂ Λ(X′).

After running the same argument in reverse, we conclude that Λ(X) = Λ(X′).

We are now prepared to prove Theorem 3.1.2.

Proof. Consider the set Σ in the algorithm described above. Step 1 of the algorithm

initializes Σ as the set of permutations X ∈ S10 with X0 = 0, and therefore Λ(Σ) at

this step is the set of all Legendrian knots described by a grid of size 10 with an X in

the bottom left corner. By Lemma 3.1.3, we know that Λ(Σ) at this point contains

every Legendrian knot of grid size 10.

Next, consider the reductions of Σ during Step 2. Every time a permutation X′

is removed from Σ in Step 2bi, we know that X′ is related to another permutation

X ∈ Σ by a sequence of row and column permutations, and therefore by Lemma 3.1.4,

Λ(X) = Λ(X′). But this means that all of the knots in Λ(Σ) that would be lost by

removing X′ from Σ are still contained in Λ(Σ) through Λ(X). Thus, none of the

reductions of Σ in Step 2 affect Λ(Σ).

This algorithm yields a set of 36,336 unique X-permutations, a factor of 100 im-

provement over the 36 million permutations in S10. With this small set, we may build

any Legendrian knot of grid size 10.

Finding O-Permutations

In this section, we use the set Σ generated in Algorithm 3.1.1 to build a set SNA

which contains at least one grid diagram for each Legendrian knot of arc index 10.

(NA stands for no-adjacency; the meaning will become clearer later in the section.)

Before describing an algorithm to accomplish this task, we must introduce a the

exact cover problem. Let U be a set, and let C be a collection of subsets of U , that

is C = {s1, s2, ...} such that each si ⊂ U . The exact cover problem asks if there

is a subcollection S ⊂ C that exactly covers U . In other words, can we find a set
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S = {sk1 , sk2 , ...} such that (1) ski ∩ skj = ∅ whenever i ̸= j and (2)
⋃

ski∈S
= U .

Knuth’s Algorithm X, first described by Donald Knuth in [Knu00] and implemented

as Python code in [Ass23], finds all solutions this problem; that is, it returns ever

subcollection S that exactly covers U . This algorithm, used elsewhere to solve Sudoku

and other puzzles, is the key to generating SNA.

Algorithm 3.1.5. Generate O-Permutations

On input X ∈ S10:

1. Let SNA,X = ∅.

2. Create an empty 10× 10 grid, and label the grid spaces in row-major order

from 0 to 99.a

3. For each i ∈ [10]:

a. Place a marker in the grid space at column i, row Xi.

b. Place four markers in the grid spaces directly above, directly below,

directly to the left, and directly to the right of column i, row Xi. Wrap

around the sides of the grid as necessary; for example, if you are asked

to place a marker directly to the right of the rightmost column, place

it in the leftmost column. This process is illustrated in Figure 3.1.

4. Let U = {r0, r1, ...r9, c0, c1, ..., c9}.

5. For each unmarked square numbered n, let i be its row and j be its column.

(Note that i = ⌊n/10⌋ and j = n mod 10.) Then construct the set si =

{ri, cj} ⊂ U . Let C denote the collection of sets si constructed in this

manner.
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6. Invoke Knuth’s Algorithm X to find all solutions to the exact cover problem

over universe U and collection C. Each solution is a subcollection S ⊂ C

with |S| = 10. For each of these subcollections:

a. Denote the elements of S as sn0 , ...sn9 , and recall that each snk
=

{ri, cj} for some i, j. Construct a permutation O ∈ S10 as follows. For

each k ∈ [10], let i = ⌊nk/10⌋, and j = nk mod 10, so that i, j are the

row and column of the square labeled nk. Then, let Oj = i.

b. Add (X,O) to SNA,X.

7. Return SNA,X.

aIn row-major order, the top-left square is numbered zero, and the remaining squares are
labeled in increasing order moving left to right along a row, and moving to the leftmost square
of the next column at the end of each row. See Figure 3.1 for an example of a grid with squares
numbered in row-major order.

X

X

X

X

X

X

X

1 2

7 8 13

14 18 19

24 25

31 33

37 41

44 45

Figure 3.1: An illustration of the blocked grid created in Step 3 of Al-
gorithm 3.1.5, for a small 7 × 7 example grid. Left: A grid diagram with
X-markings specified by the permutation X = (0, 2, 4, 5, 1, 6, 3). Right: The resulting
blocked grid, where the unblocked squares are labeled in row-major order (as in Step
2).

To generate SNA, we ran this subroutine on every input X ∈ Σ (where Σ is

the output of Algorithm 3.1.1), and then took the union of all of the outputs. To

prove the correctness of this approach, we must show that every non-destabilizable
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Legendrian knot of grid size 10 is represented by some G ∈ SNA. To do so, we begin

by introducing some terminology and proving a pair of lemmas.

Definition 3.1.6. A planar grid diagram G = (X,O) ∈ (S10)
2 is adjacency-free if

no X is placed horizontally or vertically adjacent to an O (including adjacencies

that wrap around the edges of the grid diagram). This corresponds to the following

combinatorial conditions on X and O:

For all i ∈ [10], |Xi −Oi| mod 10 ̸= 1

For all i ∈ [10], Xi ̸= Oi+1 and Oi ̸= Xi+1

Recall that we are taking indices mod 10.

Definition 3.1.7. Let ΛNA(X) be the set of Legendrian knots that may be represented

by a size-10 adjacency-free grid diagram of the form (X,O). Then, given a set of

permutations Σ ⊂ S10, Let ΛNA(Σ) =
⋃

X∈Σ ΛNA(X).

Lemma 3.1.8. When run on input X ∈ S10, Algorithm 3.1.5 returns the set of all

adjacency-free grids described by permutations (X,O) where O ∈ S10.

Proof. First, we must prove that the O defined in Step 6a is a permutation. Consider

a subcollection S returned by Knuth’s Algorithm X in step 6. Because S is an exact

cover of U , and each set in sn ∈ S is a 2-element subset of U , we know that |S| = 10.

Next, recall that each set sn = {ri, cj} ∈ S corresponds to the n-th square in a size-10

grid (when labeled in row-major order), where ri and cj are the row and column of

square n. Now, since S is an exact cover, each ri and each cj may only appear in one

sn. Therefore, for two sets sn, sn′ ∈ S, we know that squares n and n′ are in neither

the same row nor the same column. Since this property holds for every pair of squares

represented by sets in S, we conclude that S must contain a set representing exactly
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one square in each row and one square in each column. This is the exact condition

needed to convert a set of squares into a permutation in S10.

Having established that the grids generated in Step 6b are indeed valid grid dia-

grams, we now consider their properties. Let SNA,X denote the set of grids returned

by this algorithm when run on input X, and let B denote the set of adjacency-free

grids described by permutations (X,O) with O ∈ S10.

• (⊂) Suppose G = (X,O) ∈ SNA,X, and suppose for purposes of contradiction

that G is not adjacency-free. Then there must be some column such that an O

is placed one square vertically above or below an X, or there must be some row

such that an O is placed on square horizontally above or below an X. Now, the

placements of O-markings in G correspond to the set of squares S chosen by

Knuth’s Algorithm X in Step 6. However, in Step 3, every square horizontally

or vertically adjacent to an X was blocked. Therefore, it is impossible for Step

6 to have selected a square that is adjacent to an X. This is a contradiction, so

we conclude that G must be adjacency free. Therefore, SNA,X ⊂ B.

• (⊃) Suppose G = (X,O) ∈ B, and consider the set of squares n0, ..., n9 cor-

responding to the positions of Os in G. Since G is adjacency-free, none of

these squares were blocked during Step 3, and thus each of these squares were

converted into a set si in Step 5. Next, since O is a permutation, the set

S = {sn0 , ..., sn9} will exactly cover U . Therefore, S will be found by Knuth’s

Algorithm X in step 6, and the algorithm will return (X,O). This shows that

for any G ∈ B, G ∈ SNA,X, and therefore B ⊂ SNA,X.

In conclusion, the set of grids returned by the above algorithm is exactly equal to the

set of adjacency-free grids described by permutations (X,O) for some O ∈ S10.

Lemma 3.1.9. Suppose G is a 10×10 planar grid diagram that is not adjacency-free.

Then Λ(G) is not a non-destabilizable Legendrian knot of grid size 10.
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Proof. By assumption, this grid contains an X-marked square and an O-marked

square which are vertically or horizontally adjacent. (If the adjacency wraps around

the edge of the grid, simply perform a cyclic row and column permutation to move

the adjacency away from the edge.) By Theorem 2.2.2, we may commute the row or

column containing these adjacent marked squares until three markings are brought

into an L-shape, at which point the grid may be destabilized. The resulting grid G′

will be a 9 × 9 grid diagram such that either Λ(G′) = Λ(G) or S±(Λ(G′)) = Λ(G)

(depending on what type of destabilization was performed). In the first case, we

see that Λ(G) may be represented by a grid of size less than 10, the grid size of Λ

is less than 10. In the second case Definition 2.2.4 tells us that Λ(G) is not non-

destabilizable.

We are now prepared to prove that the set SNA does indeed contain a grid repre-

senting every non-destabilizable Legendrian knot of grid size 10.

Theorem 3.1.10. Let SNA =
⋃

X∈Σ SNA,X, where SNA,X is the set of grids returned

by Algorithm 3.1.5 when run on input X ∈ S10, and Σ is the set of permutations

returned by Algorithm 3.1.1. Every non-destabilizable Legendrian knot of grid size 10

is represented by some planar grid diagram G ∈ SNA.

Proof. By Lemma 3.1.8, we know that SNA (as defined in Theorem 3.1.10) is a set

of all adjacency-free grid diagrams of the form (X,O), where every X is in the set Σ

returned by Algorithm 3.1.1. Furthermore, Theorem 3.1.2 tells us that every Legen-

drian knot (and therefore every non-destabilizable Legendrian knot) of grid size 10

may be represented by a grid of the form (X,O) where X ∈ Σ. Now, by Lemma 3.1.9,

zero knots in Λ(Σ) − ΛNA(Σ) are non-destabilizable Legendrian knots of grid size

10. Therefore, every non-destabilizable Legendrian knot of grid size 10 must be in

ΛNA(Σ), and therefore can be represented by a grid diagram G = (X,O) ∈ SNA.
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Running Algorithm 3.1.5 on every X ∈ Σ (where Σ is the output Algorithm 3.1.1),

we obtain about 200 million grids, far less than the upper bound of 1014 established

earlier in the chapter.

Removing Links

In the previous section, we generated a set of about 200 million adjacency-free grids.

However, not all of these grids represent knots; some of them represent links with

two or more components. We filtered out these links by tracing the grid diagram

from X to O along vertical lines, and O to X along horizontal lines. If we found a

closed loop before encountering all 20 markings, then we knew that it represented a

multiple-component link, so we removed it from the set. After discarding grids in this

way, we were left with a set of 89,763,984 grids, which we knew contained at least one

grid diagram representing each non-destablizable Legendrian knot of grid size 10.
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Section 3.2

Reducing the Set of Grids

In the previous section, we outlined a process to generate a set of grid diagrams S,

and proved that every Legendrian knot of Legendrian grid size 10 is represented by

some diagram G ∈ S. This algorithm returned a set of 89 million distinct grids.

However, there are two reasons that this set was far from the smallest possible set

containing all Legendrian knots of Legendrian grid size 10.

(a) Some grids G ∈ S are destabilizable or have grid size less than 10.

(b) The set S might contain duplicate grids; that is that two different grids G1,G2 ∈

S may represent the same Legendrian knot.

Therefore, to find a minimal set of grids, we attempted to remove both destabilizable

and duplicate grids. To do so, we adopted the following approach. For every grid G ∈

S, we generated a ‘bubble’ of equivalent grids using a combination of commutation

moves, stabilization moves, and cyclic row and column permutation moves. We then

used these bubbles to hunt for destabilizable grids and Legendrian isotopies between

grids.

Generating Bubbles

Given a grid diagram G, an easy way to generate several equivalent grid diagrams is

to make a number of cyclic row and column permutations. The following does exactly

that, returning all grids that can be reached from G via cyclic row and columns, and

have an X in the bottom left corner. For a single input, this algorithm typically

outputs ten grids.

Algorithm 3.2.1. Generate Cyclic-Permutation-Equivalent Grids
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On input G = (X,O) ∈ (S2
10):

1. Let S = ∅.

2. For col ∈ [10]:

a. Let row = Xcol . Then define two new permutations X′,O′ ∈ (S10)
2 as

follows, recalling that indices are taken mod 10:

• X′
i = (Xi+row − col) mod 10

• O′
i = (Oi+row − col) mod 10

b. Add the grid G′ = (X′,O′) to S.

3. Return S.

Lemma 3.2.2. Let S be the set of grids returned by Algorithm 3.2.1 when run on

input G. Then Λ(G′) = Λ(G) for every grid G′ ∈ S.

Proof. Consider an arbitrary grid G′ ∈ S, added to S in Step 2c while the column

counter had value col . It is related to G by the following sequence of cyclic row and

column permutations. Starting with G, first permute the bottommost row to the top

Xcol times. Then permute the leftmost column to the right col times. Figure 3.2 illus-

trates this sequence. Examining this figure, it is evident that the pair of permutations

(X′,O′) generated in Step 2a describes the rightmost grid. Since G′ = (X′,O′) and

G are related by a sequence of cyclic row and column permutations, Theorem 2.2.2

tells us that Λ(G) = Λ(G′).

Next, we wrote an algorithm to perform row and column commutations. Given a

grid diagram G, it checks if each commuting each pair of adjacent rows or columns is a

legal grid move, and if so, returns the resulting grid. There are 18 possible row and/or

column commutations for every grid. However, since not all of these commutations
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Figure 3.2: An example of how Algorithm 3.2.1 generates grids diagrams,
using a small 5×5 grid diagram. Left: A grid diagramG specified by permutations
X = (0, 1, 3, 4, 2), O = (3, 4, 1, 2, 0). Center: The result of moving the bottommost
row of G to the top 3 times. Right: The result of diagram is the result of moving the
rightmost column of the center diagram to the left 2 times. This would be the grid
added to S at Step 2b of Algorithm 3.2.1 with col = 2 (Xcol = 3). Observe that there
is an X in the bottom left corner of this diagram.

are legal, this algorithm typically outputs around 5 grids.

Algorithm 3.2.3. Generate Commutation-Equivalent Grids

On input G = (X,O) ∈ (S2
10):

1. Let S = ∅.

2. For col ∈ [9]:

a. Check if the commutation of columns col and col + 1 would be a

legal Legendrian grid move. To do so, let a = min(Xcol ,Ocol), b =

max(Xcol ,Ocol), c = min(Xcol+1,Ocol+1), and d = max(Xcol+1,Ocol+1).

Then, check if any one of the following four conditions is true.

a > d

b < c

a > c and b < d

a < c and b > d
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b. If so, define two new permutations X′,O′ ∈ (S10)
2 as follows:

X′
i =


Xcol i = col+ 1

Xcol+1 i = col

Xi otherwise

O′
i =


Ocol i = col+ 1

Ocol+1 i = col

Oi otherwise

c. Add the grid G′ = (X′,O′) to S.

3. For row ∈ [9]:

a. Check if the commutation of rows row and row+1 is a legal Legendrian

Reidemeister move, following a similar procedure as the one used in

Step 2.

b. If so, define two new permutations X′,O′ ∈ (S10)
2 as follows:

X′
i =


row Xi = row + 1

row + 1 Xi = row

Xi otherwise

O′
i =


row Oi = row + 1

row + 1 Oi = row

Oi otherwise

c. Add the grid G′ = (X′,O′) to S.

4. Return S.

Lemma 3.2.4. Let S be the set of grids returned by Algorithm 3.2.3 when run on

input G. Then Λ(G′) = Λ(G) for every grid G′ ∈ S.

Proof. Consider an arbitrary grid G′ ∈ S, and suppose that G′ was added to S in

Step 2c while the column counter had value i. I claim that G′ is related to G by the

commutation of columns i and i, and that the commutation of those two columns is

a legal Legendrian grid move. Now, since Algorithm 3.2.3 reaches Step 2c, then one
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of the conditions in Step 2a must be satisfied. Working case-by-case:

• If a > d, then the X and O in column i are both ‘above’ the X and O in column

i+1. Thus, the vertical lines in columns i and i+1 are disjoint, so the column

commutation is allowed.

• If b < c, then the X and O in column i are both ‘below’ the X and O in column

i+1. Thus, the vertical lines in columns i and i+1 are disjoint, so the column

commutation is allowed.

• If a > c and b < d, then the X and O in column i are located ‘between’ the

X and O in column i + 1. Thus, the vertical lines in columns i and i + 1 are

nested, so the column commutation is allowed.

• If a < c and b > d, then the X and O in column i + 1 are located ‘between’

the X and O in column i. Thus, the vertical lines in columns i and i + 1 are

nested, so the column commutation is allowed.

Thus, Algorithm 3.2.3 will only reach Step 2c if the commutation of columns i and

i + 1 is a legal Legendrian grid move. See Figure 3.3 for an example of a grid

diagram with such a legal column commutation. Examining this figure, we see that

the permutations (X′,O′) generated in Step 2b indeed describe the grid generated

by commuting columns i and i + 1. Thus, since G′ = (X′,O′) is related to G by a

Legendrian grid move, Λ(G′) = Λ(G). Finally, if G′ was added to S in Step 3c instead

of 2c, an identical argument shows that G′ and G are related by a row commutation,

and we again have Λ(G′) = Λ(G).

Next, we used our cyclic-permutation and commutation algorithms to implement

the following bubble-generation algorithm. This algorithm works by alternating calls

to Algorithm 3.2.3 and Algorithm 3.2.1 to build a growing set of grid diagrams, all

of which represent the same Legendrian knot.
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Figure 3.3: Left: A local picture of a grid, showing its X- and O-markings in columns
i and i + 1. Right: The result of commuting columns i and i + 1. For this grid,
the commutation of column i and column i + 1 is possible because the markings
in column i are nested between the markings in column i + 1. Combinatorially, this
corresponds to the condition that min{Xi,Oi} < min{Xi+1,Oi+1} and max{Xi,Oi} >
max{Xi+1,Oi+1}.

Algorithm 3.2.5. Generate Bubble

On inputs (S, depth), where S is a set of grids such that each grid represents the

same Legendrian knot Λ and depth is an integer depth parameter:

1. Initialize S = S and lastLayer = S.

2. Repeat the following procedure depth times:

a. Initialize T1 = ∅. Then, for each gridG ∈ lastLayer, find all commutation-

equivalent grids by running Algorithm 3.2.3 on input G, and add those

grids to T1. Note that by Lemma 3.2.4, every grid G′ ∈ T1 satisfies

Λ(G′) = Λ(G) = Λ.

b. Initialize T2 = ∅. Then, for each gridG ∈ T1, find all cyclic-permutation-

equivalent grids by running Algorithm 3.2.1 on input G, and add those

grids to T2. Note that by Lemma 3.2.2, every grid G′ ∈ T2 satisfies

Λ(G′) = Λ(G) = Λ.
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c. Let lastLayer = T2 − S. Then, add all grids in lastLayer to S.

3. Return S.

Theorem 3.2.6. Let S be a set of grids such that each grid represents the same

Legendrian knot Λ, and let S be the set of grids returned by Algorithm 3.2.5 when

run on inputs (S, depth). Then Λ(G′) = Λ for every grid G′ ∈ S.

Proof. We prove this by induction on the depth parameter depth. Fix an input set

S, and let Sd denote the output of the algorithm when depth = d. For d = 0, S0 = S

and the theorem is trivially true. When depth = 1, at the end of Step 2 every grid

G′ ∈ lastLayer ⊂ T2 satisfies Λ(G′) = Λ; and since S1 = S ∪ T2, the theorem holds

again. Finally, notice that Sd+1 equals the output of the algorithm when run on inputs

(Sd, 1). Therefore, by the principle of induction, the theorem holds for all possible

values of depth.

By our order-of-magnitude estimates, we can estimate that |T1| ≈ 5|lastLayer|

and |T2| ≈ 10|T1|. Therefore, in each iteration of the loop in Step 2, it is possible

that lastLayer grows by a factor of 50. In practice, this number is diminished by the

presence of identical grids, meaning lastLayer typically grows by a factor between 1

and 2. Nonetheless, even with ‘small’ depth parameters on the order of 20 or so, it

is possible to generate hundreds of thousands of grid diagrams that all represent the

same Legendrian knot.

Eliminating Duplicate Grids

Using the bubble-generation algorithm described in the previous section, we now turn

to the problem of shrinking our set of grids S, while preserving the property that S

contains at least one grid diagram for each non-destabilizable Legendrian knot of grid

size 10. To do so, we implemented the following algorithm, which searches both for

destabilizable grids and for isotopies between different grids.
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Algorithm 3.2.7. Cut Grids

On input (S, depth), where S is a set of grids and depth is an integer depth

parameter:

1. Let S = S, and let n = |S|.

2. Number the grids in S as G0, ...,Gn−1. Then, for each grid Gi, construct a

set of grids Ti by running Algorithm 3.2.5 on inputs (Gi, depth). Note that

by Theorem 3.2.6, every grid G′
i ∈ Ti satisfies Λ(G′

i) = Λ(Gi).

3. For each i ∈ [n], if Ti contains a grid with an adjacency, remove Gi from S.

4. For each pair (i, j) ∈ [n]2 with j > i, if the intersection of Ti and Tj is

nonempty, remove Gj from S.

5. Return S.

To prove the correctness of this algorithm, we must show that it never removes

from S all grids that represent a certain non-destabilizable knot type.

Lemma 3.2.8. Let S be the set of grids returned by Algorithm 3.2.7 when run on

inputs (S, depth). For every grid G in S, if Λ(G) is a nondestablizable Legendrian

knot of grid size 10, then there exists a grid G′ ∈ S such that Λ(G) = Λ(G′).

Proof. Consider an arbitrary Gj ∈ S. If Gj was never removed from S, then the

lemma holds trivially for G′ = Gj. If Gj was removed from S in Step 3, then we

know by Lemma 3.1.9 that Λ(Gj) is destabilizable. Finally, if Gj was removed from

S in Step 4, then we know that there exists a grid Gintermediate in both Ti and Tj for

some i < j, and therefore Λ(Gj) = Λ(Gintermediate) = Λ(Gi). Thus, we may consider

the nonempty set of grids in S that are equivalent to Gj, i.e. the set of grids that

represent Λ(Gj). Note that the lowest-numbered grid in this set (which we denote
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Gn0) may never be removed by Step 4. Therefore, after Algorithm 3.2.7 completes

Step 4, we may consider two cases. First, if Gn0 remains in S, then the lemma is

satisfied with G′ = Gn0 . On the other hand, if Gn0 does not remain in S, it must

have been removed in Step 3, in which case Λ(Gj) is destabilizable and the lemma is

still satisfied.

Lemma 3.2.8 implies that Algorithm 3.2.7 removes only duplicate grids or grids

corresponding to destabilizable Legendrian knots. Therefore, we may safely run this

algorithm to reduce the size of our set S of grids, knowing that we never accidentally

remove all grids representing destabilizable Legendrian knot type.

Incorporating Stabilizations

Notice that the algorithm in the previous section does not incorporate stabilization

moves. However, it is possible that two grids may be transformed into one another

only through a sequence of stabilization and destabilization moves. To handle these

cases, we began by implementing the following algorithm. This algorithm accepts a

10× 10 grid diagram G, stabilizes it at every marking, and returns the resulting set

of 11×11 grid diagrams. Theorem 2.2.2 tells us that at every X- or O-marking, there

are two ways to stabilze G while preserving Legendrian knot type. Therefore, this

algorithm typically outputs 40 grids. (It will output fewer than 40 grids only if two

different stabilization moves result in identical grids.)

Algorithm 3.2.9. Stabilize Grid

On input G = (X,O) ∈ (S10)
2:

1. Let S = ∅.

2. For col ∈ [10]:
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a. Construct permutations X′,O′ by performing an X:NE stabilization

on the X in column col . To do so, let row = Xcol . Then construct

permutations X′ and O′ as follows:

X′
i =



Xi i < col ,Xi < row

Xi + 1 i < col ,Xi > row

Xi−1 i > col + 1,Xi < row

Xi−1 + 1 i > col + 1,Xi > row

row + 1 i = col

row i = col + 1

and

O′
i =



Oi i < col ,Oi < row

Oi + 1 i < col ,Oi ≥ row

Oi−1 i > col + 1,Oi < row

Oi−1 + 1 i > col + 1,Oi ≥ row

row i = col

Finally, let G′ = (X′,O′) and add G′ to S.

b. Repeat step 2a three more times. The first time, perform an X:SW

stabilization at the X in column col . The second time, perform an

O:NE stabilization at the O in column col . The third time, perform

an O:SW stabilization at the O in column col .

3. Return S.

Lemma 3.2.10. Let S be the set of grids returned by Algorithm 3.2.9 when run on

input G. Then Λ(G′) = Λ(G) for every grid G′ ∈ S.
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Proof. Consider an arbitrary grid G′ ∈ S, and suppose G′ = (X′,O′) was added to S

in Step 2a when the the column counter had value col . Figure 3.4 demonstrates that

the permutations X′,O′ describe a grid that is related to G by an X:NE stabilization

on the X in column col . Since G′ and G are related by a Legendrian grid move,

Λ(G′) = Λ(G). Finally, if G′ was added to S in Step 2b, G′ must be related to G by

one of the moves identified in Theorem 2.2.2, again yielding Λ(G′) = Λ(G).

X

X

X

X

X

O

O

O

O

O

X

X

X

X

X

X

O

O

O

O

O

O

Figure 3.4: Left: The grid diagram described by permutations X = (0, 1, 2, 3, 4),
O = (2, 3, 4, 0, 1). Right: The grid diagram obtained by performing an X:NE stabi-
lization at the X in column 2 of the diagram at left. It is described by permutations
X′ = (0, 1, 2, 3, 4, 5, 6), O = (3, 4, 5, 2, 0, 1). Note that these permutations are the
permutations generated by Algorithm 3.2.9 Step 2a when run on input (X,O), when
the column counter col = 2. (This example uses 5× 5 rather than 10 grid diagrams,
but the size of the grid is unrelated to the correctness of the algorithm.)

We then used this stabilization algorithm to search for isotopies involving a single

stabilization and destabilization move.

Algorithm 3.2.11. Cutting Grids, with Stabilization

On inputs S, depth, where S is a set of grids and depth ∈ N:

1. Let S = S, and let n = |S|.

2. Number the grids in S as G0, ..., Gn−1. Then, for each grid Gi, construct a

set of stabilized grids Ti by running Algorithm 3.2.9 on inputs (Gi, depth).

By Lemma 3.2.10, every grid G′ ∈ Ti satisfies Λ(G′) = Λ(Gi).
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3. For i ∈ [n]:

a. Let Ui = ∅. Then, for each grid Gstab ∈ Ti, find all cyclic-permutation-

equivalent grids by running Algorithm 3.2.1 on input Gstab, and add

those grids to Ui. By Lemma 3.2.2, every grid G′ ∈ Ui satisfies Λ(G′) =

Λ(Gi).

b. Generate a bubble of grids Vi by running Algorithm 3.2.5 on inputs

(Ui, depth). By Theorem 3.2.6, every grid G′ ∈ Vi satisfies Λ(G′) =

Λ(Gi).

4. For each pair (i, j) ∈ [n]2 with j > i, if the intersection of Vi and Vj is

nonempty, remove Gj from S.

5. Return S.

Just as before, we must show that this algorithm never removes all grid diagrams

representing a single Legendrian knot type.

Lemma 3.2.12. Let S be the set of grids returned by Algorithm 3.2.11. For every

G ∈ S, if Λ(G) is a Legendrian knot of grid size 10, then there exists a grid G′ ∈ S

such that Λ(G′) = Λ(G).

Proof. First, I claim that if a grid Gj ∈ S is removed from S in Step 4, then there

exists a grid Gi ∈ S with i < j and Λ(Gi) = Λ(Gj). To see this, notice that if Gj is

removed from S in Step 4, then there must exist a grid G′ in both Vi and Vj, where

i < j. Therefore, there must exist a grid Gi with i < j and Λ(Gi) = Λ(G′) = Λ(Gj).

The remainder of the proof proceeds similarly to the proof of Lemma 3.2.8. Con-

sider an arbitrary Gj ∈ S. If Gj was never removed from S, then the the lemma holds

trivially with G′ = Gj. On the other hand, Gj was removed from S in Step 4, consider

the nonempty set of grids that are equivalent to Gj, and take the lowest-numbered
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grid in this set, Gn0 . As shown above, this grid can never be removed from S, so our

lemma holds with G′ = Gn0 .

Lemma 3.2.12 implies that Algorithm 3.2.11 only removes duplicate grids. There-

fore, we may safely run this algorithm to reduce the size of our set S of grids, knowing

that we never remove all grids representing a Legendrian knot.
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3.3 Organizing the Candidate Set Generating Grids

Section 3.3

Organizing the Candidate Set

The ‘bubble’ algorithms outlined in the previous section are subject to serious lim-

itations. The set of grids we found in Section 3.1 contains nearly 100 million grids;

simultaneously storing millions or even thousands of bubbles is memory-intensive, es-

pecially when the depth parameters and size of these bubbles are large. Furthermore,

using these bubbles to search for Legendrian-isotopic grid pairs requires comparing

the bubble of every grid to the bubble of every other grid, which has quadratic runtime

in the number of grids.

To overcome these limitations, we took advantage of knot invariants. If we find

that grids G1 and G2 have different invariants, then we immediately know that G1

and G2 represent different Legendrian knots Λ, and it is no longer necessary to look

for isotopies by comparing their bubbles. This suggests the following approach:

(a) Compute a handful of knot invariants for each grid in our set.

(b) Place grids into ‘buckets’, where each bucket is filled only with grids with match-

ing invariants.

(c) One at a time, apply the bubble algorithm to grids in each bucket.

This approach addresses the memory constraint, because we must now only store the

bubbles for grids in a single bucket rather than for all grids in our broader set. This

procedure also addresses the runtime constraint, because the runtime is quadratic in

the size of each bucket and not in the size of the broader set. Furthermore, the bubble

and cutting algorithms of each bucket are completely independent and can thus be

run in parallel. This has the advantage of further improving the runtime, at the cost

of requiring more memory.
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To implement this approach, we bucketed grids according to four properties. First,

we bucketed by the classical Legendrian knot invariants tb and r. Next, we refined

this bucketing with the Alexander polynomial. Last, we bucketed by topological knot

type. In this section, we describe the algorithms used to compute these properties.

Organizing by Classical Invariants

We began by bucketing by the classical Legendrian knot invariants, the Thurston-

Benneqin number tb and the rotation number r . To compute these invariants, we

drew upon definitions and ideas presented in [OSS15].

Definition 3.3.1. First, define a partial ordering on R2 as follows. For two points

a = (ax, ay) and b = (bx, by), we say that a > b if ax > bx and ay > by. Now, let P,Q

be finite sets of points in R2. Denote the elements of these sets as P = {p1, ..., pn}

and Q = {q1, ..., qm}. Define a function J as follows:

J (P,Q) =
1

2

n∑
i=0

m∑
j=0

∑
pi>qj

1 +
1

2

n∑
i=0

m∑
j=0

∑
qj>pi

1

Definition 3.3.2. A grid state of an n × n toroidal grid diagram G is a collection

of points on that diagram, such that exactly one point lies on each vertical and

horizontal circle. Note that for a toroidal grid diagram, the vertical / horizontal

circles appear as vertical / horizontal lines. Furthermore, the topmost line is the

same as the bottommost, and the leftmost the same as the rightmost.

Definition 3.3.3. The grid state x+ of a grid diagram G = (X,O) is the set of points

that lie on the upper right-hand corners of the grid squares marked with an X. The

grid state x− of a grid diagram is the set of points that lie on the lower left-hand

corners of the grid squares marked with an X. For an example of these grid states,

see Figure 3.5.
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Figure 3.5: Left: The x− grid state of the grid diagram described by permutations
X = (3, 4, 1, 2, 0),O = (0, 1, 3, 4, 2), where the black dots represent the points in x−.
Right: The x+ grid state of the same grid diagram.

With these definitions in mind, we implemented the following algorithm to com-

pute the classical invariants.

Algorithm 3.3.4. Computing tb, r

On input G = (X,O) ∈ (Sn)
2:

1. Construct three sets of points as follows:

• PO = {(i+ 0.5,Oi + 0.5) : i ∈ [n]}

• x− = {(i,Xi) : i ∈ [n]}

• x+ = {((i+ 1) mod n,Xi+1) : i ∈ [n]}

where we remember to take indices mod n. Note that PO corresponds to the

locations of the O markings, where these markings are taken to be located

at the center of their grid squares.

2. Compute the Maslov gradings of the x+ and x− states as follows:

• MO(x
+) = J (x+,x+)− 2J (x+,PO) + J (PO,PO) + 1.

• MO(x
−) = J (x−,x−)− 2J (x−,PO) + J (PO,PO) + 1.

3. Let tb = 1
2
(MO(x

−) +MO(x
+))− 1, and let r = 1

2
(MO(x

−)−MO(x
+)).
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4. Return (tb, r).

Theorem 3.3.5. Let (tb, r) be the output of Algorithm 3.3.4 when run on input G.

Then tb = tb(Λ(G)) and r = r(Λ(G)).

Proof. This proof follows from definitions presented in [OSS15]. In Step 2, we cor-

rectly calculate the Maslov O-gradings of the x+ and x− states, as defined in [OSS15,

Equation 4.5]. Next, [OSS15, Theorem 12.3.2] gives us

MO(x
+) = tb(Λ)− r(Λ) + 1, MO(x

−) = tb(Λ) + r(Λ) + 1.

When we solve this system of equations for tb and r , the solutions match the values

calculated in Step 3 and returned in Step 4.

Organizing by Alexander Polynomial

After bucketing grids by their classical Legendrian invariants, we proceeded to refine

our bucketing by sorting by Alexander polynomial. To compute the Alexander poly-

nomial of a knot represented by a grid, we drew upon ideas in [OSS15]. Running

this algorithm requires that a computer perform symbolic algebra, which is often a

slow task for computers. Therefore, it was only practical to run compute Alexander

polynomials once the set of grids was already small.

Algorithm 3.3.6. Computing the Alexander Polynomial

On input G = (X,O) ∈ (S10)
2:

1. Create an 10×10 integer array denoted A, filled with zeroes. Let Ai,j denote

the integer in the i-th column and the j-th row, where the i = 0 corresponds

to the leftmost column and j = 0 corresponds to the bottommmost row.

Note that this convention choice matches the permutation description of a

grid diagram.
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2. Set every entry in the leftmost column of A to zero.

3. For col ∈ [9]:

a. For row ∈ [10]:

i. If Xcol < row ≤ Ocol , set Acol+1,row = Acol ,row + 1

ii. If Ocol < row ≤ Xcol , set Acol+1,row+1 = Acol ,row − 1

iii. Otherwise, set Acol+1,row = Acol ,row

4. Construct the 10×10 matrixMi,j, whose entries are polynomials in a formal

variable t. Set Mi,j = tAi,j (using the same convention for row and column

indices as in Step 1).

5. Take the determinant det(Mi,j), which is a polynomial in t. Then, divide

this polynomial by ±(1− t)9, multiply it by ±tl for some uniquely defined

integer l, and reduce the result to the form akt
k + ak−1t

k−1 + ... + a0 with

a0 > 0. Return the sequence [ak, ..., a0].

Theorem 3.3.7. Let L be the output of Algorithm 3.3.6 when run on input G. Then

the entries of L are the coefficients of the Alexander polynomial of Λ(G).

Proof. This proof follows from definitions presented in [OSS15]. First, recall that

[OSS15, Definition 4.5] defines the grid matrix M(G) as the matrix such that the

entry at column i, row j is the formal variable t, raised to the power of the winding

number of Λ(G) about the intersection of vertical line i and horizontal line j (which

I shall denote (i, j)). I now claim that Steps 2, 3, and 4 correctly compute M(G).

To prove this, it is sufficient to show that after Step 3, each matrix entry Ai,j

correctly matches the winding number of Λ(G) about (i, j). To show this, begin by

noticing that the strands of the knot, represented on the grid diagram as vertical

and horizontal lines connecting Xs and Os, subdivide the plane of the grid diagram
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into regions of constant winding number. Passing from left to right across an upward-

oriented strand corresponds to passing from a region of winding number w to a region

of winding number w + 1, and passing from left-to-right across a downward-oriented

strand corresponds to passing from a region of winding number w to a region of

winding number w − 1. Furthermore, the region outside all of the knot strands

clearly has winding number zero. Figure 3.6 illustrates how a grid diagram of the

left-handed trefoil divides the plane into such regions.

Figure 3.6: This grid diagram divides the plane into five regions of constant winding
number. Points inside the red region have winding number w = 0; inside the orange,
yellow, or blue regions, w = 1; and inside the green region, w = 2.

We now prove the correctness of the matrix entries by induction on the columns

of A. Notice that the entries in the leftmost column are all set to zero, because these

entries correspond to the intersection points outside the knot strands. Next, notice

that Ai+1,j = Ai,j + 1 whenever Xi < j ≤ Oi. Since Xs connect to Os vertically, this

means that the regions containing intersection points (i, j) and (i+1, j) are separated

by a single upward-oriented strand, and therefore the winding number at (i + 1, j)

must be exactly one greater than the winding number at (i, j). By similar arguments,

we see that Ai+1,j = Ai,j − 1 whenever (i, j) and (i + 1, j) are separated by a single

downward-oriented strand, and Ai+1,j = Ai,j whenever (i, j) and (i + 1, j) lie in the

same region on the plane. Thus, if the entries in column i correctly match the winding
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numbers at the intersection points, then the entries in column i + 1 correctly match

as well. But we know that the entries in the zeroth column are correct, and so the

entries in every column are correct as well.

Since Ai,j correctly stores the winding numbers at the intersection points, Mi,j

as defined in Step 4 is indeed the grid matrix M(G). Now, by [OSS15, Theorem

3.36], the determinant of the grid matrix divided by (1− t)9 is indeed the Alexander

polynomial of Λ(G), up to a factor of ±tl for some integer l. However, this factor does

not affect the polynomial coefficients, so the sequence returned in Step 5 is indeed

the coefficients of the Alexander polynomial of Λ(G).

Organizing by Topological Type

After bucketing grids by their Alexander polynomial, we further refined the bucketing

by topologically identifying the grids using SnapPy [CDGW] and SageMath [The23].

Since the topological type of a knot determines its Alexander polynomial, bucketing

by topological type in theory renders obsolete our efforts to bucket by Alexander

polynomial. However, interfacing the SnapPy and SageMath databases with our set of

grids was a serious challenge. Therefore, this bucketing was performed chronologically

last, and our Alexander polynomial bucketing was a temporary substitute.

To interface SnapPy and SageMath with our set of grids, it was necessary to write

a script to determine the PD (‘planar diagram’) code of a grid diagram. Given a

knot diagram, the PD code is determined algorithmically. Starting from an arbitrary

point, traverse the knot and label the knot strands in increasing order, incrementing

the strand counter every time you pass through a crossing. Then, for each crossing,

write down a symbol Xijkl, where the indices denote the strands at each crossing,

ordered counterclockwise starting from the incoming lower edge. A full PD code is

written as XabcdXefgh..., with one symbol for each crossing. Figure 3.7 demonstrates

how to construct a PD code for a left-handed trefoil.
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Figure 3.7: A knot diagram of the left-handed trefoil with strands labeled in increasing
order starting at the arrow. The PD code of this knot diagram is X1425X5263X3641.

These PD codes allowed us to interface our set of grids with various existing knot

databases and programs. We began by feeding our PD codes into SnapPy, a program

designed to study 3-manifolds [CDGW]. By considering knot exteriors, SnapPy was

able to identify the topological type of all but about 200 grids in our set. However,

this identification did not distinguish knots from their orientation reversals or their

mirror images. Using different functionalities, we were able to SnapPy was also able

to determine the symmetry type of all but 6 knots in our set (that is, whether or

not a knots is reversible). For these remaining knots, we found their symmetry types

manually.

Most recently, we fed our PD codes into SageMath, a mathematics software sys-

tem that contains the KnotInfo database [The23], a large repository of known knot

information. SageMath was able to identify the topological type of every grid in our

set (except for a single 17-crossing knot), and was able to distinguish knots from their

mirror images.

We would like to thank Chuck Livingston [Liv] for advice on topological identifi-

cation and computation of symmetry types using SnapPy.
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Chapter 4

Computing Mountain Ranges

This chapter details the computation of mountain ranges and symmetry relations for

each grid in the set.
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Section 4.1

Symmetries

Prior to computing the next level of a mountain range, we found that it was helpful

to identify the properties of knots in our set under the transformations of orientation

reversal and Legendrian mirroring. For example, given a grid Gi in our set, we might

want to know if there exists a grid Gj in our set such that Λ(Gi) = −µ(Λ(Gj)). To

compute these symmetry relations, we implemented the following algorithm.

Algorithm 4.1.1. Check Symmetry Relations

On inputs (G, G′, depth), where G = (X,O) and G′ = (X′,O′) are n × n grid

diagrams representing Legendrian knots which are topologically isotopic and have

equal values of the classical invariants tb and r , and depth is an integer depth

parameter:

1. Construct the grid diagram G′
MR = (X′

MR,O′
MR) as follows:

(X′
MR)i = n−O′

n−i (O′
MR)i = n− X′

n−i

2. If r(Λ(G)) = 0, construct the grid diagram G′
M = (X′

M,O′
M) as follows:

(X′
M)i = n− X′

n−i (O′
M)i = n−O′

n−i

Then, construct the grid diagram G′
R = (O′,X′).

3. Compute a set of equivalent grids SMR by running Algorithm 3.2.5 on input

({G′
MR}, depth). If r(Λ(G)) = 0, generate SM and SR similarly. Finally,

compute a set of grids S that are equivalent toG by running Algorithm 3.2.5
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on input ({G}, depth).

4. Let BMR be a boolean variable (taking value 0 or 1) indicating whether

or not there is at least one grid in the intersection of S and SMR. Define

BM, BR similarly. (If r(Λ(G)) ̸= 0, let BM, BR both be false.) Then return

the triple (BMR, BM, BR).

Theorem 4.1.2. Let (BMR, BM, BR) be the outputs of Algorithm 4.1.1 when run on

inputs G,G′. If BMR = 1, then Λ(G) = −µ(Λ(G′)). Similarly, if BM = 1, then

Λ(G) = µ(Λ(G′)); and if BR = 1, then Λ(G) = −Λ(G′).

Proof. First, notice that the grid G′
MR describes a grid that is the 180 degree rotation

of G with Xs and Os flipped, so Λ(G′
MR) = −µ(Λ(G′)). Consequently, by Theo-

rem 3.2.6, every grid in SMR represents −µ(Λ(G′)). Similarly, every grid in S repre-

sents Λ(G). Now, ifBMR = 1, there is an intersection between S and SMR, and so there

is a grid Gintermediate in both sets. As a result, Λ(G) = Λ(Gintermediate) = −µ(Λ(G′)),

and the theorem holds. Similar reasoning holds for BM and BR.

Using certain runtime optimizations (such as not recomputing the sets SMR every

time the algorithm is run), we were able to efficiently use this algorithm to identify

the symmetry relations of many grids in our set. With that said, there is an important

caveat: if this algorithm fails to find a symmetry relation between two grids, it does

not imply that no such symmetry relation exists.
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Section 4.2

Mountain Ranges

In this section, we turn to the question of finding grids that represent Legendrian

knots in subsequent layers of the mountain range of some topological knot type K.

Naively, we might approach this problem by taking each grid in the lowest layer so

far calculated, positively and negatively stabilizing it, and proceeding with reductions

from there. The goal of the following algorithm is to improve on the naive method.

This algorithm blends our knowledge of Legendrian isotopies, symmetry relations, and

stabilizations, to produce an efficient algorithm that generates an already-reduced set

of grids in the next layer of the mountain range.

Algorithm 4.2.1. Generate Next Layer

On inputs (S,depth), where S is the set of grids in the bottommost layer of the

mountain range of some topological knot K:

1. Denote the elements of S as G0, ...,Gn−1, and define Λi = Λ(Gi). Suppose

that S is subdivided into buckets B1, ...Bm, where the grids in each bucket

all share the same value of tb and r . Within each bucket, use Algorithm 4.1.1

to compute the symmetry relations between grids in the same bucket.

2. Use a variant of Algorithm 3.2.9 to positively and negatively stabilize each

grid in each bucket. Denote the sets of grids returned by this algorithm as

S0, ..., S2n−1, where Si and Si+n are the are sets full of positive and negative

stabilizations of Gi, respectively.

3. Expand each set Si by running Algorithm 3.2.5 on inputs (Si,depth). Then,

for each set Si, construct the set SR
i by taking the orientation reversal of
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each element in Si. In a similar manner, construct sets SM
i and SMR

i by

taking Legendrian mirrors and orientation reversals of Legendrian mirrors.

4. Create an undirected graph G = (V,E), where the 8n vertices are the knots

S±(Λi), −S±(Λi), µ(S±(Λi)), and −µ(S±(Λi)).

5. Add edges to the graph as follows. For each pair (i, j) ∈ [2n]2:

a. If Si ∩ Sj is nonempty, we add edges to our graph as follows:

i. Find the knot Λi′ such that grids in Si represent S±(Λi′). Then,

using the stabilization data computer in Step 1, construct the

following set:

L = {S±(Λi′),−S∓(−Λi′), µ(S∓(µ(Λi′))),−µ(S±(−µ(Λi′)))}

Notice that by Theorem 2.2.5, every knot in L is isotopic.

ii. Construct a set R similarly, using the knot Λj′ such that grids in

Sj represent S±(Λj′). Note that Theorem 2.2.5 implies that every

knot in R is isotopic.

iii. For every pair of stabilized Legendrian knots in L × R, denoted

(SΛl, SΛr), add to our graph G an edge connecting SΛl to SΛr.

Then, add three more edges, connecting −SΛl to −SΛr, µ(SΛl)

to µ(SΛr), and −µ(SΛl) to −µ(SΛr).

b. If Si ∩ SM
j is nonempty, we perform a similar procedure, eventually

adding edges to our graph. Do the same for SR
j and SMR

j .

6. Initialize an empty set of stabilized grid diagrams S ′. Then each connected

component in the graph G that contains a knot of the form S±(Λi), add a
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single grid representative of S±(Λi) to S ′.

7. Return S ′.

This algorithm seems intimidating, so let’s break it down piece by piece. Step 1

collects symmetry data. Steps 2 and 3 compute sets of grids that are equivalent to

stabilizations of grids in S, and then generates additional sets by performing sym-

metry transformations on those grids. Step 4 initializes a graph G that stores known

isotopies between stabilized grids and the symmetry-transformed versions of those

stabilized grids. Step 5 searches for isotopies by comparing sets of grids; this step

also exploits symmetry data and properties of stabilizations to maximize the number

of recorded isotopy equivalence relations per isotopy discovered. At the end of this

step, the graph G represents a web of isotopy equivalences, where all knots in a single

connected component of G are Legendrian isotopic. At this point, Step 6 finds each

of these connected components, and chooses a single grid that represents every knot

in that component. It is this small set of knots that is returned in Step 7. We now

prove that this algorithm does in fact return a set of grids where at least one grid

represents each knot in the next layer of the mountain range.

Theorem 4.2.2. Let S ′ be the output of Algorithm 4.2.1 when run on inputs (S,depth).

For each distinct Legendrian knot of the form S±(Λ(G)) where G ∈ S, there is at least

one grid G′ ∈ S ′ such that Λ(G′) = S±(Λ(G)).

Proof. To prove this, we begin by showing that the knots in each connected compo-

nent of G are Legendrian isotopic. To show this, it is sufficient to prove that there

is an edge between knots only if those knots are Legendrian isotopic. First, notice

that all knots in the sets L as constructed in Step 5ai are Legendrian isotopic, which

follows from Theorem 2.2.5. Similarly, all knots in the set R are Legendrian isotopic.

Next, since Si∩Sj, the knots represented by Si and Sj are Legendrian isotopic. Then,

by transitivity, all knots in both L and R are Legendrian isotopic. This implies that
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every edge added to G in Step 5aiii connects a pair of Legendrian isotopic knots.

Similar logic shows that every edge added to G in Step 5b also connects Legendrian

isotopic knots.

Finally, since Step 6 selects one element from each connected component of G that

contains a knot of the form S±(G) for G, and all knots in each connected component

are Legendrian isotopic, we conclude that S ′ does indeed contain at least one grid

representing every knot of the form S±(G) for G ∈ S.
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Chapter 5

Results

In this chapter, we present our results. The first section of this chapter provides a

summary of our results: How many grids did we find at each layer of the mountain

range, and what algorithms did we run to obtain those grids? The second section

provides a close look at our results for a single topological knot type. The third

section provides three tables containing our complete results.
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Section 5.1

An Overview of Results

A Set of Grid Diagrams

We identified 3082 non-destabilizable Legendrian knots of grid size 10. We were able

to subdivide these grids into 819 buckets, organized by the classical invariants tb and

r and by topological type. Table 5.1 details the algorithms that we ran to obtain

these grids.

Table 5.1: A list of the algorithms used to find the set of

3082 non-destabilizable Legendrian knots of grid size 10,

as well as the number of grids and the number of buckets

at each step.

Actions Performed Number of Grids Number of Buckets

Generate a set of grids and remove

links, as described in Section 3.1.
89,763,984 1

Remove grids by running Algo-

rithm 3.2.7 with depth parameter

depth = 1

5,881,569 1

Remove grids by running Algo-

rithm 3.2.7 with depth parameter

depth = 2

2,129,118 1

Remove grids by running Algo-

rithm 3.2.7 with depth parameter

depth = 3.

1,375,597 1
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Remove grids by running Algo-

rithm 3.2.7 with depth parameter

depth = 4.

145,831 1

Remove grids by running Algo-

rithm 3.2.7 with depth parameter

depth = 5.

21,338 1

Place grids into buckets according to

their classical invariants tb and r , cal-

culated via Algorithm 3.3.4.

21,338 108

Remove grids by running Algo-

rithm 3.2.7 with depth parameter

depth = 10.

15,777 108

Remove grids by running Algo-

rithm 3.2.7 with depth parameter

depth = 20.

13,633 108

Remove grids by running Algo-

rithm 3.2.7 with depth parameter

depth = 40.

13,306 108

Split grids into smaller buckets accord-

ing to their Alexander polynomial (in

addition to their classical invariants),

calculated using Algorithm 3.3.6.

13,306 814

Remove grids by running Algo-

rithm 3.2.11 with depth parameter

depth = 4.

8,501 814
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Remove grids by running Algo-

rithm 3.2.11 with depth parameter

depth = 8.

4,855 814

Remove grids by running Algo-

rithm 3.2.11 with depth parameter

depth = 16.

3,568 814

Split grids again into smaller buckets

by computing their topological type

with SnapPy, as described in Sec-

tion 3.3.

3,568 862

Remove grids by running Algo-

rithm 3.2.11 with depth parameter

depth = 64.

3,155 862

Split grids again into smaller buckets

by computing their topological type

with SageMath, as described in Sec-

tion 3.3. Then remove a few remain-

ing knots of arc index less than 10, as

well as a number of connect sums.

3,082 819

Prior to bucketing by the classical invariants, all grids were theoretically in the

same bucket. However, to improve runtime, these grids were often arbitrarily placed

into smaller buckets of approximate size 1000, and then run in parallel. The only

consequence of this bucketing was to decrease the number of grids removed at each

step, because isotopies could not be discovered between grids in different buckets.

Once we switched to bucketing by knot invariants, this no longer became an issue.
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Mountain Ranges

We computed the first three layers of the mountain range for each topological knot

types among our set non-destabilizable Legendrian knots. The first layer of mountain

ranges consisted of the 3082 knots we identified as non-destabilizable, organized by

topological type, Alexander polynomial, and the classical Legendrian invariants into

819 buckets. The grids in this layer were computed using the algorithms listed in

Table 5.1. The second layer of mountain ranges consisted of 2706 Legendrian knots,

organized by the same properties into 1298 buckets. The grids in this layer were

computed using the algorithms listed in Table 5.2. Finally, the third of layer of

mountain ranges consisted of 3648 Legendrian knots, organized by the same properties

into 1764 buckets. The grids in this layer were computed using the algorithms listed

in Table 5.3.

Table 5.2: A list of the algorithms used to find the set of

2820 Legendrian knots in the second layer of mountain

ranges, as well as the number of grids and the number of

buckets at each step.

Actions Performed Number of Grids Number of Buckets

Generate a set of stabilized grids by

positively and negatively stabilizing

each of the non-destabilizable grids.

6330 1362

Remove grids by running Algo-

rithm 4.2.1 with depth parameter

depth = 15?.

2894 1362
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Remove grids by running Algo-

rithm 3.2.7 with depth parameter

depth = 100 and skipping Step 3

(which would remove destabilizable

grids).

2826 1362

Remove grids by running Algo-

rithm 3.2.11 with depth parameter

depth = 8.

2820 1362

Remove grids that are the stabiliza-

tions of knots that were identified by

SageMath as having arc index less

than 10 or as being connect sums.

2706 1298

Table 5.3: A list of the algorithms used to find the set

of 3814 Legendrian knots in the third layer of mountain

ranges, as well as the number of grids and the number of

buckets at each step.

Actions Performed Number of Grids Number of Buckets

Generate a set of twice-stabilized grids

by positively and negatively stabilizing

each of the grids in the second layer of

mountain ranges.

5640 1849
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Remove grids by running Algo-

rithm 4.2.1 with depth parameter

depth = 12.

3836 1849

Remove grids by running Algo-

rithm 3.2.7 with depth parameter

depth = 40, skipping step 3 (which

would remove destbilizable grids).

To handle memory constraints, we

terminated calls to Algorithm 3.2.5

whenever more than 500,000 grids

were simultaneously added to a

bubble.

3814 1849

Remove grids that are the stabiliza-

tions of knots that were identified by

SageMath as having arc index less

than 10 or as being connect sums.

3648 1764

In general, the mountain ranges we computed contain more Legendrian knots per

bucket than the mountain ranges of the Legendrian knot atlas [CN13]. The authors of

the Legendrian knot atlas found that specifying the topological knot type, Thurston-

Benneqin number, and rotation number often completely specified a Legendrian knot.

In contrast, we typically found two to three Legendrian knots meeting those criteria.

For example, in the topmost layer of mountain ranges, we found on average 3.76

Legendrian knots per bucket, with some buckets containing as many as 17 distinct

knots! 1 Things simplified slightly in the second and third layers, with only 2.08 and

1This is for the bucket corresponding to the topological type 10n21, with tb = −9 and r = 0.
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2.07 knots per bucket respectively.

For now, it is unclear whether this additional complexity is a feature of the

larger grid sizes, or whether it is an artifact of the search algorithms employed to

find isotopies. Our primary search algorithm, the bubble-generation algorithm Algo-

rithm 3.2.5, is very time- and memory-intensive, especially when run on grids larger

than size 11. As a result, we never searched for isotopies containing more than

one stabilization and destabilization move, which means that our list of 3082 non-

destabilizable grids may contain numerous duplicates. It is even possible that each

of our 819 buckets only contains one unique knot, and the remaining grids are dupli-

cates! On the other hand, it is also possible that these mountain ranges simply do

get more complex with increasing grid size. There are two possible explanations for

this behavior.

(a) Our bucketing is not optimal. Both SageMath and SnapPy ‘forget’ the orien-

tation of a knot when identifying its topological type. Therefore, our bucketing

scheme places Legendrian representatives of these non-invertible knots into the

same bucket, even though an isotopy may not exist between them. As a result,

an improved bucketing scheme would contain more buckets, and therefore fewer

Legendrian representatives per bucket.

(b) It is possible that complexities in the mountain ranges are ‘real’ through one or

two stabilizations, but resolve themselves further down the mountain range. We

know that every two Legendrian representatives of the same topological knot

type are equal after some number of positive and/or negative stabilizations, but

we have no indication of how many stabilizations that might take.
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Section 5.2

Case Study

The following section presents our results for the arbitrarily-chosen knot identified as

m10n20. (This notation is interpreted as the mirror image of the 20th non-alternating

10-crossing knot in the Rolfsen Knot Table. In Alexander-Briggs notation, this knot

would be labeled m10143.) This knot is a 10-crossing reversible knot (that is, an

invertible knot that is not isotopic to its mirror image). Its symmetrized Alexander

polynomial is

∆m10n20(t) = t3 − 3t2 + 6t− 7 + 6t−1 − 3t−2 + t−3.

The grid diagram G = (X,O) with

X = (0, 5, 9, 8, 6, 7, 4, 2, 3, 1), O = (2, 8, 7, 1, 0, 3, 9, 5, 6, 4)

satisfies K(G) = m10n20. Figure 5.1 illustrates this grid diagram and the corre-

sponding knot diagram.

While running the algorithms described in Section 5.1, we collected information

on the topmost, second, and third layers of the mountain range of this knot. The

data collected for each of these layers are contained Table 5.4, Table 5.5, and Ta-

ble 5.6 respectively. Note that these tables are excerpted from the complete results

as presented in Section 5.3, and written using familiar mathematical notation. Ta-

ble 5.4 indicates that we found 14 grid diagrams corresponding to non-destabilizable

Legendrian representatives, organized into 4 buckets. Table 5.5 indicates that we

found 7 grid diagrams in the second layer of the mountain range, organized into 5

buckets. Finally, Table 5.6 indicates that we found 8 grid diagrams in the third layer
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Figure 5.1: Left: A grid diagram, described by permutations X =
(0, 5, 9, 8, 6, 7, 4, 2, 3, 1) and O = (2, 8, 7, 1, 0, 3, 9, 5, 6, 4), which specifies the knot
10143. Right: The corresponding oriented knot diagram.

of the mountain range, organized into 6 buckets. Figure 5.1 compactly displays this

information in a mountain range.

r
tb

−10

−11

−12

Figure 5.2: The first three layers of the mountain range of the knot m10n20. This
diagram compactly summarizes the information in Table 5.4, Table 5.5, and Table 5.6.

Readers familiar with the Legendrian Knot Atlas might notice that our mountain

range conventions are slightly different than theirs. Our mountain range conventions

were chosen to compactly display information about the symmetry relations between

grids in buckets. In general, black dots correspond to grids whose symmetry infor-

mation is known, while red dots correspond to grids whose symmetry information
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Table 5.5: The raw data for the grids in the second layer of the mountain range.
For any particular grid labeled Si, the parents column indicates the grids in the
topmost layer which may be stabilized to yield Λ(Si). Whether those stabilizations
are positive or negative may be determined by examining the rotation numbers of all
grids involved.

Grid ID Topological Type tb r −Λ µ(Λ) −µ(Λ) Parents

S110 m10n20 −11 −2 – – S110 G133, G134,
G135, G136,
G137, G138,
G139

S111 m10n20 −11 −4 – – S112 G138

S112 m10n20 −11 −4 – – S111 G139

S113 m10n20 −11 0 S113 S113 S113 G140, G141,
G142, G143,
G144, G133,
G134, G135,
G136, G137

S114 m10n20 −11 2 – – S114 G145, G146,
G140, G141,
G142, G143,
G144

S115 m10n20 −11 4 – – S116 G146

S116 m10n20 −11 4 – – S115 G145

Table 5.6: The raw data for the grids in the third layer of the mountain range. For any
particular grid labeled Ti, the parents column indicates the grids in the second layer
which may be stabilized to yield Λ(Ti). Whether those stabilizations are positive or
negative may be determined by examining the rotation numbers of all grids involved.

Grid ID Topological Type tb r −Λ µ(Λ) −µ(Λ) Parents

T130 m10n20 −12 −1 – – T130 S113, S110

T131 m10n20 −12 −3 – – T131 S110, S111,
S112

T132 m10n20 −12 −5 – – T133 S111

T133 m10n20 −12 −5 – – T132 S112

T134 m10n20 −12 1 – – T134 S114, S113

T135 m10n20 −12 3 – – T135 S115, S116,
S114

T136 m10n20 −12 5 – – T137 S116

T137 m10n20 −12 5 – – T136 S115
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is unknown. A filled black dot represents a grid whose Legendrian knot is known

to be equal to orientation reversal of its Legendrian mirror. An unfilled black dot

corresponds to a pair of grids, representing possibly distinct Legendrian knots that

are known to be equivalent under Legendrian mirroring plus orientation reversal. A

filled red dot corresponds a grid that represents a knot whose symmetry relations are

unknown; that knot might be equivalent to the orientation reversal of the Legendrian

mirror of itself or of some other grid in the set. Finally, a box around a set of dots in-

dicates that those dots all represent grids in the same bucket. Note that it is possible

that within a bucket, every grid in fact represents the same Legendrian knot; in other

words, we have not calculated any obstructions to Legendrian isotopies between grids

in the same bucket.
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Section 5.3

Complete Results

The complete results of my work are contained in three tables. These tables are

all around 3000 lines long, so to save space, they are not included in the docu-

ment. They may be found at the following GitHub repository: https://github.

com/NoahSchwartz1/schwartz-senior-thesis-2023.git.

The first table details the set of Legendrian knots in the first layer of our mountain

ranges. The first column of this table labels knots as G1, G2, and so on, for ease of

readability. Columns 2 through 6 provide the topological type, tb, r of each identified

Legendrian knot, as well as two pairs of permutations that describe a grid representing

that knot. Columns 7 through 9 describe how each Legendrian knot is related to other

knots in the table by various symmetry transformations.

The second and third tables detail the sets of Legendrian knots in the second and

third layers of our mountain ranges. The first columns label these knots as S1, S2,...

and T1, T2, and so on. Columns 2 through 4 provide the topological type, tb, and r of

each of these knots. Columns 5 through 7 describe how each of these knots is related

to other knots in the table by various symmetry transformations. Finally, column 8

lists the ‘parents’ of knots in the mountain range.
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knots and links, Mathematical Surveys and Monographs, vol. 208, American

Mathematical Society, Providence, RI, 2015. MR 3381987

[sym23] The knot atlas: Three dimensional invariants, URL:http://katlas.org/

wiki/Three_Dimensional_Invariants, 2023.

[The23] The Sage Developers, Sagemath, the Sage Mathematics Software System

(Version 9.8), 2023, https://www.sagemath.org.

75

http://katlas.org/wiki/Three_Dimensional_Invariants
http://katlas.org/wiki/Three_Dimensional_Invariants

	Abstract
	Acknowledgements
	1 Introduction
	2 Background
	2.1 Topological Knot Theory
	2.2 Legendrian Knot Theory

	3 Generating Grids
	3.1 Generating Grids
	3.2 Reducing the Set of Grids
	3.3 Organizing the Candidate Set

	4 Mountain Ranges
	4.1 Symmetries
	4.2 Mountain Ranges

	5 Results
	5.1 An Overview of Results
	5.2 Case Study
	5.3 Complete Results


