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Abstract

The inverse Galois problem is an open problem in Galois theory that asks whether every

finite group can be realized as the Galois group of some field extension of the rational

numbers. For example, twenty-five of the twenty-six sporadic groups have been realized

over the rational numbers, with the famous exception of M23. In this thesis, we approach

inverse Galois theory by examining Belyi maps, coverings of the complex projective line

ramified over no more than three points. By viewing Belyi maps with geometric monodromy

group G as families of G-extensions over a number field K, we consider the problem of

“specialization” in order to exhibit families of H-extensions with H ≤ G. Our main result

is a formula for the genus of the “specialization map” that gives H-specializations for the

family of G-extensions. Using the specialization method, we provide explicit examples of

families of polynomials with Galois group H ≤ G. Moreover, in the event that we have a

family of G-extensions of K with K ̸= Q, we consider the problem of “arithmetic descent”

to construct G-extensions of Q from this family. We give concrete descent conditions for

prime-order Kummer extensions, and we discuss the more general cyclic order n case. We

then provide a theoretical description of the conditions for descending general Galois number

fields.
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Chapter 1

Motivation and Summary

Section 1.1

Introduction

Let F be a field, and let K be an algebraic extension of F . Let Aut(K |F ) denote the

group of automorphisms of K that fix F . We say that K is Galois over F if the fixed field

of Aut(K |F ) is precisely F , and we use Gal(K |F ), called the Galois group, to denote this

group of automorphisms. By the fundamental theorem of Galois theory, there is an order-

reversing correspondence between the (closed) subgroups of Gal(K |F ) and sub-extensions

of K over F .

In the case where F = Q and K is a finite Galois extension, we have that Gal(K |F ) is a

finite group of order [K : Q]. This suggests the following question: Which finite groups can

be realized as Galois groups over Q? This is known as the Inverse Galois Problem(IGP). In

general, for a field K, we say that a finite group G is realizable over K if there is some Galois

extension L |K with Gal(L |K) ≃ G. We will see later that every finite group is realizable

over some number field, but it remains open as to whether this number field can be made

to be Q. To orient this discussion, we first note some classes of finite groups for which the
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Inverse Galois Problem has been answered in the affirmative, starting with abelian groups.

Proposition 1.1.1. All finite abelian groups are realizable over Q.

Proof. This proof is adapted from Dummit-Foote[11, 14.5]. For a primitive nth root of unity

ζn, we let σa denote the element of Gal(Q(ζ) |Q) defined by (ζn 7→ ζan) for 1 ≤ a < n and a

relatively prime to n. Then we recall the following isomorphism:

(Z/nZ)× → Gal(Q(ζn)|Q)

a 7→ σa

Take n = pe11 . . . pekk . Then we observe that Q(ζ
p
ej
j
) is a subfield of Q(ζn): indeed,

ζ
p
e1
1 ...p

ej−1
j−1 p

ej+1
j+1 ...p

ek
k

n

is a primitive p
ej
j th root of unity.

Moreover, each of the fields Q(ζ
p
ej
j
) are pairwise disjoint over Q, and

∏
[Q(ζ

p
ej
j
) : Q] =

∏
|Gal(Q(ζ

p
ej
j
) |Q)| =

∏
|(Z/Zpejj )×|

=
∏

p
ej−1
j (pj − 1) = ϕ(n) = |(Z/nZ)×|

where ϕ denotes the Euler totient function. Hence the compositum of the subfields Q(ζ
p
ej
j
)

is all of Q(ζn), with Galois group

Gal(Q(ζn) |Q) ≃
∏

Gal(Q(ζ
p
ej
j
) |Q)

Now, let G be a finite abelian group. Then, since every finite abelian group is isomorphic
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to a direct product of cyclic groups, we have

G ≃ Z/n1Z× · · · × Z/nkZ

with ni ∈ Z≥1. At this point of the proof, we assume a special case of Dirichlet’s theorem:

For any integer m, there are infinitely many primes p with p ≡ 1 (mod m). So for each nj,

we choose a prime pj such that pj ≡ 1 (mod nj) with all pj distinct. We take n = p1 . . . pk,

and consider (Z/nZ)×. By the above,

Gal(Q(ζn) |Q) ≃ (Z/p1Z)× . . . (Z/pkZ)×

≃ Z/(p1 − 1)Z× . . .Z/(pk − 1)Z

By construction, nj divides pj − 1, so there is a subgroup

H = H1 × · · · ×Hk

with Hj ≤ Z/(pj − 1)Z and (Z/(p − 1)Z)/Hj ≃ Z/njZ. Since Gal(Q(ζn) |Q) is abelian,

every subgroup is normal, so by the fundamental theorem of Galois theory, H corresponds

to a Galois extension over Q with Galois group G.

Thus we have shown that the Inverse Galois Problem is resolved for finite abelian groups.

Observe that in the proof, a choice was made on the primes pj, so in fact we have infinitely

many G-extensions by choosing different pj. We remark that there is a deeper result known

as the Kronecker–Weber theorem which states that all abelian extensions of Q are contained

in cyclotomic fields.

Next, we consider symmetric groups.

Proposition 1.1.2. For every n ≥ 1, the symmetric group Sn is realizable over Q.
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To prove this proposition, we assume a theorem of Dedekind that is a standard tool in

algebraic number theory.

Theorem 1.1.3. Let f ∈ Z[x] be degree n, and fix a permutation representation of the Galois

group of f in Sn. For any prime p not dividing the discriminant of f , let f ∈ Fp[x] denote

the reduction of f mod p. Then the Galois group of f over Fp, considered as subgroup of Sn,

is isomorphic to a subgroup of the Galois group of f in Sn by conjugation.

Since finite Galois extensions of finite fields are always cyclic, this theorem says that if

for a prime p the reduction f has factorization fn1 . . . fnm with fnj
irreducible and degree j,

then the Galois group of f in Sn contains a permutation of cycle type n1, . . . , nm.

Now, we prove Proposition 1.1.2.

Proof. This proof is adapted from Dummit-Foote[11, 14.8]. Fix n ≥ 1. Choose any degree n

irreducible polynomial f1 ∈ F2[x]. Next, choose any degree n polynomial f2 ∈ F3[x] so that

f2 is the product of a single irreducible quadratic and odd degree irreducible polynomials.

Finally, choose f3 ∈ F5[x] so that f3 is the product x with an irreducible degree n − 1

polynomial.

Now, use the Chinese Remainder Theorem to lift the coefficients of f1, f2, and f3, to a

polynomial f ∈ Z[x] such that f reduces to f1 mod 2, f2 mod 3, and f3 mod 5. Since f1 is

irreducible, f is irreducible, so its Galois group G is a transitive subgroup of Sn. The cycle

type corresponding to the reduction mod 3 is the product of a 2-cycle with a sequence of

odd-number cycles. If N is the product of the cycle lengths over all odd-number cycles, then

raising this permutation to the Nth power leaves us with a 2-cycle, which implies that the G

contains a transposition. The reduction mod 5 implies that G contains an n− 1 cycle. Since

any transposition and n− 1 cycle generates all of Sn, f must have Galois group Sn.

Returning to the more general question for all finite groups, the IGP is open more specif-

ically for finite simple groups. Even if it were known that all simple groups are realizable
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over Q, it is still unclear as to how this could generate a proof for all finite groups. The

most far-reaching result regarding groups with trivial center (which include simple groups)

is the “rigidity method,” see Dokchitser[15]. This result resolves the IGP in the affirmative

for all of the sporadic groups with the famous exception of M23, the Mathieu group of order

27 · 32 · 5 · 7 · 11 · 23. Realizing M23 over Q remains open.

Section 1.2

Summary of Results

An approach to inverse Galois theory, which will be the subject of this thesis, involves

coverings of the complex projective line and a correspondence between geometric monodromy

groups and Galois groups. We give an outline of the method below, with relevant definitions

and detail to be explained in subsequent chapters.

(a) Given a finite permutation group H, embed it into a finite permutation group G.

(b) By Riemann’s existence theorem, there is a ramified covering X → P1(C) with geomet-

ric monodromy group G. Under favorable circumstances, we may choose the covering

to be a Belyi map.

(c) From this covering, we get an induced finite Galois extension of C(t), the meromorphic

function field of P1(C), with Galois group G by considering the function field of the

normal closure X̃ of the cover X → P1(C).

(d) In fact, we can base change to a number field K, which can sometimes be determined

by purely group theoretic invariants, so that the induced extension of K(t) preserves

the Galois group G. In the most ideal situation, K = Q.

(e) The subgroup H corresponds to a surface X̃/H such that the normal closure of the
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covering factors by

X̃ → X̃/H → P1(C)

where the left arrow is an H covering. We call the right arrow the specialization map.

TheK-rational points on X̃/H generally give us H-extensions ofK, just asK- rational

points of P1(C) generally give us G-extensions of K. In the most ideal situation, X̃/H

is a genus 0 curve.

(f) In the event that K is not Q, we attempt “arithmetic descent” to exhibit a G-extension

of Q given a G-extension of K. We show that if K |Q is Galois, this amounts to finding

rational points on a variety of dimension [K : Q]. The same can be done for H ≤ G.

The advantage to considering H as a subgroup of some larger group G rather than

generating an H-cover of P1(C) directly is dependent on the field to which we can base

change, which we explore in section 3.3. We will see an example in section 3.2 where Belyi

maps for F5 extensions in the L-functions and Modular Forms Database (LMFDB, see [4])

all had an intermediary quadratic field, but a specific Belyi map with monodromy group

containing a copy of F5 allowed base changing to Q.

Our main result regarding specializations of Belyi maps is in section 3.2, and states that,

given a Belyi map with monodromy group G, the genus of specialization map for H ≤ G

can be computed using group-theoretic properties of H as a subgroup of G - in particular,

we obtain a formula for the genus of the curve that gives H-specializations.

Theorem. Let ϕ : X → P1(C) be a Belyi map corresponding to the permutation triple

(σ0, σ1, σ∞) and monodromy group G = ⟨σ0, σ1, σ∞⟩ ∈ Sd. Then for some finite extension

K |Q, G is the Galois group of the splitting field of ϕt over K(t). Fix a subgroup H ≤ G,

and let πH : G → S[G:H] denote the permutation representation of G on the cosets of H.

Then the specializations of ϕt with Galois group H over K lie on an algebraic curve of genus
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g, where g is given by

g = 1− [G : H] +
∑

p∈X̃/H

(ep − 1)/2 (1.2.1)

where each ep in the rightmost sum corresponds to one of the disjoint cycles between πH(σ0),

πH(σ1), and πH(σ∞).

In particular, if X̃/H → P1(C) is Galois, then

g = 1− [G : H]

2

(
1− 1

a
− 1

b
− 1

c

)

where a, b, c, are the orders of πH(σ0), πH(σ1), and πH(σ∞) respectively.

When we approach arithmetic descent, in 4.2 we examine the situation where we have a

cyclic degree p Kummer extension of F (ζp) for p prime and [F (ζp) : F ] = p− 1. Our result

is the precise conditions where this extension descends to a Cp-extension of F .

Theorem. Let K = F (ζp) and suppose [K : F ] = p− 1. Let L be the splitting field of xp− a

over K. We have that the Cp-extension L |K descends to a Cp-extension over F if and only

if there is some τ ∈ Gal(K |F ) so that the following simultaneously hold for some i, c ∈ N

with i ≡ c mod p.

(a) τ(ζn) = ζcn.

(b) τ(a) = aiµn for some µ ∈ K×.

Our next result on arithmetic descent in section 4.3 is a theoretical description of the

conditions for descending general Galois number fields. Specifically, for a tower of extensions

L |K |Q with L |K Galois, K |Q Galois, Σ := Gal(L |K), and Γ := Gal(K |Q), we have

that specializations where descent occurs are given by rational points on a |Γ|-dimensional

variety.
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Theorem. Let f : X → P1(C)K be a Σ-Galois cover. Then the K-specializations where the

cover descends to Q are given by a variety of dimension |Γ|.
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Chapter 2

Preliminaries

In this chapter, we develop some necessary background, starting with the theory of compact

Riemann surfaces and finishing with a review of a classical method for computing Galois

groups.

Section 2.1

Riemann surfaces

Definition 2.1.1. A Riemann surface is a topological space X with a collection of open sets

and homeomorphisms (called charts) {ϕi : Ui → ϕi(U) ⊂ C} such that {Ui} covers X and,

when Ui∩Uj ̸= ∅ , each ϕi ◦ϕ−1
j : ϕj(Ui∩Uj) → ϕi(Ui∩Uj) is holomorphic. Such a collection

is called a holomorphic atlas of X.

Example 2.1.2. P1(C) = C ∪ {∞}, with charts

[z0 : z1] 7→
z0
z1

for z1 ̸= 0

[z0 : z1] 7→
z1
z0

for z0 ̸= 0

This is a compact Riemann surface and is called the complex projective line, or the Riemann
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sphere.

Example 2.1.3. This example is adapted from Jones–Wolfart[3, 1.2.1]. Consider the subset

of C2 given by the solution set of an algebraic curve

f(x, y) = 0

where

f(x, y) = y2 −
k∏
i=1

(x− ai).

We notice that ∂f
∂y

= 2y, so for (x, y) on the curve with y ̸= 0, the implicit function

theorem states the curve is given locally by (x, g(x)) for some holomorphic g : C → C, and

hence around such points there is a neighborhood U such that the map (x, y) 7→ x is a chart.

Similarly, away from ai, the map (x, y) 7→ y is a chart. This gives us an atlas of the curve

f(x, y) = 0 as an affine variety.

It is often desirable to work with compact Riemann surfaces. Many theorems apply

specifically to compact spaces; for instance, we make use of the Riemann-Hurwitz formula

later on. Thus it is necessary to “compactify” our Riemann surfaces. For example, we can

compactify the above affine curve as follows:

Example 2.1.4. We consider the following curve in P(C2).

y2zn−2 −
k∏
i=1

(x− aiz) = 0

For z ̸= 0, we can assume z = 1 and we get all [x : y : 1] that satisfy the above, which

is precisely a copy of the affine curve. The only other case is z = 0, which implies xk = 0,

so x = 0, and we are left with the single point [0 : 1 : 0] (sometimes referred to as ∞). One

can also define a chart around this single point, and the Riemann surface is compact, as a

closed subspace of a compact P(C2).

10



Definition 2.1.5. Let X, Y be Riemann surfaces. A map f : X → Y is holomorphic if for

each pair of charts φ : U → C and ψ : V → C with U ⊂ X and f(U) ⊂ V ⊂ Y , we have

that φ−1fψ : φ(U) → ψ(V ) is holomorphic in the usual sense. If f is bijective, then on the

level of coordinates it is a biholomorphism, and we call f an isomorphism.

Proposition 2.1.6. Let f : X → Y be a holomorphic map of Riemann surfaces. Fix p ∈ X.

Then there exists a chart φ : U → C of p and a chart ψ : V → C of f(p) with f(U) ⊂ V

such that the following diagram commutes for some n ≥ 1.

X Y

C C

f

φ ψ

z 7→zn

The integer n is called the multiplicity of f at p; it is denoted ep, and is well-defined.

Proof. This proof is adapted from Teleman[12, 3.10]. First choose a chart ψ around f(p)

and a chart h around p so that ψ(f(p)) = 0 and h(p) = 0, so that we have ψ ◦f ◦h−1(0) = 0.

Then we have

g = ψ ◦ f ◦ h−1(x) =
∞∑
i=n

aix
i

for some n ≥ 1.

So, there is an analytic n-th root of g, denoted g1/n, and moreover, the derivative of g1/n

at 0 is some choice of a
1/n
n ̸= 0. Thus g1/n is a local biholomorphism near 0, which means

ϕ = g1/n ◦ h is a chart. Observe that

ψ ◦ f ◦ ϕ−1(z) = ψ ◦ f ◦ h−1 ◦ (g1/n)−1(z)

= ψ ◦ f ◦ h−1 ◦ ((ψ ◦ f ◦ h−1)1/n)−1(z) = zn.
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If ep = 1, we say f is unramified at p. Otherwise, we say f is ramified at p of order

ep. Ramification reflects local noninjectivity of f , and will become relevant in defining Belyi

maps. We say that the degree of f is the sum of the multiplicities of f at each point in the

preimage of a fixed point in Y ; equivalently, it is the cardinality of the preimage of a point

over which f is unramified (which is guaranteed to be all points outside of a discrete set).

We now direct our attention to the topological properties of compact Riemann surfaces.

More generally, for any surface S, the Euler characteristic is defined as

χ(S) = V − E + F

where V , E, and F , are the number of vertices, edges, and faces of a triangulation of S, and

we define the genus g(S) by

2− 2g(S) = χ(S)

Given a map f : X → Y between compact Riemann surfaces, we would like to relate the

genus of Y to the genus of X using this map. In the simplest case, f is unramified, which

implies that f is in fact a degree d covering of Y , so by lifting verteces, edges, and faces

of a triangulation, we get that dχ(X) = χ(Y ), where d is the degree of f . The following

proposition adds the “correction” for when f has points of ramification.

Proposition 2.1.7 (Riemann-Hurwitz Formula). Let f : X → Y be a map between compact

Riemann surfaces of degree d. For p ∈ X, let ep denote the multiplicity of f at p. Then

2g(X)− 2 = d(2g(Y )− 2) +
∑
p∈X

(ep − 1).

Proof. Let d be the degree of f . It is not hard to show that triangulations of Y lift to

triangulations of X under ramified morphisms. In this instance, we choose a triangulation

so that all the points over which f is ramified are included among the vertices. If this
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triangulation of Y has F faces, E edges, and V vertices, then the induced triangulation

on X has dF faces and dE edges. Under an unramified covering, the lift would have dV

vertices. But since this is a general morphism, we must account for ramification. With this

adjustment, we have dV −
∑

p∈X(ep − 1) vertices. So we have

χ(X) = dF + dE + dV −
∑
p∈X

(ep − 1)

−χ(X) = −dχ(Y ) +
∑
p∈X

(ep − 1)

and after replacing χ(X) with 2− 2g(X) and χ(Y ) with 2− 2g(Y ), the result follows.

We conclude this section with an important result on compact Riemann surfaces. In

Example 2.1.4, we showed that one can get a compact Riemann surface from the solution set

of an algebraic curve. It turns out that the converse (and much more) is true. To establish

the equivalence between compact Riemann surfaces and projective algebraic curves, we must

first examine meromorphic function fields of Riemann surfaces.

Definition 2.1.8. Let X be a Riemann surface. A meromorphic function is a map f : X →

P1(C). We denote the set of meromorphic functions of X by M(X).

Proposition 2.1.9. For any Riemann surface X, M(X) has the structure of a field by the

standard addition and multiplication.

Proposition 2.1.10. M(P1(C)) = C(x)

Proof. This proof is adapted from Girondo–Gonzales-Diez[2, 1.26]. Take f ∈ M(P1(C)).

Assume f(∞) ̸= ∞; if not, take 1/f . Since the poles of f form a closed discrete set, there

must be finitely many since P1(C) is compact. Hence for each pole ak ∈ {a1, . . . , an}, f must

be of the form

f(z) =

rk∑
i=1

λki (z − ak)
−i + fi(z)

13



with fk holomorphic.

Next we observe that the function

g(z) = f(z)−
n∑
k=1

rk∑
i=1

λki (z − ak)
−i

is holomorphic on P1(C), so the image in C must be compact, and in particular bounded.

By Louiville’s theorem, it follows that g is constant, so f (or 1/f) is a rational function.

This is a remarkable result. The field of meromorphic functions on C includes many

exotic choices, but as soon as we compactify C to P1(C), the field of meromorphic functions

becomes a much smaller and more rigid algebraic object.

Now, let f : X → Y be a morphism. Then we get an induced map f ∗ : M(Y ) → M(X)

given by

ϕ 7→ f ◦ ϕ.

Under this identification of elements of M(Y ) with elements of M(X), we consider

M(X) to be a field extension of M(Y ).

Proposition 2.1.11. Let X be a compact a compact Riemann surface, and let f : X → P1(C)

be a morphism. Then the induced field extension of mermomorphic function fields is a finite

extension.

Proof. This proof is adapted from Girondo–Gonzales-Diez[2, 1.89]. Let h ∈ M(X), and let

y1(x), . . . yn(x) denote the preimages of x under f . We define the following functions on
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P1(C).

b1 =
n∑
i=1

h(yi(x))

b2 =
n∑

i,j=1

h(yi(x))h(yj(x))

. . .

bn =
n∏
i=1

h(yi(x))

These are the elementary symmetric functions in h(yi), and hence they are well-defined

meromorphic functions on P1(C). We claim that h satisfies the polynomial

P (Y ) = Y n − b1(f)Y
n−1 + · · · ± bn(f).

To see this, observe that

∏
(h(y)− h(yi(f(y))))

is well-defined and 0, since for some i, h(yi(f(y))) = h(y). By construction, this is precisely

P (h)(y) for all y.

We now make use of a highly nontrivial theorem of complex analysis, which is an existence

theorem for non-constant meromorphic functions on compact Riemann surfaces.

Theorem 2.1.12 (Riemann existence). Let X be a compact Riemann surfaces, and fix

points p, q ∈ X. Then there exists a meromorphic function φ : X → P1(C) with φ(p) = 0

and φ(q) = 1.

Now, we show that a converse to Example 2.1.4 is always possible in general.
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Proposition 2.1.13. Suppose X is a compact Riemann surface, and that M(X) = C(f, g)

with F (f, g) = 0 for some F ∈ C[x, y]. Let SF denote the projective algebraic curve given by

F . Then the map

Φ: X → SF

p 7→ (f(p), g(p))

is an isomorphism.

Proof. This proof is adapted from Girondo–Gonzales-Diez[2, 1.91]. To see this is a degree 1

map, suppose p1 and p2 map to (a, b) under Φ. Take any meromorphic function φ ∈ M(X).

Since f and g generate M(X) over C, φ can be written

φ =

∑
aifbig∑
ajfbjg

which, since f(p1) = f(p2) and g(p1) = g(p2), means φ(p1) = φ(p2). Since φ was arbitrary,

this contradicts Riemann’s existence theorem. Hence Φ is degree 1, and is an isomorphism.

So, for any compact Riemann surface X, Riemann’s existence theorem affords us a non-

constant meromorphic function f , which allows us to think of M(X) as a field extension of

C(f). By Proposition 2.1.11, this is a finite extension, and hence we are afforded a generator

g that satisfies a polynomial relation F (y) ∈ C(f)[y], which implies f and g satisfy some

F (x, y) ∈ C[x, y]. Applying Proposition 2.1.13, we arrive at the following result.

Theorem 2.1.14. Every compact Riemann surface is isomorphic to a projective algebraic

curve.

In the above setting, we can actually think of M(X) as C[x, y]/F (x, y). The following

corollary makes this precise.
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Corollary 2.1.15. Let X be a compact Riemann surface, and let F ∈ C[x, y] be the defining

equation as in Proposition 2.1.13.

(a) If M(X) = C(f, g), then the correspondence f 7→ x and g 7→ y gives a well-defined

C-isomorphism between M(X) and C[x, y]/(F ).

(b) Alternatively, if x and y are the usual projections on X as an algebraic curve (the

projective closure of F ), then the analog to (a) is x 7→ x and y 7→ y.

From this we can see that for a degree n morphism f : X 7→ P1(C), the field extension

M(X) |C(f) is not only finite, but it is of degree exactly n: the degree of the extension

is the degree of the minimal polynomial of g, which we saw was F (f, y) ∈ C(f)[y] for the

defining polynomial F (x, y) ∈ C[x, y]. This is the degree of x, which by the above results is

the degree of f .

From the argument above, we see that there is a correspondence between morphisms of

compact Riemann surfaces and extensions of function fields. The following formally states

this relationship between category of compact Riemann surfaces and the category of function

fields (where the morphisms are field embeddings).

Theorem 2.1.16. The above describes a contravariant functor from the category of Riemann

surfaces to the category of function fields and establishes an equivalence of categories.

Proof. This proof is adapted from Girondo–Gonzales-Diez[2, 1.95]. First we show the func-

tor is faithful. Let X and Y be compact Riemann surfaces, and let f, g ∈ Hom(X, Y ).

Suppose f ̸= g, meaning there is some x ∈ X with f(x) ̸= g(x). By Riemann’s existence

theorem, there is some φ ∈ M(Y ) with φ(f(x)) ̸= φ(g(x)). Then for our induced maps

f ∗, g∗ : M(Y ) → M(X), we have that

f ∗(φ)(x) = φ(f(x)) ̸= φ(g(x)) = g∗(φ)(x)
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and hence f ∗ ̸= g∗, so the induced map Hom(X, Y ) → Hom(M(Y ),M(X)) is injective.

Now we show that the functor is full and essentially surjective. Let φ : M2 → M1 be

a C-algebra homomorphism of fields. For i = 1, 2, let xi, yi be generators of Mi, so yi is

algebraic over C(xi). Let Fi ∈ C[x, y] be the defining polynomials for Mi as above, meaning

Fi(xi, yi) = 0. Let Si be the projective curve defined by Fi. Then by the results above, we

are afforded the following commutative diagram.

M(S2) M(S1)

M2 M1

φ

α2 α1

φ

Here αi : M(Si) → Mi denotes the C-algebra homomorphism given by x → xi and

y → yi, as in the corollary. LetRi(x,y) ∈ M(S1) be the images of the generators x2, y2 ∈ M2

in the diagram. We claim that Ri satisfy the polynomial F2. Indeed, since F2(x2, y2) = 0,

we have

0 = α−1φ(F2(x2, y2))

= F2(α
−1φ(x2), α

−1φ(y2))

= F2(R1(x,y), R2(x,y)).

By the proof of Proposition 2.1.13, we get a morphism

f : S1 → S2

(x, y) 7→ (R1(x, y), R2(x, y))

We claim f ∗ = φ. To see this, observe that on one of the generators x ∈ M(S2), we have

f ∗(x) = R1(x,y) = α−1
1 φ(x2) = α−1

1 φ(α2(x)) = φ(x).
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The existence of S1 and S2 says that the functor is essentially surjective. The above

diagram tells us that the functor is full. Since the functor is full, faithful, and essentially

surjective, it gives an equivalence of categories.

Section 2.2

Covering Spaces and Monodromy Groups

The maps between Riemann surfaces of most interest to us are ramified coverings of P1(C).

In this section, we introduce the necessary covering space theory that will be used to establish

a relationship between the geometric monodromy group and Galois groups.

Definition 2.2.1. A continuous map of topological spaces p : X → Y is a covering if for

every y ∈ Y , there is an open neighborhood V of y such that p−1(V ) is a disjoint union of

open sets {Ui} in X such that for each i, p|Ui
is a homeomorphism onto its image.

The most relevant example of a covering for our purposes is the following. Let X be a

compact Riemann surfaces, and let f : X → P1(C) be a holomorphic map. Let {x1, . . . , xn}

be the points in X where f is ramified. Then we get an induced unramified map by the

restriction

f : X \ {x1, . . . , xn} → P1(C) \ {f(x1), . . . f(xn)}

which is in fact a covering of P1(C) \ {f(x1), . . . f(xn)}. In general, we call maps f : X →

P1(C) a ramified covering of P1(C), as it is a covering outside of the points of ramification.

For a general cover of topological spaces p : X → Y , fix a point y ∈ Y . Let f denote

the reverse of a loop f ∈ π1(Y, y). We consider an action of π1(Y, y) on the fiber over y as

follows. For a loop [f ] ∈ π(Y, y) and x ∈ p−1(y), we define [f ] · x = f̃x(1), where f̃x is the

lift of f with initial point x.
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Proposition 2.2.2. The above is a well-defined group action of π1(Y, y) on p
−1(y).

Proof. Suppose Ht is a homotopy between f, g ∈ πY (y0). Then the map t 7→ H̃t(1) is a

continuous map valued in a discrete set p−1(y). Hence it is constant, and g(1) = H1(1) =

H0(1) = f(1), so the map is well defined. Next, for [f ], [g] ∈ π1(Y ), we examine [f ][g] · x for

x ∈ p−1(y).

[f ]([g] · x) = [f ] · g̃x(1) = f̃ g̃x(1)(1)

([f ][g]) · x = (̃gf)x(1) = f g̃x(1)(1)

Since [f ]([g] · x) = ([f ][g]) · x, this is a group action.

Let d = |f−1(y)|. Then by the above proposition, we get a homomorphism π1(Y, y) → Sd.

Definition 2.2.3. Given a cover p : X → Y , with Y path connected, the image of the above

homomorphism is called the monodromy group of the cover.

The monodromy group of a cover is well defined up to conjugation in Sd. Since Y is path

connected, choosing a different base-point can only relabel the elements of the monodromy

group.

Section 2.3

Monodromy Groups and Galois Groups

There is a well-known analogy between Galois theory and covering space theory. We begin

this section with a few definitions that will be needed to establish a relationship between

geometric monodromy groups and Galois groups of extensions of C(t).

Definition 2.3.1. Let p : X → Y be a cover. We say a homeomorphism f : X → X is a

deck transformation if p ◦ f = p. We denote the group of such maps Aut(X, p).
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Definition 2.3.2. Let p : X → Y be a cover. Let G = Aut(X, p). G acts on X and

induces an equivalence relation by identifying the orbits of G. The induced quotient space

is denoted X/G. We say p is a Galois cover if G acts transitively on each fiber, in which case

Y is homeomorphic to X/G.

We will soon turn our attention specifically to the case where X is a compact Riemann

surface, Y = P1(C), and f : X → P1(C) is a ramified cover (meaning that the above cov-

ering space theory applies to the restriction of f away from the ramification points). We

use covering space theory to inform the properties of these induced function field exten-

sions. Before stating the result, we introduce some notation. For g ∈ Aut(X, f), we let

g∗ : M(X) → M(X) be given by φ 7→ φ ◦ g. Note that g∗ ∈ Aut(M(X)).

Proposition 2.3.3. Suppose f : X → Y is a morphism of compact Riemann surfaces. Then

the induced field extension M(X) |M(Y ) is Galois if and only if f is a Galois cover, in

which case Aut(X, f) ≃ Gal(M(X) |M(Y )).

Proof. This proof is adapted from Girondo–Gonzales-Diez[2, 2.65]. Let G = Aut(X, f),

and let G∗ = {g∗ | g ∈ G}, which is a subgroup of Aut(M(X)). Let p : X → X/G be

the canonical cover. Since f is a Galois cover, we have that Y is isomorphic to X/G by

descending f , which means

f ∗(M(X)) = p∗(M(G/H))

We claim p∗(M(X/G)) = M(X)G
∗
. To see this, take any f ◦ p ∈ im p∗. Then for τ ∈ G,

τ ∗(f) = f ◦p◦τ = f ◦p since τ is a deck transformation. Hence im p∗ ∈ M(X)G
∗
. Conversely,

for any f ∈ M(X)G
∗
, we have that f ◦ τ = f for all τ ∈ G, which means f descends to a

well defined map f ∈ M(X/G). We have p∗(f) = f ◦ p = f , and hence M(X)G
∗ ⊂ im p∗.

Thus, f ∗(M(X)) is the fixed field of G∗ ≃ Aut(X, f).

Conversely, suppose M(X) | f ∗(M(Y )) gives a Galois extension with Galois group H,

that is, f ∗(M(Y )) = M(X)H for some H ≤ Aut(M(X)). By the equivalence of categories
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between compact Riemann surfaces and function fields, any automorphism of M(X) must

come from an automorphism of X, which implies that H can be realized as G∗ for some

G ≤ Aut(X). By the above argument, f ∗(M(Y )) = M(X)H = p∗(M(X/G)), which gives

us an isomorphism

(p∗)−1|M(X)G∗ ◦ f ∗ : M(Y ) → M(X/G)

which, by the equivalence of categories, gives an isomorphism Y
∼−→ X/G.

For the case of X = Y = P1(C), the induced field extension by a morphism f : P1(C) →

P1(C) has the explicit form used above, namely f ∗(C(x)) ⊂ C(x). Under the identification of

f ∗(C(x)) = C(f) with C(x), we think of M(X) as a finite extension of C(x) by C(x) |C(f).

Write f(x) = p(x)/q(x), and observe that C(x) is the field obtained by adjoining a root to

polynomial

q(t)f(x)− p(t) ∈ C(f)[t]. (2.3.4)

We make use of this characterization later on when we consider genus 0 Belyi maps in the

following chapter.

For the remainder of this section, we restrict our attention to the case where Y = P1(C).

For any morphism X → P1(C), we obtain a field extension M(X) |C(x) after identifying

C(x) with its inclusion in M(X). By the equivalence of categories, if we take the Galois

closure of M(X) over C(x), we should obtain some Galois covering X̃ → P1(C). We call

this cover the normalization of X → P1(C), and we give the precise construction.

Let f : X → P1(C) be a morphism, and consider the induced embedding f ∗ : C(x) →

M(X). By Corollary 2.1.15, this extension is isomorphic to C[x, y]/(F ) for some irreducible

F ∈ C[x, y], and M(X) is generated by a root of F (f, y). Hence the Galois closure of

M(X) |C(f) is the splitting field M̃ of F (f, y), so M(X) = C(x̃, ỹ1, . . . , ỹn), where x̃ is the

image of x ∈ C(x,y) under the embedding C(x,y) → M̃ and yi are the images of the of the
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roots of F (f, y). By primitive element theorem, we assume M̃ = C(x̃, ỹ).

Next, we describe an action of the monodromy group on the normalization. Consider a

morphism SF → P1(C) and its normalization SF̃ → P1(C). Let x0 ∈ P1(C) be an unbranched

value of x̃, and let {(x0, y00), . . . , (x0, yd0)} denote the fiber of x0 under x. Then, by the implicit

function theorem, there is a disc D containing x0 and a meromorphic functions yi such that

F (x, yi(x)) = 0 in D. Now, assume M(SF̃ ) = C(x̃, ỹ1, . . . , ỹn) as above. Let U be a

neighborhood in X̃ that maps isomorphically onto D by the map x̃. Observe that since

F (x̃, ỹi) = 0 for each yi, we have that the meromorphic function defined on D by

F (x̃, ỹi) ◦ x̃|−1
U = F (x, ỹi ◦ x̃|−1

U )(x)

is identically 0, which implies that the meromorphic function ỹi ◦ x̃|−1
U : D → P1(C) agrees

with yj for some j. By reordering if necessary, assume yi = ỹi ◦ x̃|−1
U .

We will define an action of Mon(f) on this set of meromorphic functions ỹi by means of

analytic continuation. First, we recall the definition from complex analysis.

Definition 2.3.5. Let γ : [0, 1] → C be a curve, let x0 = γ(0), and suppose ψ is meromorphic

function defined on a neighborhood D0 of x0. An analytic continuation of ψ along γ is the

following data.

(a) A partition 0 = t0 < t1 < · · · < tn = 1. Let xi = γ(ti).

(b) For each xi, a disc Di with a meromorphic function ψi : Di → P1(C) such that ψi(x) =

ψi+1(x) for x ∈ Di ∩Di+1.

In some cases, we may also use the term analytic continuation of ψ to mean the function ψn

where xn = 1.

Lemma 2.3.6. Let B ⊂ P1(C) be the branch values of x. For γ ∈ π1(P1(C) \ B, x0),

let σγ denote the permutation corresponding to the monodromy action. Then the analytic
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continuation of yi along γ is yσγ(i).

Proof. This proof is adapted from Girondo–Gonzales-Diez[2, 2.68]. Let ψ0 = yi. For an

analytic continuation, note that since F (x, ψ0) = 0 and ψ1 agrees with ψ0 on D0 ∩ D1, it

must be the case that F (x, ψ1) = 0, an so on for all ψi. Hence ψn where xn = x0 agrees with

yj for some j. In fact, j = σγ(i) since the map

t 7→ (γ(t), ψk(γ(t))) if γ(t) ∈ Dk

gives a lift γ̃ with base-point (x0, yi(x0)). Hence by definition of the monodromy action, the

end point must be (x0, yσ(i)(x0)), which means ψn coincides with yσ(i).

By the primitive element theorem, we have

ỹ =
d∑
i=1

ai(x̃)ỹi.

Lemma 2.3.7. Fix γ ∈ π1(P1(C), x0)). The map

M(SF̃ ) → M(SF̃ )

determined by
d∑
i=1

ai(x̃)ỹi 7→
d∑
i=1

ai(x̃)ỹσγ(i) := ỹγ

is a well-defined element of Gal(M(SF̃ ) |C(x̃)).

Proof. This proof is adapted from Girondo–Gonzales-Diez[2, 2.9]. Our first observation is

that, by the previous lemma, for any neighborhood U ∈ SF̃ mapped homeomorphically into

P1(C) under x̃, we have that ỹγ ◦ (x̃|U)−1 is the analytic continuation of ỹ ◦ (x̃|U)−1 by γ.

Hence, since F̃ (x, ỹ ◦ (x̃|U)−1(x)) = 0, we have that F̃ (x, ỹγ ◦ (x̃|U)−1(x)) = 0.
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Thus

0 = F̃ (x, ỹγ ◦ (x̃|U)−1(x)) = F̃ (x̃, ỹ)γ ◦ (x̃|U)−1(x).

This implies F̃ (x̃, ỹγ) = 0, so ỹγ is indeed a root of F (x̃)[Y ].

We observe that the monodromy action on M(SF̃ ) given above is actually by analytic

continuation. To see this, given any γ ∈ π1(P1(C) \ B, x0), an open neighborhood U ⊂ SF̃

as above, and any ψ ∈ M(SF̃ ), we compare ψ ◦ (x̃|U)−1 with (γ · ψ) ◦ (x̃|U)−1. Observe that

ψ =
d∑
i=1

ai(x̃)(ỹ)
d

=
d∑
i=1

ai(x̃)(
d∑
j=1

bj(x̃)ỹj)
d.

So

ψ ◦ (x̃|U)−1(x) =
d∑
i=1

ai(x)(
d∑
j=1

bj(x)ỹj)
d

and similarly,

(γ · ψ) ◦ (x̃|U)−1(x) =
d∑
i=1

ai(x)(
d∑
j=1

bj(x)ỹσγ(j))
d.

Since ai and bj are each meromorphic on P1(C), and analytic continuation is preserved

under sums and products, we have that (γ · ψ) ◦ (x̃|U)−1(x) is the analytic continuation of

ψ ◦ (x̃|U)−1(x) by γ. From this discussion, we immediately get the following proposition.

Proposition 2.3.8. For γ ∈ π1(P1(C)\B, x0), let τγ denote the element of Gal(M(SF̃ ) |C(x̃))

in Lemma 2.3.7. Then the map
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τ : π1(P1(C) \B, x0) → Gal(M(SF̃ ) |C(x̃))

γ 7→ (τγ)
−1

is a homomorphism that induces an injection of Mon(x) into Gal(M(SF̃ ) |C(x̃)).

Proof. This proof is adapted from Girondo–Gonzales-Diez[2, 2.70]. The fact that this is a

homomorphism follows from the fact that γ acts by analytic continuation. The analytic

continuation of ψ along a path αβ is the same as the analytic continuation along α of β · ψ.

The kernel is precisely the elements of π1(P1(C) \B, x0) that stabilize {ỹ1, . . . , ỹd}, which is

exactly the kernel of the monodromy map Mx by Lemma 2.3.6. Hence we have

Mon(x) ≃ π1(P1(C) \B, x0)
kerMx

=
π1(P1(C) \B, x0)

ker τ
↪→ Gal(M(SF̃ ) |C(x̃))

In fact, this map is surjective.

Theorem 2.3.9. In the above setting, Mon(x) ≃ Gal(M(SF̃ ) |C(x̃)).

Proof. It suffices to showM(SF̃ )
Mon(x) = C(x̃). To see this, suppose ψ̃ ∈ M(SF̃ ) is stabilized

by Mon(x). Then, since Mon(x) acts by analytic continuation, this implies that for any

γ ∈ π1(P1(C) \B, x0), ψ̃ ◦ (x̃|U)−1(x) is stable under analytic continuation by γ. We define a

map ψ on P1(C) as follows. For any x ∈ P1(C), let α be a path from x0 to x. We define ψ(x)

to be the analytic continuation of ψ̃ ◦ (x̃|U)−1(x) along α (denoted ψα), so ψ(x) = ψα(x). To

see that this is well-defined, if β is another path, then β−1α ∈ π1(P1(C) \B, x0), so we have

that

ψβ−1α(x) = ψ̃ ◦ (x̃|U)−1(x).
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On the other hand, this implies

ψ̃ ◦ (x̃|U)−1(x) = ψβ−1α(x) = (ψα)β−1(x).

So ψα(x) = ψβ(x), and ψ is well defined. We claim ψ ∈ M(P1(C)). To see this, we first

note that since locally ψ = ψ̃ ◦ (x̃|U)−1(x), we observe that ψ ◦ x̃ = ψ̃ on P1(C) \ B, which

implies that ψ is meromorphic. Finally, we observe that ψ̃ = ψ◦x̃ implies that ψ̃ ∈ C(x̃).

The following corollary is the culmination of our preceding efforts and allows us to con-

struct extensions of C(x) with Galois group G by means of defining a covering X → P1(C)

with monodromy group G (which we can always do by Riemann’s existence theorem). We

restate the above results in terms of general coverings of P1(C), which is the same due to

our equivalence of categories.

Corollary 2.3.10. Let f : X → P1(C) be a ramified cover, and let f̃ : X̃ → P1(C) be the

normalization of f . Then Mon(f) ≃ Gal(M(X̃) |C(x)).

Proof. By realizing X as an algebraic curve SF and performing the normalization of SF as

above, we get the diagram

SF̃

SF X

P1(C)

ϕ

x
f

where ϕ is an isomorphism. By the equivalence of categories, we get the diagram
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M(SF̃ )

M(SF ) M(X)

C(x)

ϕ∗

f∗
x∗

Since x and f ◦ϕ are isomorphic coverings, their monodromy groups are isomorphic, and

hence Mon(f) ≃ Gal(M(SF̃ ) |C(x)) = Gal(M(X̃) |C(x)).

We end this section with an observation about stabilizers of points in monodromy groups.

Suppose X̃ → X → P1(C) is a normalized cover with monodromy group G ≤ Sd. Then

we have that Gal(M(X̃) |C(x)) = G, where G acts on the roots of F (f)[y]. Now, take

S = Stab(G, 1) ≤ G, and observe that M(X̃S) is obtained by adjoining a single root of

F (f)[y] (the one corresponding to 1 in the permutation group). But this is precisely M(X),

so by the equivalence of categories we get that the map

ι : M(X) ↪→ M(X̃)

corresponds to the cover

X̃ → X̃/S = X.

In this sense, coverings of P1(C) can be recovered from their normalization by taking the

stabilizer of 1 in the monodromy group. For a more geometric argument of this fact, see

Girondo–Gonzales-Diez[2, 2.7.1].
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Section 2.4

Resolvent Polynomials

Often one of the first calculations that one performs in a first course in Galois theory is

the computation of Galois groups for low degree polynomials. In the computation of Galois

groups for degree 4 polynomials, one often uses the so called “cubic resolvent,” which we

describe now (see Dummit-Foote[11, 14.6]).

Given any quartic over Q, we can assume it has the form

f = x4 + px2 + qx+ r

by making some substitution x 7→ x + a. Then the cubic resolvent of this polynomial is

defined to be

g = y3 − 2py2(p2 − 4r)y + q2

and the Galois group G ≤ S4 of f is a subgroup of a copy of D4 in S4 if and only if g has

a rational root. The way one computes this resolvent starts with the observation that the

group

D4 = ⟨1, (1324), (12)(34), (1423), (13)(24), (14)(23), (12), (34)⟩

is the stabilizer of the polynomial

θ1 = (x1 + x2)(x3 + x4) ∈ Q[x1, x2, x3, x4]

where D4 ≤ S4 acts as usual on subscripts. We then notice that Sn permutes the following

set.

θ1 = (x1 + x2)(x3 + x4)
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θ2 = (x1 + x3)(x2 + x4)

θ3 = (x1 + x4)(x2 + x3)

which means the coefficients of the polynomial

(y − θ1)(y − θ2)(y − θ3)

are symmetric functions of x1, . . . , x4, and hence substituting the variables for the roots

α1, . . . , α4 of f yields a polynomial g ∈ Q[x], where the coefficients can be written in terms

of the coefficients in f . The result is the cubic resolvent above, and if g has a root, then by

Galois theory that root must be fixed by G. But we chose the roots to be stabilized only by

conjugate copies of D4, and hence G is a subgroup of some copy of D4 in S4.

In the language of Fieker–Sutherland (see [7]), the polynomial θ1 is a “S4-relative D4-

invariant polynomial,” meaning that it is stabilized only by a copy of D4. Fieker–Sutherland

present a generalization of this technique, allowing us to compute resolvent polynomials for

any subgroup of a symmetric group. The first result necessary for the generalization of this

method is the fact that for any permutation groups H ≤ G, there exists a G-relative H-

invariant polynomial, see [20]. For σ ∈ Sn, let g · I be given by the standard action of Sn on

Q[x1, . . . , xn].

Lemma 2.4.1. For any H ≤ G, the polynomial

I(x1, . . . , xn) =
∏
σ∈H

σ · x11x22 . . . xn−1

is Sn-relative H-invariant.

So given a transitive permutation group G ≤ Sn and a subgroup H ≤ G, we can always

find a polynomial I ∈ Q[x1, . . . , xn] that is Sn-relativeH-invariant, so in particular G-relative
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H-invariant. We compute

p(y) =
∏

gH∈G/H

(y − g · I) ∈ Q(x1, . . . , xn)[y]

This is independent of coset representatives: if gH = g′H, then g′ = gh for some h ∈ H,

and g′ ·I = gh ·I = g ·I. Moreover, G permutes the roots of this polynomial by construction.

Hence, if f is a degree n polynomial with Galois group contained in G, then substituting

the roots α1, . . . , αn for x1, . . . xn in g will give a polynomial over Q. To ensure that the

polynomial is square-free, a “Tschirnhausen transformation” is applied, see [7]. Then we

have the following result.

Theorem 2.4.2. The polynomial p(y) defined above (with the Tschirnhausen transformation

if necessary) has a root in Q if and only if the Galois group of f is contained in H.
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Chapter 3

Specializations of Belyi Maps

With the equivalence of geometric monodromy groups and Galois groups established, we

attempt to use this result to exhibit G-extensions using coverings of P1(C) with monodromy

group G. The particular coverings we will use are genus 0 Belyi maps, in which case the

polynomial (2.3.4) will realize the induced extension of C(t). We start this chapter by proving

one direction of Belyi’s theorem, which provides our motivation for restricting our attention

to coverings of P1(C) ramified over three points. We then approach the “specialization

problem,” where for a subgroup H ≤ G, we hope to exhibit a family of H-extensions given

a family of G-extensions. Theorem 3.2.6 offers some information on the feasibility of this.

Finally, we discuss “rigidity,” a historically powerful method of producing G-extensions over

Q, and how it explains some phenomena regarding the base field that we observe in a few

examples.

Section 3.1

Belyi’s Theorem

Definition 3.1.1. A Belyi map is a covering of P1(C) unramified away from 0, 1, and ∞.

There is no substantial difference between the above definition and requiring that maps
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be ramified at exactly three points — in the latter case, we may post-compose with a Möbius

transformation to move the three ramification points to 0, 1, and ∞.

Note that any unramified covering p : X → P1(C) is an isomorphism with X = P1(C).

Any cover ramified at 1 point (which we can take to be ∞) induces an unramified covering

X \ {p} → P1(C) \ {∞} = C, which implies X \ {p} is isomorphic to C and thus X is

isomorphic to P1(C). It turns out that if p is ramified over 2 points, by a similar argument

X is isomorphic to P1(C). Thus ramification over 3 points gives the first instance of higher

genus covers (while also including many interesting genus 0 covers).

Example 3.1.2. Fix λ = m
m+n

for integers m and n, and define

Pm,n : P1(C) → P1(C)

x 7→ (m+ n)m+n

mmnn
xm(1− x)n

We claim this is a Belyi map. Observe that the derivative of this map is

(m+ n)m+n

(mmnn)
(mxm−1(1− x)n − nxm(1− x)n−1).

So the zeros are the solutions to

mxm−1(1− x)n − nxm(1− x)n−1

= xm−1(1− x)n−1(m−mx− nx)

which are 0, 1, and λ.

We have Pm,n(0) = 0, Pm,n(1) = 0, Pm,n(λ) = 1, and Pm,n(∞) = ∞. Hence Pm,n is only

ramified over 0, 1, and ∞.

We saw in Proposition 2.1.13 that all compact Riemann surfaces are isomorphic to pro-

jective algebraic curves. In order to study Galois theory, one may restrict attention to the

compact Riemann surfaces that come about from algebraic curves defined over Q, that is,

33



curves where all of the coefficients are algebraic numbers. The following theorem relates this

algebraic property to a purely geometric property of Riemann surfaces.

Theorem 3.1.3 (Belyi). The compact Riemann surfaces that are isomorphic to projective

algebraic curves defined over Q are precisely those that admit Belyi maps.

Proof. We provide a proof of one direction, adapted from Girondo–Gonzales-Diez[2, 3.1].

Suppose C is a projective algebraic curve defined over Q. Let

F (X, Y ) = pn(X)Y n + · · ·+ p1(X)Y + p0(X) ∈ Q[X, Y ]

be the defining equation for C. We consider the map

x : C → P1(C)

(x, y) 7→ x.

We claim that the branch values B0 = {µ1, . . . , µn} of this cover are contained in Q∪{∞}.

To see this, we observe that the branch values of the map will be a subset of the values x

such that pn(x) = 0, and the values for x where ∂F
∂Y

(x, y) = 0 for some y, or ∞. Hence a

branch value is either ∞ or a root of a polynomial over Q. Note that B0 is a finite set, since

we have finitely many branch points (branch points are a closed discrete set on a compact

surface).

Now, let m1 ∈ Q[x] be the minimial polynomial of µ1, . . . , µn over Q. We consider

m′
1 = d

dx
m1, and observe that the branch values of the cover x ◦ m1 are, by composition,

the branch values of m1 and the images under m1 of the branch values of x, which is

{0,∞} by construction of m1. Put together, we have that the branch values of x ◦ m1 is

B1 = m1(A1) ∪ {0,∞} where A1 are the roots of m′
1.

We claim that if we keep repeating this process, we will eventually arrive at the situation
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where Bi ⊂ Q∪{∞}. To see this, note that if B1 ⊂ Q∪{∞}, we are done. Otherwise, take

m2 to be the minimal polynomial of the branch points of m1. We claim that the degree m2

is strictly less than the degree of m1. Indeed, for the roots β1, . . . , βd of m′
1, we have that

[Q(m1(βi)) : Q] ≤ [Q(βi) : Q], which implies that

degm2 ≤ degm′
1 < degm1.

Hence, this process must terminate in finitely many steps, which implies that for some

m1, . . . ,mn, we have that f = mn ◦ · · ·◦m1 ◦x has branch values B = {0, 1,∞, λ1, . . . , λn} ⊂

Q∪{∞}. We can assume the first three are 0, 1 and∞ by post-composing with an appropriate

Möbius transformation.

Next, assume without loss of generality that 0 < λ1 < 1, which we can do by post-

composing with x 7→ 1/x and/or x 7→ 1 − x. Then write λ1 = m1/(m1 + n1), and observe

that Pm1,n1 ◦ f has branching values B \ {λ1}. Finish by induction.

We remark in passing that this result implies that there is an action of Gal(Q |Q) on the

set of compact Riemann surfaces that admit Belyi maps. Such Riemann surfaces admit a

combinatorial representation in the form of a two-colored graph, which are known as dessin

d’enfants, see Jones–Wolfart[3].

Section 3.2

Specializations

In this thesis we will make use of the following combinatorial representation of Belyi maps.

Since covers are characterized by their monodromy, we can represent a Belyi map by a

permutation triple (σ0, σ1, σ∞) with σ0σ1σ∞ = 1 and G = ⟨σ0, σ1, σ∞⟩ ≤ Sd a transitive

group, which is the monodromy group of the cover. We show explicitly how we think of
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Belyi maps with monodromy group G as a family of G-extensions of number fields.

Given a Belyi map ϕ : X → P1(C) with monodromy group G, let X̃ → P1(C) be the

normalization of this cover. By results of the previous chapter, the normalized cover induces

a Galois extension of C(x) with Galois group G. To give this extension explicitly, we recall

that under the equivalence of categories between covers and meromorphic function field

extensions, the field extension induced by ϕ is C(x, y) |C(ϕ), and hence the Galois closure

of this extension gives us our G-extension.

Example 3.2.1. The LMFDB has the following Belyi map, with label

Belyi Map 4T4-3.1_3.1_2.2-a

and permutations

σ0 = (1, 2, 3)

σ1 = (1, 2, 4)

σ∞ = (1, 3)(2, 4)

Here G ≃ A4. There are algorithms to produce explicit maps from these permutation

representations, see [16]. The one that LMFDB lists is the following genus 0 map.

ϕ : P1(C) → P1(C)

x 7→ 256
x

256x4 − 768x3 + 480x2 + 144x+ 9

There are developing methods of simplifying the defining equations for Belyi maps, see

Schembri–Schiavone–Voight[19]. Applying their algorithm yields the simplified map

x 7→ 26(x4 + x3)

8x− 1
.

We observe that the field extension C(t) |C(ϕ) is given by adjoining a root to the poly-
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nomial

ϕt = x4 + x3 − t

26
(8x− 1).

By the previous chapter, particularly the characterization given by 2.3.4, we know that

the splitting field of this polynomial has Galois group A4 over C(t).

This observation extends beyond Belyi maps, and as a consequence of the Riemann

existence theorem, all finite groups are realizable over C(t). In fact, in the above situation

and in general, we can base change to a finite extension K |Q and obtain a G-extension over

K(t).

In the above situation, the fact that A4 is the monodromy group agrees with the fact

that the discriminant of ϕt is

−(27/4096)t4 + (27/2048)t3 − (27/4096)t2

= [

√
−3

64
t(t− 1)]2 ∈ C(t)×2.

But from this computation, we see that if we replace C with K = Q(
√
−3), the discrim-

inant remains a square, and thus the Galois group is preserved, and we get an A4 extension

over Q(
√
−3)(t). In general, when working with any G-covering, we can always make this

base change to a finite degree number field: ϕt having Galois group G over C(t) is contingent

on the reducibility/irreducibility of finitely many polynomials defined over the coefficients

of ϕt ∈ Q(t)[x]. We discuss this fixed field later in the this chapter, and in the following

chapter, we attempt to descend even further to Q. In the most ideal setting, we have K = Q;

otherwise, we would like K to be of lowest degree possible.

We see that we can obtain Galois extensions overK(t) in this way, but we are particularly

interested in Galois extensions over K (especially when K = Q!). The following result shows

that this construction by Belyi maps gives us just that and more. First, we note that for a
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polynomial ft(x) ∈ K(t)[x], we say that a K-specialization of ft is a polynomial f ∈ K[x]

given by substituting t with some choice of α ∈ K.

Theorem 3.2.2 (Hilbert Irreducibility). Let K be a number field, and let f1(t, x), . . . , fn(t, x) ∈

K[t][x] be a finite set of irreducible polynomials. Then there are infinitely many choices of

α ∈ K such that the induced K-specializations of f1, . . . , fn by t = α are simultaneously

irreducible.

We get the same statement if we replace K[t][x] with K(t)[x] since we can multiply to

clear denominators and apply Gauss’s lemma. This immediately implies that for a generic

G-extension L |K(t), we get infinitely many G-extensions over K: Let H1 . . . Hn be the finite

set of maximal subgroups of G, and let f1, . . . fn ∈ K(t)[x] be the G-relative H-invariant

resolvent polynomials for each. Since the Galois group is G, each of these is irreducible over

K(t), which means by Hilbert’s irreducibility that there are infinitely manyK-specializations

such that f1, . . . , fn remain irreducible, giving Galois group G.

So we see that through this method, we get infinitely many G-extensions over some

number field K. In fact, a stronger version of this theorem implies that the specializations

that don’t give us G-extensions are restricted to a “thin” set in the sense of Serre[10, 3.2].

Nevertheless, we remain interested in this thin set in the “specialization problem.” Since we

are motivated by the IGP, it is reasonable to ask when we can also get H-extensions of K

for some H ≤ G. Such specializations would have to induce some reducing of one of the

resolvent polynomials considered above.

Before we consider examples, we first remark on the genera of curves defined over a

number field K and the relation to the number of K-rational solutions. In general, curves

fall into three categories, see Ho[13]:

(a) Genus 0: Up to isomorphism, the curve is P1(C), and has either infinitely many K-

rational points (which can be parametrized) or no K-rational solutions.
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(b) Genus 1: If there is at least one rational point, then the curve is an elliptic curve,

which by the Mordell–Weil theorem means that the K-rational points form a finitely

generated group.

(c) Genus > 1: By a theorem of Faltings, there are finitely many K-rational points.

The following example uses computations made in in [21].

Example 3.2.3. We consider the map with LMFDB label

4T5-4_3.1_2.1.1-a

given by

ϕ : P1(C) → P1(C)

x 7→ 16

27

1

144x4 − 416x3 + 440x2 − 200x+ 33

corresponding to the triple

σ0 = (1, 2, 3, 4)

σ1 = (2, 4, 3)

σ∞ = (1, 2)

Our family of polynomials is

ϕt =
16

27
− t(144x4 − 416x3 + 440x2 − 200x+ 33).

Here G = ⟨σ0, σ1, σ∞⟩ = S4, so this Belyi map induces an S4 extension over C(t). In

this case, we can consider this extension to be over Q(t) - indeed, any family of polynomials

that give Sn-extensions of C(t) will also give Sn-extensions of Q(t). We take H = D4 ≤ S4,

and we attempt to give a family of H-extensions from this family of G-extensions. Such
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specializations correspond to the classical cubic resolvent having a root.

x3 − 2px2 + (p2 − 4r)x+ q2

for a generic quartic

y4 + py2 + qy + r

After dividing by the leading term and making the subsitution x 7→ x+ 26
36
, we get the family

x4 − 2

27
x2 +

8

729
x− 1

243t
+

8

2187

So the reducibility criterion for the S4-relative D4-invariant polynomial is

x3 +
4

27
x2 + (

4

243t
− 20

2187
)x+

64

531441
= (x+ a)(x2 + bx+ c)

which induces the following system.

a+ b− (4/27) = 0

abt+ ct+ (20/2187)t− (4/243) = 0

ac− 64/531441 = 0

Magma computes this to be a genus 0 curve with 1 irreducible component, with parametriza-

tion (i.e. specialization map)

φH(s) =
−(1162261467/1024)s

s3 − (19683/16)s2 − (645700815/1024)s− (282429536481/4096)
.

Hence we get a family of D4-extensions of Q by

ϕφH
=

16

27
− φH(s)(144x

4 − 416x3 + 440x2 − 200x+ 33).
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In the above example, we were lucky that the specialization map was genus 0 and had

Q-rational points, as we were afforded infinitely many D4 extensions by virtue of the fact

that all genus 0 curves over K admit parametrizations of the K-rational points, granted that

there is at least one K-rational point. From this example, we see that if the specializations

for H fall on a genus 0 curve with parametrization φH(s), then we in fact get an H-extension

over K(s) by subsituting φH(s) for t in ft.

There are other situations where there may be only finitely many specializations (or even

none!).

Example 3.2.4. The LMFDB has the following genus 0 Belyi map

Belyi Map 4T4-3.1_3.1_3.1-a

given by

ϕ : P1(C) → P1(C)

x 7→ 16
−x4 + x3

4x− 1
.

This has monodromy group A4 and induces a generic A4 extension over any number field

containing K = Q(
√
−3), and similar computations to the previous example (reducibility

of the cubic resolvent) shows that the K-specializations that give a C2
2 -extension lie on the

curve

t− t2 = 2a3.

This is a genus 1 curve over K with Mordell-Weil group isomorphic to Z/2Z×Z/6Z. Hence

there are only 12 K-rational specializations with Galois group a subgroup of C2
2 .

Jensen–Ledet–Yui in [14] call these kinds of specializations “degenerate” as they do not

give H-extensions of K(s) but rather finitely many extensions of K. Indeed, families of

H-extensions do exhibit more general structure, and if this family is “generic” in the sense
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of [14], then they help to understand all possible H-extensions of a number field; in this case,

the motivation is self-evident. Regarding a finite set of “degenerate” H-polynomials, while

it is certainly more desirable to have an M23-extension over Q(t), the IGP for M23 remains

open for Q, so degenerate specializations may provide an answer, even if the answer does

not inform on the structure of M23-extensions more generally.

This strategy of specialization can apply more generally to all coverings of P1(C), not

just Belyi maps.

Example 3.2.5. Granboulan in [8] provides a genus 0 covering of P1(C) characterized by

the permutations

σ∞ = (1, 17, 18, 24, 23, 20, 10, 6, 5, 4, 3, 2)(7, 12, 16, 22, 13, 9, 19, 11, 8, 21, 15, 14)

σb = (1, 2)(4, 16)(8, 11)(9, 10)(12, 18)(13, 22)(15, 20)(23, 24)

σc = (1, 17)(3, 12)(5, 16)(6, 13)(7, 23)(8, 19)(9, 21)(14, 15)

σ0 = (3, 17)(4, 12)(6, 16)(7, 18)(8, 9)(10, 13)(14, 23)(20, 21)

This cover has monodromy group ⟨σ∞, σb, σc, σ0⟩ ≃M24, the Mathieu group on 24 objects.

Moreover, the induced Galois extension is preserved if we take K = Q, so we get an induced

M24 extension of Q(t) via some ϕt ∈ Q(t)[x]. The stabilizer of 1 in this copy of M24 is M23,

the only sporadic group for which the IGP is unresolved. Hence, it is essential to study

specializations of ft that may yield this subgroup. Unfortunately, the specializations are

given by rational points on the projective conic x2+ y2+ z2 = 0, so M23 can only be realized

this way over fields where the conic has a nontrivial solution, which in particular excludes

any number field contained in R.

Motivated by the strategy of specializing Belyi maps strategically in order to realize

subgroups H ≤ G of monodromy groups as Galois groups, we give a result on the genus of

such specializing maps, with an eye towards the genus 0 case in hopes of exhibiting the most
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H-extensions. Before stating the result, we examine the specialization map from a slightly

different point of view.

Let ϕ : X → P1(C) be a Belyi map with monodromy group G. Then we have the

normalized covering

X̃ → X
ϕ−→ P1(C).

We know that X is recovered from S = Stab(G, 1) by the closing remarks of section 2.3, so

we have an isomorphic covering

X̃ → X̃/S → X̃/G = P1(C).

Now for a subgroup H ≤ G, we have

X̃ → X̃/H → X̃/G = P1(C).

The map X̃ → X̃/H is a Galois cover with generic Galois group H, implying that the

K-specializations that give Galois group H are given by the K-rational points of the curve

X̃/H. The map X̃/H → P1(C) is the specialization map. The result that follows summarizes

this discussion and gives the genus of X̃/H in terms of the combinatorial presentation of ϕ.

Theorem 3.2.6. Let ϕ : X → P1(C) be a Belyi map corresponding to the permutation triple

(σ0, σ1, σ∞) and monodromy group G = ⟨σ0, σ1, σ∞⟩ ∈ Sd. Then for some finite extension

K |Q, G is the Galois group of the splitting field of ϕt over K(t). Fix a subgroup H ≤ G,

and let πH : G → S[G:H] denote the permutation representation of G on the cosets of H.

Then the specializations of ϕt with Galois group H over K lie on an algebraic curve of genus

g, where g is given by

g = 1− [G : H] +
∑

p∈X̃/H

(ep − 1)/2 (3.2.7)
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where each ep in the rightmost sum corresponds to one of the disjoint cycles between πH(σ0),

πH(σ1), and πH(σ∞).

In particular, if X̃/H → P1(C) is Galois, then

g = 1− [G : H]

2

(
1− 1

a
− 1

b
− 1

c

)

where a, b, c, are the orders of πH(σ0), πH(σ1), and πH(σ∞) respectively.

Proof. Let ϕ̃ : X̃ → P1(C) be a normalization of ϕ. We first observe that the specializations

with Galois group H are in the image of the induced map X̃/H → P1(C) restricted to the K-

rational points. Indeed, any such point a has a K-rational preimage in X̃/H, which implies

ϕa induces a trivial extension via X̃/H → P1(C) followed by a generically H-extension

X̃ → X̃/H. Hence the curve X̃/H gives the specializations with generic Galois group H.

To compute the genus, we first compute the ramification orders of the map X̃/H →

P1(C). This is still a Belyi map, since any ramification outside of 0, 1,∞ would give ram-

ification for normalized cover, which must have the same ramification as the original Belyi

map. The action of G on the cosets G/H is a degree [G : H] permutation representation

πH : G → S[G:H] where the preimage of the stabilizer of 1 is H, which corresponds to the

action of G on the fibers in X̃/H by G acting on X̃ before projecting to X̃/H. Hence the

ramification orders for points corresponding to 0, 1, and ∞ are the sums of the orders of the

disjoint cycles in πH(σ0), πH(σ1) and πH(σ∞) respectively.

With this information, we compute the genus g of X̃/H using the Riemann-Hurwitz

formula.

2g − 2 = −2[G : H] +
∑

p∈X̃/H

(ep − 1)

g = 1− [G : H] +
∑

p∈X̃/H

(ep − 1)/2

Now suppose H is normal in G, or equivalently X̃ → P1(C) is Galois. Then the action of
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G/H is transitive on the fibers of X̃ → P1(C), so the stabilizers of each point are isomorphic,

which implies that each point in a fiber has the same branching order. Thus the disjoint cycles

of πH(σ0), πH(σ1) and πH(σ∞) have order equal to orders of their respective permutations,

and so ∑
p∈X̃/H

(ep − 1) =
∑
e=a,b,c

[G : H]

e
(e− 1) = [G : H]

(
3− 1

a
− 1

b
− 1

c

)

g = 1− [G : H] + [G : H]

(
3− 1

a
− 1

b
− 1

c

)
/2

= 1− [G : H]

2

(
1− 1

a
− 1

b
− 1

c

)
.

Corollary 3.2.8. The normalization of a Belyi map with permutation triple G = ⟨σ0, σ1, σ∞⟩

has genus

g = 1− |G|
2

(
1− 1

|⟨σ0⟩|
− 1

|⟨σ1⟩|
− 1

|⟨σ∞⟩|

)
.

We reexamine Example 3.2.3. We first examine the images of σ0, σ1, and σ∞ under the

homomorphism given by S4 acting on the cosets of D4. Magma computes the following.

σ0 7→ (1, 2)

σ1 7→ (1, 2, 3)

σ∞ 7→ (1, 2)

So by Equation (3.2.7),

g = 1− [S4 : D4] + (1 + 2 + 1)/2

= 0

which concurs with the observation that specialization map was genus 0.
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In Example 3.2.4, we have

σ0 7→ (1, 2, 3)

σ1 7→ (1, 2, 3)

σ∞ 7→ (1, 2, 3)

So again by Equation 3.2.7,

g = 1− [A4 : C
2
2 ] + (2 + 2 + 2)/2

= 1

which concurs with our observation that the specialization map was genus 1 in this example.

These examples suggest that when pursuing the specialization problem, one should re-

strict interest to specializations so that the above formula gives genus 0, which depends

entirely on the permutation triples used to represent G and the choice of H ≤ G.

Example 3.2.9. We consider the following permutation triple for S7.

σ0 = (1, 2)(3, 4)(5, 6)

σ1 = (2, 3, 5)(4, 6, 7)

σ∞ = (1, 5, 4, 2)(3, 7, 6)

Take H ≃ PSL(2, 7) in S7. Performing the computation in Equation 3.2.7 will confirm

that the specialization map for H ≤ G is genus 0. So, for a Belyi map with the above

presentation, one would expect not only a family of S7 extensions, but also a family of

PSL(2, 7)-extensions. A family of polynomials generated by the above permutation triple is

the following:

ft(x) = 144tx+ (x2 − x− (1/3))3(x2 + 3x+ 7/3).
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The S7-relative PSL(2, 7)-invariant polynomial is of degree 30, and the coefficients are

complicated. Though the reducibility criteria should be given by a genus 0 curve, computing

this was not feasible from first principles in Magma. It would be interesting if there was a

way to compute this family of PSL(2, 7)-extensions, perhaps by applying a transformation

to the original family of polynomials, the G-invariant H-relative resolvent, or both.

Section 3.3

Base Changing and Rigidity

Implicit in all of these constructions is the intermediary number field that we are assuming

our G-extensions to be over. In this section we investigate these fields more thoroughly.

First, we give a sufficient condition for a number field K to suffice as a base change to

preserve G-extensions over C(t).

Suppose f is an irreducible polynomial defined over Q(t), and let L |C(t) be the G-

extension induced by this polynomial. Let F |Q denote the minimal field over which f is

defined and let fα denote a specialization of f for α ∈ F , and K(fα) the splitting field of

fα. Let g ∈ F (t)[x] be the Sn-relative G-invariant polynomial in the coefficients of f . Let

S be the set of all elements α ∈ F such that fα and gα are irreducible. If S is empty, take

K = F , otherwise let

K =
⋂
α∈S

K(fα).

We claim K will work as a base change. To see that f does induce a G-extension of K(t),

note that g has exactly one root β ∈ Q(t), and we claim β ∈ K(t). To see this, observe

that βα ∈ K(fα) for all α ∈ F . Indeed, K(fα) |F is an H-extension for some G ≤ H, which

implies there is an intermediary G-extension K(fα) |E, so E contains a root of gα, which

means K(fα) contains all roots of gα since it is a normal extension. Thus βα must coincide

with one of these roots. Since βα ∈ K(fα) for all α ∈ F , it follows that βα ∈ K by definition.
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Hence β ∈ K(t), and g has exactly one root in K(t), which means f gives a G-extension

over K(t).

The following example illustrates that choosing our covers carefully can work to minimize

the degree of this intermediary field between Q and our G-extension.

Example 3.3.1. We use F5 to denote the Frobenius group acting on 5 letters. The LMFDB

lists two degree 5 Belyi maps with monodromy group F5:

5T3-4.1_4.1_2.2.1-a

5T3-5_4.1_4.1-a

However, both maps only give F5-extensions over fields containing Q(i), so there is no

straight-forward way to get F5-extensions over Q using these maps. Instead, we consider

the degree 6 Belyi map that corresponds to the following permutations:

Belyi map 6T14-5.1_4.1.1_4.1.1-a

σ0 = (1, 3, 2, 4, 5)

σ1 = (2, 6, 5, 4)

σ∞ = (1, 6, 2, 3)

We have that G = ⟨σ0, σ1, σ∞⟩ ≃ S5, and Stab(G, 1) ≃ F5. It turns out that this S5-

extension is preserved after a base change to Q. By Theorem 3.2.6, the genus of the F5

specialization map is

g = 1− |S5|/|F5|+ (5− 1)/2 + (4− 1)/2 + (4− 1)/2

= 0
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Hence we should obtain infinitely many F5-extensions of Q, granted the curve is not a

conic with no rational points.

The Belyi map defined by these permutations is

φ : P1(C) → P1(C)

x 7→ x4(x2 − 6x+ 10)

32(x− 1)
.

So we examine the polynomial

ϕt = x4(x2 − 6x+ 10)− 32t(x− 1).

Since we chose to specialize to Stab(G, 1), ϕ is itself the specialization map, so we get the

family of F5 polynomials by ϕφ(s). Magma factors this as

(x−s)(x5+(s−6)x4+(s2−6s+10)x3+(s3−6s2+10s)x2+(s4−6s3+10s2)x+(−s5+6s4−10s3)/(s−1))

and we get an F5-extension of Q(s) by the degree 5 factor.

We examine the above example more closely. It is no coincidence that both degree F5

Belyi maps above each had Q(i) as a subfield of all base changes. Both use order 4 elements

in their combinatorial depiction, and both order 4 conjugacy classes of F5 take values i and

−i on the character table of F5. This is closely related to the principle of “rigidity” discussed

in the introduction, and here we provide context for the above behavior.

Let Qab |Q denote the maximal abelian extension. Let G be a group of order m. One can

define an action of Gal(Q(ζm) |Q) on G as follows: for a relatively prime tom, g 7→ ga defines

an automorphism of G, so we have an action of (Z/mZ)× on G. Use the usual isomorphism

to get an action of Gal(Q(ζm) |Q) on G. From this, we get an action of Gal(Qab |Q) by the

homomorphism Gal(Qab |Q) → Gal(Q(ζm) |Q).
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We note that this action is well-defined on the conjugacy classes of G: If g1 = h−1g2h,

then ga1 = h−1ga2h. The following definition is from Clark–Voight[9, 6].

Definition 3.3.2. Let G be a finite group of order m, and fix a conjugacy class C of G. Let

H ≤ Gal(Q(ζm) |Q) be the stabilizer of C in the above action. Then we call Fr(C) = Q(ζm)
H

the field of rationality of C in G.

Another characterization of Fr(C) is that it is the field obtained by adjoining the values

{χ(C)} where χ is a character of G. We will state without proof that in the most ideal

situation, for a Belyi map with representatives of conjugacy classes C1, C2, and C3, a field

of definition is the compositum Fr(C1)Fr(C2)Fr(C3). We state the appropriate conditions

now, starting with some definitions.

Definition 3.3.3. Let G be a finite group. Then a length n class vector is a tuple (C1, . . . , Cn)

of conjugacy classes of G.

Definition 3.3.4. Let (C1, . . . , Cn) be a class vector of G. We let Σ(C1, . . . , Cn) denote the

set of n-tuples (g1, . . . , gn) with gi ∈ Ci such that the following conditions hold.

(a) g1 . . . gn = 1

(b) G = ⟨g1, . . . , gn⟩

From now on, assumeG has trivial center. Observe thatG has a natural action Σ(C1, . . . Cn)

by component-wise conjugation, and in fact this action is free: (g1, . . . , gn) ∈ Σ(C1, . . . , Cn)

generate G, and hence element that stabilizes all gi by conjugation commutes with G.

Definition 3.3.5. We say that a class vector (C1, . . . , Cn) is rigid if the action of G on

Σ(C1, . . . , Cn) is transitive, that is

|G| = |Σ(C1, . . . , Cn)|.
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The purpose of this construction is the following theorem, adapted from Serre[10, 8.2.1]

Theorem 3.3.6 (Rigidity). Let G be a finite group, and suppose (C1, . . . , Cn) is a rigid

class vector of G. Then there exists a G-covering X → P1(C) ramified over n points that is

defined over and gives a G-extension over the compositum of the fields Fr(C1), . . . , Fr(Cn).

Looking back at our example of F5 as the stabilizer of 1 in a copy of S5 embedded in S6, we

see that we benefited greatly from the fact that symmetric groups have rational characters.
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Chapter 4

Arithmetic descent

When specializing Belyi maps, we are often in the situation where we have a family of G-

extensions L |K for some number field K ̸= Q. It is thus natural to ask if, given such

an an extension, one can somehow use it to realize a G-extension over Q. We will see

that this is a rather strict condition on a tower of field extensions. We first introduce the

notion of arithmetic descent in section 4.1. In section 4.2, we consider the special case

of descending Kummer extensions. In section 4.3, we give conditions for descent for more

general extensions.

Section 4.1

Introduction

Eberhart-Hasson introduce the notion of “arithmetic descent” in [5], which is the following.

Definition 4.1.1. Let K |F be a finite extension, and suppose L |K is a G-extension. We

say that L |K arithmetically descends to F if there is some G-extension E |F such that

E ⊗F K ≃ L as K-algebras.

For F = Q and assuming a separable closure of Q where all number fields are embedded,

an equivalent formulation of this definition is that L |K arithmetically descends to Q if there
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is some G-extension E |Q such that EK = L.

We give another formulation for the case that K |F is Galois. We make heavy use of this

characterization of descent in the following sections.

Lemma 4.1.2. Suppose that in the above setting, K |F is Galois. Then L |K descends to

F if and only if L |F is Galois and Gal(L |F ) ≃ Gal(L |K)×Gal(K |F ).

Proof. Suppose L |K descends to F . Then L = EK, where E |F is a G-extension. By tower

law we have

[L : F ] = [L : K][K : F ]

But L |K is a G-extension, and E |F is also a G-extension, so we have

[L : F ] = [E : F ][K : F ]

It follows that E ∩K = F , so we get an isomorphism Gal(L |F ) ≃ Gal(L |K)×Gal(K |F ).

Conversely, suppose we have the above isomorphism. Then let E be the fixed field of

1 × Gal(K |F ) ≤ Gal(L |F ) × Gal(L |K) ≃ Gal(L |F ). Since 1 × Gal(K |F ) is a normal

subgroup, by the fundamental theorem of Galois theory, E |F is Galois with Galois group

isomorphic to Gal(L |K)×Gal(L |K)/1×Gal(L |K) = Gal(L |K), and moreover, we have

EK = L since [L : F ] = [L : K][K : F ] = [E : F ][K : F ].

Section 4.2

Descending Kummer Extensions

Before considering an example of arithmetic descent, we state a definition that we will use

throughout this section.

Definition 4.2.1. Let K |F be a field extension. We say that K |F is a Kummer extension

if K |F is Galois, Gal(K |F ) is abelian with exponent n, and ζn ∈ F .
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We later take particular interest in the case that K |F is cyclic. We note here that when

F contains ζn, then irreducible polynomials of the form xn − a ∈ F [x] give cyclic order n

Kummer extensions, with the Galois group generated by n
√
a 7→ ζn n

√
a. We give a more

complete characterization later in this section.

Eberhart-Hasson consider the following example for arithmetic descent.

Example 4.2.2. Consider the cover

ϕ : P1(C) → P1(C)

x 7→ x3

This is a C3 cover, as C( 3
√
t) |C is a Kummer extension. Here the field of definition is Q(ζ3),

with ζ3 a primitive third root of unity. Hence we study the family of polynomials given by

ϕt = x3 − t

over Q(ζ3). Let Lα denote the splitting field of ϕt over Q(ζ3) at the Q(ζ3)-specialization

t = α. We search for specializations such that Lα = EαQ(ζ3) with Eα a C3-extension of Q.

Eberhart-Hasson use Kummer theory to completely characterize the specializations of

arithmetic descent: α = (x+ ζ3y)
2(x+ ζ23y) for x, y ∈ Q (as long as α is not a cube). More

specifically, they show that for such specializations, the generator τ ∈ Gal(Q(ζ3) |Q) extends

to an element of Gal(Lα |Q) by sending 3
√
α to

3√α2

x+ζ3y
, and moreover this automorphism

commutes with a generator σ ∈ Gal(Lα |Q(ζ3)), showing Gal(Lα |Q) ≃ ⟨σ⟩ × ⟨τ⟩ ≃ C6, and

Eα = L
⟨τ⟩
α .

We describe Eα explicitly: L
⟨τ⟩
α is generated by

3
√
α + τ( 3

√
α) = 3

√
α +

3
√
α
2

x+ ζ3y
.
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Magma computes the minimal polynomial to be

z3 − 3(x2 − xy + y2)z − 2x3 + 3x2y − 3xy2 + y3.

If we dehomogenize, obtain the curve C given by

z3 − 3(x2 − x+ 1)z − 2x3 + 3x2 − 3x+ 1 = 0

and we obtain the “descended” cover

ϕ : C → P1(C)

(x, z) 7→ x.

C is actually a genus 0 curve, and the cover gives C3-extensions of Q, without any roots

of unity.

The calculations in Eberhart–Hasson[5, 5.2] draw upon calculations of Saltman in [6],

which handles the general case of covers given by x 7→ xp for p prime.

For the remainder of this section we consider all cyclic Kummer extensions. We first

recall the relevant Kummer theory in order to characterize all cyclic degree n extensions of

F (ζn). Then, we handle the case of cyclic order n Kummer extensions of F (ζn), assuming

F (ζn) |F is degree ϕ(n) (such as when F = Q), for n = p prime, and give the complete

criteria for descent. We finish by examining the case for general n ≥ 2.

Suppose F is of characteristic 0 and contains ζn. Let F sep denote the separable closure

of F . We provide here the standard way of classifying all cyclic degree n-extensions of F

using Hilbert 90. Recall that a G-group is group equipped with an action of G. Let µn(F )

denote the multiplicative group of the n-th roots of unity of F . Observe that the following
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is an exact sequence of Gal(F sep|F )-groups.

1 → µn(F ) → (F sep)×
x 7→xn−−−→ (F sep)× → 1

From group cohomology theory we get an exact sequence

1 → µn(F ) → F× x 7→xn−−−→ F× → H1(F, µn(F )) → H1(F, (F sep)×)

By Hilbert 90, H1(F, (F sep)×) = 1, so the following is exact

F× x 7→xn−−−→ F× → H1(F, µn(F )) → 1

which means H1(F, µn(F )) ≃ F×/F×n, and if we track the isomorphism by the boundary

map of the exact sequence, we get

F×/F×n → H1(F, µn(F ))

a 7→ (σ 7→ σ( n
√
a)

n
√
a

)

But since F contains µ(F ),H1(F, µn(F )) is the group of group homomorphisms Gal(F sep |F ) →

Z/nZ. Such homomorphisms are in bijection with cyclic degree n-extensions of F , which

can in fact be recovered explicitly via the fixed field of the kernel of σ 7→ σ( n√a)
n√a , which is

F ( n
√
a).

We summarize the above discussion in the following theorem.

Theorem 4.2.3. Let K |F be a finite cyclic degree n Kummer extension. Then K = F ( n
√
a)

for some a ∈ F . In general, the degree n cyclic Kummer extensions of F are in bijection with

the order n subgroups of F×/F×n. Explicitly, two Kummer extensions F ( n
√
a) and F ( n

√
b)

are equal if and only if b = aiµn for some i relatively prime to n and some µ ∈ F .
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We now use the above characterization of cyclic Kummer extensions to give necessary

and sufficient conditions for descent in the case of n = p.

Consider the cover

ϕ : PQ(ζp) → PQ(ζp)

x 7→ xp

This is a Cp-cover, and x
p − t gives a Cp Kummer extension of Q(ζp, t).

Theorem 4.2.4. Let K = F (ζp) and suppose [K : F ] = p − 1. For a specialization t = a,

we have that a Cp-extension L |K descends to a Cp-extension over F if and only if there is

some τ ∈ Gal(K |F ) so that the following simultaneously hold for some i, c ∈ N with i ≡ c

mod p.

(a) τ(ζn) = ζcn.

(b) τ(a) = aiµn for some µ ∈ K×.

Proof. Fix any specialization t = a ∈ K, and let L |K be the splitting field of xp − a over

K. We know that condition (a) is necessary and sufficient for L |F being Galois, so we get

the short exact sequence

1 → Gal(L |K) → Gal(L |F ) → Gal(K |F ) → 1

which is isomorphic to

1 → Z/pZ → Gal(L |F ) → Z/(p− 1)Z → 1.

Now we make use of a general construction for group extensions. We equip Z/pZ with the

structure of a Z/(p− 1)Z-module as follows: identify Z/pZ with its inclusion in Gal(L |F ),

and for any h ∈ Z/(p− 1)Z, lift it to an element h̃ ∈ Gal(L |F ), and have h̃ act on Z/pZ by
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conjugation. This is well defined since any two lifts differ by an element of Z/pZ, which is

an abelian group.

The criteria that L descends is that the above extension gives the direct product, which

implies that the above action is trivial. If this is the case, then since p and p−1 are relatively

prime, H2(Z/(p − 1)Z,Z/pZ) = 0, which means that this extension splits. In fact, much

more generally, all extensions of the form

1 → N → G→ G/N → 1

with |N | coprime to |G/N | split by the Schur-Zassenhaus theorem.

From the above discussion, we see that in order to check for descent, it suffices to examine

whether lifts of elements of Gal(K |F ) commute with elements of Gal(L |K).

Our first observation is that, for any τ ∈ Gal(K |F ), the induced map τ ∗ : L → L

obtained by having τ act on xp − a is a field isomorphism, and hence preserves the Galois

group. So for any lift τ̃ , by the characterization of Cp-extensions over K by Kummer theory,

we have that ⟨a⟩ = ⟨τ̃(a)⟩ ∈ K×/K×p. In other words,

τ̃(a) = aiµp

for some i = 1, . . . , p − 1 and µ ∈ K. Now, let σ ∈ Gal(L |K) be the automorphism given

by p
√
a 7→ ζp p

√
a. We hope to understand how τ̃ acts on p

√
a. Observe that

τ̃( p
√
a)p = τ̃(a) = aiµp

which means that τ sends p
√
a to a pth root of aiµp, so

τ̃( p
√
a) = p

√
a
i
µζbp
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for some b = 1, . . . , p − 1. Now we choose our lift more strategically. Observe that for

j = 1, . . . , p− 1, we have

σj τ̃( p
√
a) = σj( p

√
a
i
µζbp)

= p
√
a
i
µζ(bj+i)p .

Since i and b are relatively prime to p, we can find some j so that ζ
(bj+i)
p = 1. So without

loss of generality, we take our lift of τ to be σj τ̃ : Indeed, σj τ̃ |K = τ̃ |K = τ since σ fixes K.

So we can assume that τ̃( p
√
a) = µ p

√
a
i
.

Since lifts only differ by elements of Gal(L |K), an abelian group, it suffices to check

commutativity relations between σ and τ̃ on the generator p
√
a. Observe that

στ̃( p
√
a) = σ( p

√
a
i
µ)

= ζ ipµ
p
√
a
i

and on the other hand

τ̃σ( p
√
a) = τ̃(ζp

p
√
a)

= ζcpµ
p
√
a.

Hence descent occurs if and only if i ≡ c mod p.

We can recover the solution in Eberhart–Hasson[5, 5.2] by taking p = 3, τ being the

unique involution, and examining the equation

τ(a) = a2µ3.
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Indeed, if we take a = (x+ yζ3)
2(x+ yζ23 ), we have that

τ(a)

a2
=

(x+ yζ23 )
2(x+ yζ3)

(x+ yζ3)4(x+ yζ23 )
2
=

1

(x+ yζ3)3
∈ Q(ζ3)

×3.

For arbitrary p and τ a generator that sends ζp to ζ
2
p , Saltman gives the condition,

a = b2
(p−2)

τ(b)2
(p−3)

τ 2(b)2
(p−4)

. . . τ p−2(b)

for b ∈ Q(ζp). Indeed, we have

τ(a)

a2
=
τ(b)2

(p−2)
τ 2(b)2

(p−3)
τ 3(b)2

(p−4)
. . . τ p−1(b)

b2(p−1)τ(b)2(p−2)τ 2(b)2(p−3) . . . τ p−2(b)2
=

b

b2p−1 =
1

b2p−1−1
.

Since 2 is coprime to p, by Fermat’s Little Theorem, 2p−1 − 1 is divisible by p, and hence

1

b2p−1−1
=

1

bdp
∈ Q(ζp)

×p.

Now we consider general cyclic degree n Kummer extensions. For instance, we may ask

about descent for the generalization, i.e.

ϕ : PQ(ζn) → PQ(ζn)

x 7→ xn.

Let L, K, and F be as in the above setting with L a cyclic degree n Kummer extension of

K by the polynomial xn−a. Like before, we need L |F to be Galois, so for any τ ∈ Gal(K |F ),

we need

τ(a) = aiτ (bτ )
n

for iτ coprime to n and b ∈ K. From this, we see that the map
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i : Gal(K |F ) → (Z/nZ)×

τ 7→ iτ

is a homomorphism. Under this criteria, like before we get the following exact sequence.

1 → Gal(L |K) → Gal(L |F ) → Gal(K |F ) → 1 (4.2.5)

which is isomorphic to

1 → Z/nZ → Gal(L |F ) → (Z/nZ)× → 1.

However, we no longer have any guarantee that this sequence will split. Indeed, consider

the following counterexample. Choose a = ζn, Then L = K(ζn2), and we get

1 → Z/nZ → Gal(L |F ) = (Z/n2Z)× → (Z/nZ)× → 1

where the map Z/nZ → Gal(L |F ) is given by taking m ∈ Z/nZ and sending it to the homo-

morphism ζn2 7→ ζmn ζn2 = ζnmn2 ζn2 = ζnm+1
n2 , so m 7→ nm+1. The map (Z/n2Z)× → (Z/nZ)×

is given by taking m to the homomorphism ζn = (ζn2)n 7→ (ζmn2)n = ζmn , so projection. Take

n = 9, then the above resolves to

1 → Z/9Z → (Z/81Z)× → (Z/9Z)× → 1.

So finding a section that is also a homomorphism is the same as finding a cyclic order

6 subgroup of (Z/81Z)× ≃ Z/54Z that projects to (Z/9Z)×. There is only one, and it

is generated by 26, 53 ∈ (Z/81Z)×, which both project to 8 ∈ (Z/9Z)×, which is not a

generator. Hence the only homomorphisms are not sections, so the sequence does not split.
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In order for descent to occur, we need the sequence (4.2.5) to split at the very least —

otherwise it is not even a semi-direct product, much less a direct project.

Recall that for each τ ∈ Gal(K |F ), τ(a) = aiτ bnτ . We give a section s : Gal(K |F ) →

Gal(L |F ) by defining s(τ) = τ̃ by

τ̃( n
√
a) = n

√
a
iτ
bτ

for some bτ , a choice of an nth root of bnτ . Observe that, for σ, τ ∈ Gal(K |F ), we have

σ̃τ( n
√
a) = n

√
a
iσiτ

bστ

and on the other hand

σ̃(τ̃)( n
√
a) = σ̃( n

√
a
iτ
bτ ) =

n
√
a
iσiτ

biτσ σ(bτ ).

So s is a homomorphism if and only if

bστ = biτσ σ(bτ ). (4.2.6)

In the case that i is the trivial homomorphism, this is the statement that bσ is a 1-cycle.

By Hilbert 90, H1(Gal(K |F ), K×) = 1, so this would imply that bσ is a coboundary, i.e. for

all σ ∈ Gal(K |F ), bσ is given by σ(c)
c

for some c ∈ K×. This appears to be an exceptional

case however—more likely, i will not be trivial, and we instead might interpret the relation

4.2.6 as a cocycle with a “twisted action.” We end our discussion of descending general

Kummer extension here, but we pick up on this thread in the final remarks of Chapter 5.
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Section 4.3

The General Case

The preceding computations made heavy use of the fact that the field extension of interest

happened to be a Kummer extension of an intermediary field. In the work that follows,

we present a generalized method of determining the K-specializations in the case that K

is Galois over Q by looking for rational points on a variety. First, for a tower of Galois

extensions L |K |Q, we characterize the Galois closure of L |Q and its Galois group. To do

this, we start with a definition.

Definition 4.3.1. Let G and H be finite groups. Recall the left-regular permutation rep-

resentation of H: For a set of |H| objects, identify the objects with elements of H. Then H

acts by left-multiplication. We define the wreath product G ≀H by

G ≀H =

|H|∏
i=1

G⋊H

where the product denotes the direct product, and the action of H on the product is by the

left-regular action of H on the |H| copies of G.

We now characterize the Galois closure of L |Q.

Proposition 4.3.2. Let K be Galois over Q so that it is the splitting field of h ∈ Q[x], and

Γ = Gal(K |Q), and suppose L is Galois over K so that it is the splitting field of f ∈ K[x],

with Σ = Gal(L |K). For γ ∈ Γ, let fγ denote the polynomial obtained by applying γ to

the coefficients of f , and let γ(L) denote the corresponding splitting field. Then the Galois

closure of L over Q is isomorphic to a subgroup of Σ ≀ Γ, and isomorphic to the full wreath

product if the set {γ(L)}γ∈Γ are distinct.

Proof. Our first observation is that the Galois closure M of L |Q is the compositum of the

fields γ(L) for γ ∈ Γ. Indeed, let x1γ, . . . , x
n
γ denote the roots of fγ. Observe that
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∏
γ∈Γ

n∏
i=1

(x− xiγ) =
∏
γ

fγ

is a polynomial in Q[x] since it is stable under Γ. We claim thatM must contain the splitting

field of this polynomial. To see this, observe that for any lift of Γ to Gal(M |Q), the orbit

of a root α of f under Γ consists of roots of fγ, so

∏
(x− αγ) ∈ K[x]

has a root α ∈ M , which means it must split completely as M is Galois. Hence M is the

compositum of {γ(L)}.

Next, we characterize the automorphisms in Gal(M |Q). Let y1, . . . , ym denote the roots

of h. Take any g ∈ Gal(M |Q), and take xiγ ∈ γ(L). We know that g acts on K by its

restriction to an element of Γ. We now examine g · xiγ. Let γ′ = gK ◦ γ ∈ Γ. By the

above argument, we must have that g sends xiγ to a root of fγ′ , so we have a restriction

g : γ(L) → γ′(L). From this we see that g permutes the fields γ(L) by the action of g|K ∈ Γ.

We have that Gal(γ(L)|K) ≃ Σ for each γ via the map

Σ → Gal(γ(L)|K)

σ 7→ γ∗−1σγ∗

where γ∗ denotes the induced isomorphism L → γ(L). Thus, if f denotes the isomorphism

γ(L) → γ′(L), then we have that any map g : γ(L) → γ′(L) must yield f−1g ∈ Σ. So, under

the identification of roots via f , g acts as an element of Σ on γ′(L). Hence the action of g on

M , defined by an action on the roots of h and the roots xiγ of each fγ is given by the action

of an element of Σ ≀ Γ: Indeed, for a = ((σ1, . . . , σ|Γ|), γ) ∈ Σ ≀ Γ, we have

a · (y1, . . . , ym, (xiγ)) = (γ(y1), . . . , γ(ym), (σi(γ
∗(xiγ))))
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= (g(y1), . . . , g(ym), (g(x
i
γ)))

When {γ(L)} are distinct, [M : Q] = [M : K][K : Q] = |Σ||Γ|||Γ|, which means

Gal(M |Q) is isomorphic to Σ ≀ Γ.

Let K |Q and L |K be as above. Then we note that the condition that L |K descends

to Q is equivalent to L being Galois over Q with Gal(L |Q) ≃ Gal(K |Q) × Gal(L |K) by

Lemma 4.1.2. The following proposition makes use of the G-relative H-invariant polynomials

developed in Chapter 1.5 in order to specify the K-rational specializations of descent.

Theorem 4.3.3. Let f : X → P1(C)K be a Σ-Galois cover. Then the K-specializations

where the cover descends to Q are given by a variety of dimension |Γ|.

Proof. By the remark above, arithmetic descent occurs when Gal(M |Q) injects onto a sub-

group of Σ ≀ Γ isomorphic to Σ× Γ. Let ft be the defining polynomial induced by the map

f (i.e. for any specialization t = a ∈ K, ft gives the Galois field extension generated by the

fiber of f over a). Let 1, α, . . . , α|Γ|−1 be a Q-basis for K. Then any specialization of ft is a

specialization of gt := (ft)|t=t0+t1α+···+t|Γ|−1α
|Γ|−1 ∈ K[x, t0, . . . , t|Γ|−1], for |Γ| Q-coordinates.

Then we have that

g =
∏
γ∈Γ

γ(gt) ∈ Q[x, t0, . . . , t|Γ|−1]

defines the Galois closure M above, and has Galois group G = Σ ≀ Γ over Q(t0, . . . , t|Γ|−1).

To test for the specializations that give the transitive (for the permutation representation of

G on the roots of g) subgroup H ≃ Σ× Γ ≤ G, we identify K-specializations with rational

specializations of t0, . . . , t|Γ|−1. Then we construct a G-relative H-invariant polynomial p ∈

Q[x1, . . . xdegft|Γ|], and constructing a G-relative H-invariant resolvent as in [7]:

h =
∏

g∈G/H

(y − g · p) = y[G:H] + p1y
[G:H]−1 + · · ·+ p[G:H]−1y + p[G:H]
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where pi ∈ Q[t0, . . . , t|Γ|−1].

If we take x1, . . . xdegft|Γ| to be the roots of g, then h ∈ Q[y] since the coefficients are

stable under the action of G, and if h has a rational root, then in particular that root is fixed

by G, which implies that G is a subgroup of a conjugate copy of H (by G-relativity of p). We

claim that the specializations where h has a root corresponds to rational points on a variety

of dimension |Γ|. To see this, let (h) ⊂ C[t1, . . . , t|Γ|, y] denote the ideal generated by h.

Then by Krull’s Hauptidealsatz (see [17]), letting dim denote the transcendence dimension,

we have

dim(C(t1, . . . , t|Γ|, y)/(h)) + 1 = dim(C(t1, . . . , t|Γ|, y)) = |Γ|+ 1

and hence

dim(C(t1, . . . , t|Γ|, y)/(h)) = |Γ|.

Example 4.3.4. We return to the cover considered by [EH]:

ϕ : P1(C) → P1(C)

x 7→ x3

So ϕt = x3 − t, or ϕα = x3 − t0 + ζ3t1 for a generic specialization. As in the proof of the

proposition, we compute the polynomial

g = ϕα(τ · ϕα) = (x3 − t0 + ζ3t1)(x
3 − t0 + ζ23 t1)

= x6 + (−2t0 + t1)x
3 + t20 − t0t1 + t21 ∈ Q(t0, t1)[x].

This has Galois group G = C3 ≀ C2 over Q. We fix H = C3 × C2 ≤ G and produce the
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G-relative H-invariant polynomial in terms of the coefficients of g:

y3 + 216t21 − 216t0t1 + 216t20 = 63(t21 − t0t1 + t20).

The specializations where this has a root is given by the rational solutions to the surface

y3 = t21 − t0t1 + t20.

Magma parametrizes the solutions as

t0 = x3 − x2y + xy2

t1 = x2y − xy2 + y3

for x, y ∈ Q.

Recall that Eberhart—Hasson compute the solutions to be

(x+ ζ3y)
2(x+ yζ23y) = (x3 − x2y + xy2) + (x2y − xy2 + y3)ζ3

which matches our solution.

Computationally, we benefited greatly from the fact that the index of C3 ×C2 ≤ C3 ≀C2

is relatively small: 18/6 = 3. We see that this method has serious computational difficulties

as the degree of the extension increases.

Example 4.3.5. We may consider trying to perform arithmetic descent on the Belyi map

5T3-4.1_4.1_2.2.1-a

This is a family of F5 extensions over Q(i). To descend it to Q, we would analyze

the F5 ≀ C2-relative F5 × C2-invariant polynomial, which by the proof of Theorem 4.3.3
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would be degree 800/40 = 20, with coefficients equally complicated in the function field

Q(t1, t2). Hence it is quite rare for the surfaces that describe the reducibility conditions for

this resolvent to have rational roots.

The situation is more dire as the order of G rises. For instance, the lowest degree

transitive group for which the IGP is unresolved is the group labeled 17T7 on LMFDB, see

[15]. 17T7 is a semidirect product of PSL(2, 16) by C2, and is of order 8160. This group

has been realized over Q(
√
−5)(t), so we can ask about descent. The 17T7 ≀ C2-relative

17T7-invariant polynomial would be of degree 2 · 81602/(8160 · 2) = 8160.
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Chapter 5

Final Remarks and Future Directions

If one was to embark on Inverse Galois Theory from first principles, likely one of the first

strategies would be to fix a finite group G ≤ Sn, create a family of generically Sn polynomials,

and use Sn-relative G-invariant resolvents to find specializations where the Galois group is

G. In his lectures on Inverse Galois Theory (see [15]), Tim Dokchitser remarks that while

this method has been fruitful for some groups, it is difficult to know in advance when random

families will have such specializations — we saw for instance in Example 3.2.9 that we only

had 6 specializations that were candidates for C2
2 -extensions of Q(

√
−3). The answer to

this concern is Theorem 3.2.6, that somehow choosing our families to be induced by Belyi

maps grants us some assurance that choosing our permutation representations and subgroups

carefully will yield us plentiful desirable specializations; but we still saw that as the index

of H in G gets large or the resolvents get more complicated, computing the specializations

becomes difficult, even if they should be on a genus 0 curve. It would be interesting if

there was a less computationally-demanding method of computing these specialization maps,

perhaps with heuristics for simplifying the G-relative H-invariant polynomial.

The fact that the IGP remains open for 17T7 and M23, despite the fact that both have

already been realized over quadratic number fields, indicates that even in what one may
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consider the “easiest case,” that is, descending a degree 2 extension, arithmetic descent

remains largely not understood. On one end of the spectrum, we understand to some degree

descent of Kummer extensions by taking advantage of their nice presentations and working

out the desired specializations using properties specific to Kummer extensions. On the

other end, with our only assumption being that our intermediary field is Galois over Q,

Theorem 4.3.3 provides a brute-force way of computing points of descent, which for higher

order extensions serves almost exclusively as a theoretical description as actual computation

becomes unfeasible. The former helps us understand Kummer extensions better, and the

latter describes some of the complexity in finding appropriate specializations for descent.

Neither seem generalizable/applicable for approaching M23 or 17T7 in their current forms.

In the Kummer extension examples, we were able to construct equations in terms of Galois

conjugates. Perhaps there are similar constructions for general extensions, though we will

no longer be afforded the nice characterization their actions, for instance, σ(a) = aibn for

σ ∈ Gal(K |Q) that we saw above. More specifically for the Kummer extensions,although

the prime degree case is well-understood, it would be interesting to explore the descent of

Kummer extensions for composite n, following Vishne[18]; in particular, we saw in section

4.2 that there may be a need to examine 1-cocycles under “twisted actions.”
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