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Abstract

The statistical concept of Gamblers Ruin suggests that gambling has a
large amount of risk. Nevertheless, gambling at casinos and gambling
on the Internet are both hugely popular activities. In recent years, both
prospect theory and lab-controlled experiments have been used to improve
our understanding of risk attitudes associated with gambling. Despite the-
oretical progress, collecting real-life gambling data, which is essential to
validate predictions and experimental findings, remains a challenge. To
address this issue, we explore large amounts of publicly available online
casino data collected from a customized web scraper. Next, we wish to an-
alyze the dataset through the lens of current probability-theoretic models
and discover empirical examples of gambling systems. For this purpose,
we collected betting data from a DApp (decentralized application) on the
Ethereum Blockchain, https://etheroll.com, which instantly publishes the
outcome of every single bet (consisting of each bets Timestamp, Wager,
Probability of Winning, UserID, and Profit). This data, which allows gam-
blers to tune their own probabilities, is well suited for studying gambling
strategies and the complex dynamic of risk attitudes involved in betting
decisions. These conclusions are of great interest to various entities, such
as governments or casinos.
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Chapter 1

Introduction

1.1 Ethereum

The client server model, the most widely used computing network model in

the world today, allows devices (clients) to request services or resources from other

devices (servers). The client initiates a request to the server and receives a response,

which usually gives the client the service or resource it requested. Some examples

of this are the World Wide Web, or email. A major issue with this model is that

if the server stops working, everything else also ceases functioning. Additionally,

if hackers manage to break into the server, they could steal any client information

(e.g. Social Security Numbers, Credit Card information) stored inside. This model

inherently leads to centralization of computing power towards larger entities, such as

government or multinational corporations. [1]

In contrast, a peer-to-peer network lets any of its members (nodes) share infor-

mation or services on the network. All nodes have equal privilege, which means any

node in the network can give another node in the network a desired resource or ser-

vice. The most famous example of peer-to-peer networking is in torrenting, where an

initial server, called a seed, uploads a file. Nodes of the torrent network (the swarm)
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divide up this file into pieces and request missing pieces from other computers in the

network. Once pieces are obtained by a client, or downloading node, the pieces are

constructed into the original file. In this way, computing power is not monopolized; it

is shared. [2] This model is both fault-tolerant (i.e continues to work even if a single

or multiple members fails), and decentralized.

Ethereum is a distributed, peer-to-peer computing network, released in 2015, that

allows its nodes to conduct transactions and build applications. On the Ethereum

network, the main currency, Ether, powers all peer-to-peer transactions for goods and

services. [3]

One of the most important features of Ethereum is its usage of blockchain tech-

nology. The blockchain is a decentralized, publicly available chain of transactions.

Anyone can download software (Geth, Parity) and turn their computer into a node,

or a member of the Ethereum network. The peer-to-peer nature of the network allows

computing power to be evenly distributed and accessible. Because all nodes contain a

copy of the blockchain, each node has access to the same information. All nodes retain

perfect information and verify transactions. Through the usage of blockchain technol-

ogy, Ethereum aims to shift the current paradigm of computing from the client-server

model to a decentralized, peer-to-peer model.

All nodes verify transactions in order to ensure that new transactions are not

fraudulent. Once enough transactions are verified, these transactions are packaged

together into a block. Certain nodes, called miners, then compete to compute a diffi-

cult cryptographic hashing problem, called ETHhash. [4] This system, which rewards

miners for work done is referred to as a Proof of Work System. Once a miner solves

the problem, the mined block is then added to the blockchain.

After successfully packaging a block, miners are awarded with currency that is used
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to pay for transactions, such as Ether, or Bitcoin. On the Ethereum network, this

reward is up to 5 Ether. Because each transaction is verified by all the nodes in the

network, blockchains are extremely resistant to attempts of fraudulent modification.

If an attacker attempts to change the system, he or she would have to generate an

alternate chain from scratch. According to the original white paper (specification)

of Bitcoin, the block synchronization of these two parties is modeled as a binomial

random walk. From this, we see that the effective probability of an attacker succeeding

in creating a fraudulent blockchain approaches 0 if the attacker is more than 25 blocks

behind the actual blockchain. [5]

Another important feature of blockchain technology is that it allows user to user

transactions to be psuedoanonymous. This is due to a hashing of the transaction

IDs and their corresponding wallet IDs. This is extremely important, as it allows for

transparency of data.[6] Users do not have to worry about exposing their identity to

the public.

Ethereum has also introduced the idea of programming blockchain operations

through a technology called the smart contract. A smart contract is an automated

script written in Ethereum’s own scripting language, Solidity, that allows an individ-

ual to exchange a specified good or service. A popular comparison for smart contracts

is the vending machine. If a user of the smart contract gives the vending machine

a certain fee, and a product comes out. Accordingly, if a user inputs some cryp-

tocurrency into a smart contract, it executes an exchange of goods or services. As

smart contracts are also automated, they erase the need for a middleman. Smart

contracts, if programmed properly, can be used for a variety of applications, such as

vote automation or tax collection. Building an application on top of a smart contract

creates a decentralized application (DApp). A Dapp is completely decentralized (no
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single owner) and automated by its associated smart contract. Currently, there are

around 1,539 DApps on the Ethereum Blockchain. [7]

1.2 Application

We study the behavioral dynamics of gamblers on a DApp known as Etheroll.

Etheroll simulates a virtual dice gambling game where all bets are made in Ether and

published on the Ethereum blockchain. Etheroll has an associated smart contract

on the Ethereum network which specifies house edges, payouts, and dividends to

investors. [8] To begin the dice game, the gambler chooses a number between 2 and 99

(inclusive). The probability that the gambler wins is the number he or she chooses,

minus 1, meaning that the gambler can choose between a 1% to 98% chance of

winning. The payout (P ′) formula, if the house commission per bet is e = 1%,

probability of winning is p, and initial wager is W is:

P ′ = W

(
1− p− e

p

)
The smart contract then simulates a hundred-sided dice roll. If the result of the

dice roll is any number smaller than the number the gambler chose, the gambler

wins. After the transaction between the smart contract and the gambler processes,

the gambler receives a payout (in Ether) directly to their Ethereum wallet which is

inversely proportional to the probability they bet at. Naturally, lower probabilities of

winning have higher payouts, and higher probabilities of winning have lower payouts.

These transactions are publicly available on the Ethereum blockchain. Due to the

massive amount of verifying nodes on the Ethereum network, we can be sure about

the validity of these transactions. We will explore this data for all four of Etheroll’s
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smart contract updates from April 17th, 2017 to December 12th, 2017. Obtaining

real life gambling data, especially data from gambles in casinos is very difficult, if not

impossible to obtain. Because of this, mathematical models pertaining to gambling

are almost entirely theoretically based. Every bet from Etheroll consists of the bets

Timestamp, Wager, Probability of Winning, UserID, and Profit. With this data, we

can attempt to empirically explore gambling behavior.

This dataset has many other interesting properties. Having access to timestamps

allows us to identify possible changes in strategy influenced by gambling results over

time, in their gambling patterns. The fact that gamblers are able to tune their own

betting probabilities is also crucial. The ability to tune the effective odds in a wa-

ger allows us to evaluate probable risk profiles of certain gamblers. Additionally, we

focus on characterizing the entire risk attitudes of the entire “gambling ecosystem”

as a whole. We are also able to evaluate the existence and usage of staking gam-

bling systems (path-dependent strategies). The unique completeness and continuity

of this data also allows to us empirically evaluate some famous psychological frame-

works, such as Cumulative Prospect Theory. We also wish to look at the effect of a

gambler’s cumulative “signal”, or scaled cumulative profit on his probability distri-

butions/strategies. This scaling allows us to model the lessened effect of losses and

gains over time. This population of gamblers on the Ethereum blockchain allows us

to empirically observe the tendencies of gamblers in a casino-like environment for the

first time.
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Chapter 2

Prior Models/Background

2.1 Cumulative Prospect Theory

One of the most popular models for evaluating how human beings behave under

risk is Amos Tversky and Daniel Kahneman’s Cumulative Prospect Theory model. [9]

This model is an advancement on their original Prospect Theory model, which was

based on a few findings: the framing effect, nonlinear preferences, source dependence,

risk seeking behavior, and loss aversion. The ”framing effect” is the idea that humans

make decisions relative to a reference point, rather than the actual result. This

model also incorporates the idea of nonlinear preferences, such that the difference

in preferences between P (0.99) vs. P (1.0) is far different from P (0.10) vs. P (0.11).

Another crucial aspect of this model is its assumption of source dependence, or the

willingness to bet on a uncertain event based on its sourcing (e.g. a preference towards

their own areas of expertise). People making decisions under risk also often exhibit a

tendency towards risk seeking behavior, such as preferences towards low probability

tail events and preferring substantial probabilities of a larger loss over sure losses.
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In tandem, loss aversion is exhibited in experiments with losses and gains. Actors

in general were found to be more affected by losses and gains, rather than final

cumulative profit levels. Due to previous studies, Tversky and Kahneman noticed

a distinct asymmetry in the preferences of gamblers towards gains over losses, too

significant to be attributed to risk aversion or income effects. [10]

Cumulative Prospect Theory differs from normal prospect theory through its

application of probability weighting to the entire cumulative distribution function,

rather than individual probabilities. Again, we distinguish two phases in Prospect

Theory: framing, and valuation. In the framing phase, the gambler creates the possi-

ble outcome space, Ω of the prospect and the actions required. Then, in the valuation

section, the gambler assesses the value of the prospects and chooses the most favorable

action.

The model that fits these findings involves a gambler that takes some prospect G,

probability space P, and outcome space Ω:

P× Ω ⊃ G = {(x−m, p−m), . . . , (x−1, p−1), (x0, p0), . . . , (x1, p1), . . . , (xn, pn)}

Where we denote each pair (xi, pi) as the outcome in which the gambler wins xi with

probability pi, independent of other outcomes, such that xi < xj, ∀i < j, x0 = 0, and∑n
i=−m pi = 1. We refer to this as the framing phase, where the gambler constructs

a representation of the outcomes relevant to his or her decision.

Next, our gambler evaluates the subjective value of G. Our gambler then takes

this prospect, and assigns it the cumulative value:

V (G) =
n∑

i=−m

πiv(xi)
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Where πi is the decision weighting function:

πi =


w

(
n∑
k=i

pk

)
− w

(
n∑

k=i+1

pk

)
, ∀i ∈ [0, n]

w

(
i∑

k=−m

pk

)
− w

(
i−1∑

k=−m

pk

)
, ∀i ∈ [0, n]

and v : Ω→ R is some strictly increasing value function that varies between individual

to individual, and w± : P→ P is a probability weighting function that takes the actual

probability pi of the prospect and maps it as some transformed probability w±(pi).

Let us refer to w+(pi) as the probability weighting function for gains, and w−(pi) as

the probability weighting function for losses. These weighting functions are inverse

S-shaped, while the value function is kinked, such that the region of losses is steeper

than that of gains. We aim to maximize V .

Tversky and Kahneman then propose mappings:

v(x) =


xα for x ≥ 0

−λ(−x)α for x < −0

∀x ∈ Ω, and

w−(p) =
pδ−

(pδ− + (1− p)δ−)1/δ−
, w+(p) =

pδ+

(pδ+ + (1− p)δ+)1/δ+

Where α, δ± ∈ (0, 1), and λ > 1 are all shape parameters.

These functions conveniently capture all 5 assumptions that encompass the model.

Values measured by v are not in terms of final, cumulative wealth, but instead in

terms of loss and gains. This model also captures the loss aversion and risk seeking

of gamblers through the concavity of v only over gains, compared to losses, where
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it is instead convex. This implies at medium probability losses, gamblers are risk

seeking, but at similar probability gains, gamblers are risk taking. The formulation

of v also captures the loss aversion sensitivity due to its kinked nature at its reference

point 0, showing that losses affect gamblers more than gains. Lastly, the formula-

tion of w (which is strictly increasing), overweights the extreme outcomes x−m, xn

(overweighting of tail events). This captures the effect of gamblers overweighting the

tails of their own probability distributions (nonlinear weighting). Lastly, it captures

source dependence by being applicable to probabilistic and uncertain outcomes.

2.2 Barberis’ Casino Model

An important application to our work is Nicholas Barberis’ Casino Model. [11] This

model defines a model that places gamblers with Cumulative Prospect Theory pref-

erences in the context of a casino. We define casino gambling in this model as games

such as blackjack, dice and slot machines. We will apply some of these ideas in our

analysis of Etheroll, as Etheroll is a dice game.

Let us begin with the formulation of a casino that only offers expectation 0 bets

(essentially a binomial tree). Let a casino offer a gambler with initial wealth W =

W0 > h up to τ gambles, where τ is the gambler’s forced exit time. The set of

all times the gambler can gamble in the casino is denoted by the set of timesteps

T = {0, . . . , τ − 1}. The gambler in this model must eventually exit by same time τ ,

either due to ruin (W < 0), fatigue, work, or other commitments. At every timestep
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Ti, the casino offers a gambler a bet B:

B =


+h with p = 0.5

−h with p = 0.5

which has expectation E(B) = 0.

Let us model a possible sequence of gamblers our gambler can take in this model.

Let us assume at time T0 = 0 that our casino offers the bet B to our gambler, and

he or she accepts the bet. This is referred to as entering the casino. At the next

timestep, time T1 = 1, the outcome of the gambler’s bet is reported. We generalize

this for any time t ∈ [0, τ − 2], such that at time t the gambler is offered a bet B, in

which the result is reported in time t+1. He can exit at any time by declining the bet,

and at time τ the gambler is forced to leave. This models a typical evening of play.

We will assume that the forced exit time of a gambler on the Ethereum blockchain

to be the last bet he or or she wagered during a day of play.

A simple way to visualize this kind of betting model is through a binomial tree

representation. Starting with the root of the tree (which represents the initial ac-

cepted bet), the gambler travels either left or right of the root to a new node. The

gambler travels left in a winning bet, but travels right in a loss. In a model like this,

white nodes of the tree represent bets that the gambler will continue at regardless of

outcome, and black nodes represent exit times. We will refer to each node as a tuple

(i, j) where i represents the time the node corresponds to, and j ∈ [i + 1] represents

the leftwards shift of each node. This leftwards shift is represented by taking ji = ji−1

if the result of the gamble is a win, and ji = ji−1 + 1 if the gamble is a loss (where ji

is the value of j conditioned on the result of the previous i− 1 gambles).
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Figure 2.1: Binomial Decision Tree: τ = 5

For reference, white nodes imply that the gambler plans to continue gambling at

that node, and black nodes imply that the gambler plans to exit the casino at that

node. We observe that using this notation, the gambler plans to only exit at the set

ωτ = {(4, 1)} ∪ {(i, j) : i = 5}

After this simple formulation, we present the behavioral assumptions that drive

the analysis of this model. The first and most important assumption of this model

is that for every time step t ∈ T , the gambler in this model aims to ”maximize the

Cumulative Prospect Theory value of his cumulative wins and losses at the moment he

leaves the casino”. In this aspect, we observe that we focus on the cumulative wealth

obtained by this gambler, not the individual losses and wins he retains. This implies

that the value function, v : Ω → R takes the cumulative profit of the gambler at a

timestep as the input. This is based on the assumption that our gambler’s reference

point is the initial stake W0. The reason we maintain this is because at the terminal

time τ , we wish for the input of the value function to be the cumulative gains of the

gambler, such that the valuation is framed as v(
∑τ

i=0wi−W0), where wi ∈ {−h, h} is

the result of each gamble at each timestep i. This assumption implies that gamblers
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in this model follow independent bets, and that bets in the beginning of the session

matter far less than later bets.

The choice of prospect theory as a way to model the risk attitudes of these gam-

blers implies that there exists an interesting time inconsistency due to its probability

distortion function w. We define a time inconsistency to be a change in the gambler’s

initial plan at some timestep t, influenced by the overweighting of small probabilities.

For example, let us model a string of h bets, each winning some stake w0 with a

binomial tree of height h. Assume that the gambler’s initial strategy is to gamble

until the stopping condition that he or she reaches any node of depth d.

Observe that the probability that the gambler has made it to the (t− 2, 1) (t− 2

wins in a row) is P (E) = 1/2t−2. From the perspective of the gambler at i = 0,

this gain has very low probability, but by the formulation of CPT, w overweights tail

events, which causes our gambler to plan to gamble at (t− 2, 1). However, when the

gambler actually reaches (t−2, 1), the gambler does not continue to gamble (contrary

to the initial plan). Observe that the gambler must make the valuation:

v(w0t− 2w0) ≥ v(w0t− w0)w(0.5) + v(w0t− 3w0)(1− w(0.5))

to exit. We can frame this as the gambler only exits if his CPT value v(w0(t− 2)) at

time t− 2 exceeds the expectation of another bet B conditioned on his previous set

of bets. Observe that this implies that:

v(w0t− 2w0)− v(w0t− 3w0) ≥ w(0.5)(v(w0t− w0)− v(w0t− 3w0))

Which is true for all parameter values α, δ ∈ (0, 1). This implies that the gambler

will leave at time t − 2, showcasing an interesting time inconsistency in his or her
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strategies.

In this simple model, we see the time inconsistency prevalent in many gamblers.

This allows us to segment our gamblers into a variety of classes.

First among these classes is the naive gambler. This type of gambler does not

realize that his or her probability weighting creates a time inconsistency. Let us

model a possible path this gambler takes. At the initial time, t = 0, we define a plan

as the mapping s : T × J → Z/2Z, where T is the set of all times, and J is the set of

all possible leftwards shifts at every timestep. This choice of mapping represents the

mapping of individual nodes to a decision, where 0 represents the gambler’s decision

to exit and 1 represents the gambler’s decision to continue gambling. Denote the

set of all possible plans as S(0,1). Let us also define the random variable Ws that

represents the set of all cumulative profits and their associated probabilities of the

gambler if he or she exits the casino at all the nodes defined by a plan s. This means

this agent solves the problem at time 0:

max
s∈S(0,1)

V (Ws)

where V is the value function that takes a prospect

G = {(x−m, p−m), . . . , (x−1, p−1), (x0, p0), . . . , (x1, p1), . . . , (xn, pn)}

and maps it using:

V (G) =
n∑

i=−m

πiv(xi)
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Our gambler only enters the casino if and only at time 0:

V ∗ = max
s∈S(0,1)

V (Ws) > 0

We observe that these plans have a great deal of variability. First, we call a plan

s a ‘gain-exit’ plan if the gambler’s “expected length of time in the casino conditional

on exiting with a gain is less than his expected length of time in the casino conditional

on exiting with a loss”. Simplified, this means that a gambler leaves at an earlier

time t if he or she is winning, but stays until t′ > t if losing. This models gamblers

who are more risk seeking, chase losses in an attempt to reach gains. Additionally, we

observe that a gain-exit plan has a negatively skewed distribution. This distribution

has a moderate probability of a small gain, but a low probability of a significant loss.

In contrast, a plan is defined as “Loss Exit” if,“ under the plan, the gambler’s

expected length of time in the casino conditional on exiting with a gain is greater

than (the same as) his expected length of time in the casino conditional on exiting

with a loss”. Simplified, this means that a gambler leaves the casino earlier time t if

he or she is losing, but stays at some time t′ > t if he or she is winning. This models

more risk averse gamblers, who quickly exit based on losses. We observe that both

of these plans are motivated by the overweighting aspect of the probability weighting

function w. The loss-exit plan is naturally positively skewed, and thus attractive to

gamblers. However, in certain parameter values, we observe that a gain-exit plan can

also be attractive, given a low enough δ or α.

Assume that our gambler is satisfied with his choice of plan s. He enters the

casino, and begins to gamble. Let us take some node (t, j) at t ≥ 1. The gambler

solves:
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max
s∈S(t,j)

V (Ws)

Assume there exists a solution s∗. Then the gambler gambles at (t, j) if and only if:

V (Ws∗) > U

Where U is the valuation mapped by v of leaving the casino. Interestingly, through

numerical analysis, the naive gambler always changes from a loss-exit plan to a gain-

exit plan.

Another category of gambler is the gambler who is sophisticated, or aware of the

time inconsistency. However, this gambler is unable to commit to an initial plan s.

This gambler uses backwards induction, working leftward from the right-most node

of the binomial tree. Using the fact that he has a exit time τ , the gambler determines

his actions at τ − 1, τ − 2, . . .. Again, this gambler gambles at some node (t, j) if and

only if

V (Ws∗) > U

as demonstrated in the naive case. However, in this case, the values of Ws∗ are de-

termined by backwards induction, implying time consistency. According to Barberis’

numerical analysis, the gambler will overweight the tails of his distributions, leading

the gambler to experience a negatively skewed distribution. This means he or she

will be far pickier in which plans to enter with.

Last amongst these gamblers is the sophisticated gambler who is able to commit

to his or initial plan. This gambler will commit to any s ∈ S(0,1). Similarly to the
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naive gambler, this gambler solves:

max
s∈S(0,1)

V (Ws)

He searches all elements of S(0,1), and finds some solution s∗, such that

V ∗ = V (Ws∗) > 0

Interestingly, the naive gambler and this gambler both solve the same problem and

if they chose the same s, would start with the same plan. It is very difficult for a

gambler to exit when he or she has accumulated significant losses. In contrast, it is

difficult for a gambler to continue when he or she has accumulated significant gains.

In real life, a way to realize this forced restraint is for gamblers to enter a casino

with a fixed amount of cash, and leave their ATM card at home. Often in the entire

region of losses, these gamblers will be sorely tempted to gamble, following the time

inconsistency.

2.3 Randomization of Strategies

In the paper “Path-Dependent and Randomized Strategies in Barberis’ Casino Gam-

bling Model”, the authors aim to study Barberis’ Casino Model with a focus on

allowing randomized and path-dependent strategies. [?] We assume the same assump-

tions made in the casino gambling model of Barberis. We assume that the gambler

takes random time τ to be his strategy. We observe that assuming CPT preferences,

the gambler computes his relative value using the Choquet Integral (in continuous
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context):

V (X) =

∫ ∞
0

v(x)d[−w+(1− FX(x))] +

∫ 0

−∞
v(x)d[w−(FX(x))] (2.1)

Where X is the gain or loss relative to some initial reference point, and FX is the CDF

of X. w+ is the probability weighting function associated with positive outcomes, and

w− is the probability weighting function associated with negative outcomes. v(x) is

the same as v in earlier sections.

Additionally, we observe that the actual cumulative wealth of the gambler after

n bets (Wn) is modeled by Sn, which is the symmetric random walk on the integers.

We take our initial wealth w0 as a reference point for Sn. We derive for the exit time

T a CPT preference:

V (ST ) =
τ∑

n=1

v(n) (w+(P (ST ≥ n))− w+(P (ST > n)))

+
τ∑

n=1

v(−n) (w−(P (ST ≤ −n))− w+(P (ST < −n)))

(2.2)

Such that +∞−∞ = −∞. We wish to maximize V (ST ).

Observe we take wish to compare three different types of strategic paradigms.

First, we look at path-independent strategies, which are strategies in which ∀t ≥ 0,

{T = t} is only determined by Wt.

Gamblers also take path-dependent strategies, in which for any time t ≥ 0, {T = t}

is determined by the prior information set Ft = σ(Su : u ≤ t). This set is the entire

gambling history of the gambler up to some time t.

Lastly, we take a strategy that is both path-independent and randomized. This

strategy follows the same idea as the general path-independent strategy, with the
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exception of a few nodes in which the gambler flips a coin to decide his continue/exit

plan. A result of heads means continue, where a result of tails means exit.

The authors then provide a mathematical formulation for these strategies. First,

take some discrete-time Markov Chain X = {Xt}t∈[0,T ]. We also assume that the

gambler chooses a optimal stopping time τ ≤ T to maximize Xτ . Now, let us define

AM , and AD as the set of path-independent and path-dependent strategies respec-

tively. Observe that using the information set Ft we can write AD as the set of

{Ft}t≥0 stopping times. Next, we observe that AM can be represented as the set of

T ’s in AD such that ∀t ≥ 0, conditioned on {T ≥ t}, {T = t} is dependent on only

(t, St).

To define randomized, path-dependent strategies mathematically, we take a family

of 0− 1 random variables ζt,x, t ∈ [0, τ ], x ∈ Z such that ζt,x is independent of {Xt},

and are mutually independent. These 0 − 1 random variables represent the random

coin flips are some timestep t, when Xt = x, with ζt,x = 0 representing tails and

ζt,x = 0 representing heads. A possible strategy is stopping at the first time τ ′ when

a coin toss turns up tails:

τ ′ = inf{t ∈ [0, τ ]|ζt,Xt = 0} (2.3)

Our information set Ft then becomes enlarged to Gt = σ(Xu, ζu,Xu , u ≤ t). Inter-

estingly, τ ′ is path-independent, such that {τ = t} depends only on Xt and ζt,Xt

(conditioned on {τ ≥ t}. We define our set of randomized, path-independent strate-

gies as AR, where AR is the set of all τ defined in (2.3). Observe that this set is a

subset of AC .
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2.4 Betting Systems

A major factor that we are interested in is to empirically find examples of betting

systems, specifically staking betting systems. Let us define a betting system as any

kind of structured strategy that attempts to produce a net profit. These systems

promise to convert probabilistic house edges into player edges, a mathematical im-

possibility. Even more ridiculous is the fact that many of these betting systems are

applied to games which consist of many random, independent trials in an attempt to

alter their long term expectations. These systems are especially common in games

like dice, roulette, and blackjack. However, it is possible for some of these systems

to be slightly more profitable in the short term, at the cost of a large amount of risk.

These systems are of empirical interest, as it is very difficult to find data of gamblers

and their results in real life situations (such as casinos, or illegal configurations).

We can classify many of the most common staking gambling systems as negative-

progression systems. A negative-progression gambling system conditions increasing

bet sizes on losses. Many of the most famous and popular gambling systems are

systems that follow this strategy.

2.4.1 Martingale

One of the systems we will evaluate is the Martingale gambling strategy. Assume

that we are playing a game with two outcomes: win with probability p, and lose with

probability q. The first step of implementing this strategy is to pick some initial stake

W = w0 at some initial starting point τ = 0. Define the sequence an = {2n}∞n=0.At

any timestep i > 0, our gambler bets some amount aiw0. At the next timestep, i+ 1,

the gambler obtains the result of his or her gamble (either win or loss). We define his
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or her next bet size, wi+1, to be:

wi+1 =


ai+1w0 if loss

w0 if win

Clearly, bet sizes in this system grow exponentially fast, conditioned on continual

losses. The logic behind betting in this system is that given a initial stake w0, there

exists some time τ in which the gambler will win with probability p. His losses will

add up to L =
∑τ−1

i=0 2iw0, and we observe that 2τw0 − L = w0, meaning that the

gambler will recover his or her initial stake. However, the gambler does not possess

infinite wealth, so with exponentially increasing bet sizes, the probability of ruin

approaches unity.

Assume that the gambler has a bankroll of W = 2nw0, and initial stake w0. First,

we observe that the probability of the gambler losing exactly n times in a row is qn,

and the probability he or she does not lose is 1 − qn. Then, we have the expected

profit per round must be:

(1− qn)w0 − (qn)
n∑
i=1

2i−1w0

As the gambler obtains w0 if he or she does not lose. Additionally, observe that∑n
i=1 2i−1w0 = w0(2

n − 1). Observe this means our expression simplifies to:

w0 − qnw0 − qn(2nw0) + qnw0 = w0(1− (2q)n)

Observe that in the case when q > 0.5 (unfair game), this expression is always nega-

tive. This implies that in an unfair game, the martingale is a losing proposition per
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bet (has negative expectation).

2.4.2 Large Proportion Betting

Another system of empirical interest is a system where the gambler bets everything

per each wager. Let us assume that we are playing in a casino that offers positive

expectation bets p > 0.5, with payouts per wager w of w+ qw. Observe that we must

have expectation per bet B:

E(B) = p(qW )− qW = qW (p− 1)

which is clearly less than 1 as p− 1 < 0.

2.4.3 Kelly Criterion

An empirical system similar to the bet everything system is the proportional betting

system using the Kelly Criterion. Assume we are playing some biased game where

p > 0.5. The Kelly Criterion tells us that given odds b (payout on a bet of 1 unit),

probability of winning p, probability of losing q, the fixed fraction f ∗ of your bankroll

W you should wager is:

f ∗ =
bp− q
b

=
p(b+ 1)− 1

b

This fraction will maximize the logarithm of W .

Proof: Let us begin with initial wealth W0. Let our total wins after n bets be

represented by Sn. Assume that you bet the proportion f ∗ every time. If the gambler

wins Sn times, but loses n − Sn. Then your cumulative wealth after n bets, Wn is
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modeled:

Wn = (1 + bf ∗)Sn(1− f ∗)n−SnW0

Observe that our fractional gain is equivalent to:

r = log

(
Wn

W0

)1/n

=
1

n
(Sn log(1 + bf ∗) + (n− Sn) log(1− f ∗))

Observe that:

E(r) = p log(1 + bf ∗) + q log(1− f ∗)

We aim to maximize E(r), so we take E ′(r) = 0:

dE

df ∗
=

pb

(1 + bf ∗)
− q

1− f ∗
= 0

We simplify this, obtaining that:

pb

(1 + bf ∗)
− q

1− f ∗
= 0 =⇒ f ∗ =

bp− q
b

As desired. However, as detailed above (in the gambler’s ruin section), even if the

gambler follows this for an infinite amount of steps without decreasing his or her

wager, his or her wealth will tend to ruin.
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Chapter 3

Methods

3.1 Data Collection

This project entirely focuses on data collected from bets on the DApp (Decen-

tralized Application) Etheroll. Data about these bets used to be hosted on a site

https://www.cryptocurrencychart.com/etheroll-live-stats. To obtain this data, we

used a customized screen scraper built in Python using Requests and Beautiful Soup.

Requests is a user-friendly Python library designed to handle HTTP requests, and

Beautiful Soup is a HTML parsing library. We then databased this data, which

consisted of approximately 250 000 individual bets and 2600 gamblers in a mySQL

database. These numbers are based off the four iterations of Etheroll’s smart contract.

Contract 1 ranges from 4/17/2017 to 4/24/2017, Contract 2 ranges from 5/4/2017 -

5/18/2017, Contract 3 ranges from 5/23/2017 - 10/25/2017, and Contract 4 ranges

from 10/25/2017-12/12/2017. All of this data was collected when the minimum bet

on Etheroll was still 0.1 Ether (a value which ranged roughly from 4.3 USD to 52

USD).
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Taking some simple descriptive statistics for each contract:

Table 3.1: Environment Summary Statistics

Contract Average Bet Size (ETH) Unique Gamblers Total Bets

1 1.595 201 3919
2 2.006 179 5671
3 1.527 1889 132826
4 0.987 516 43425

An raw individual bet consists of 7 fields: A Datetime stamp, Player identification

(such as Professional #2924, All in #2922), Bet Size (in Ether), Chance (number

chosen to roll under), Paid ETH (Payout in Ether), and Paid USD (Payout in USD,

converted from Ether at the time). According to the maker of the website, the player

identification names follow this pattern: Newbie - New address, All in - High value

bets, Lucky - Wins against the odds, Play it safe - Multiple high chance bets, Against

the odds - Losses with high win chance, One in a million - Won very low chance bet,

Intermediate - more than 5 bets, Professional - more than 25 bets, Legend - more

than 100 bets.

The Chance feature is useful for determining the general riskiness of the popula-

tion. Additionally, having individual player identification codes allows us to subset

our data to observe the habits of each individual gambler. Having access to the

timescales of the gamblers also lets us observe some interesting time inconsistencies

prevalent in the data. Lastly, knowing the Bet Sizes and Payouts per bet allows us

to solve for the cumulative profit of the gambler at each timestep. This allows us to

apply ideas from Cumulative Prospect Theory and Barberis’ Casino Model.

In preprocessing our data, we aim to subset and clean the data in a sensible way.

The first way to subset the dataset was to organized the data by individual gamblers.

Next, we took these individual gamblers and subset them by the days they gambled
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in. Lastly, we computed the simple payout W for each gamble, which for some bet

B, result R ∈ {loss,win} was:

W =


R = loss 0

R = win W (1− p− e)/p

Where e is the house commission, 0.01, and p is the probability of winning the gamble.

3.1.1 Methodology

We will explore this data using a variety of common data analysis techniques and

qualitative analysis.

We will collect, analyze and visualize data using Python’s pandas library. As cov-

ered earlier, the data was scraped from https://www.cryptocurrencychart.com/etheroll-

live-stats. An alternate way to obtain this dataset would involve setting up a computer

as a Geth node (Ethereum node member), and use the JSON-RPC API to repeatedly

call for contract log events (where the smart contract specifies data).

First, we aim to characterize gamblers in Etheroll, through each of their lifetime

bet, bet size, betting probability, and cumulative profit distributions. We will deter-

mine patterns in this data by analyzing histogram distributions. This will allow us

to profile the average gambler’s preference for probabilities of winning, and average

bet frequency. Additionally, we will analyze the relationship between bet sizing and

probabilities of winning.

Next, we aim to carefully characterize gamblers who follow a few types of gambling

strategies. We first preselect a few path-independent (fixing of probabilities and wager

size) and path-dependent strategies (martingale). To explain certain psychological
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behavior, such as loss function, we will explain the behavior in terms of prospect

theory concepts such as the weighting function and value function. Additionally, we

will try to qualitatively define the risk profile of gamblers, depending on strategies

and gambling patterns. We do this through observing cumulative profits over time

and changes in wager sizing. To characterize the local behavior near a gambler’s

exit time, we use the metric of scaled cumulative profit. Take some set of times

T = {1, . . . , τ} ⊂ N, where τ is a forced exit time, and set of cumulative profits W =

{w0, w1, . . . , wτ}, where for some t ∈ T , wt =
∑t

i=0 ri, where ri is the profit at time

i. We scale this cumulative profit, instead taking an alternate sequence {2−iwi}τi=0.

This is an attempt to model the memory of a gambler, with the assumption that

more recent bets are weighted more significantly than bets in the past. This follows a

psychological phenomena known as the primacy and recency effect, where initial and

final results are overweighted in terms of importance and memory. [12]
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Chapter 4

Results

4.1 Characterizing the Population

4.1.1 Wager Sizing

This population of gamblers on the Ethereum blockchain allows us to empirically

observe the tendencies of gamblers in a casino-like environment for the first time.

The minimum bet-sizing of 0.1 Ether (4 - 53 USD in this dataset) simulates casino-

like stakes. [13] In this section, we will characterize the types of gamblers in this online

casino, the overall distribution of gamblers in the casino, and the paired cohort of

winning gamblers and losing gamblers.

To first characterize this population of gamblers, we visualize the total bet fre-

quency distributions of each gambler. Using histograms, we track each gambler’s

total gambles per smart contract, and the corresponding frequency of occurrence. In

doing so, there is a very pronounced right skew in the distribution of the amount of
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gambles of each gambler. In fact, in each smart contract iteration, the gamblers who

gamble only 1 to 10 times comprise approximately 60-65% of the entire population.

This heavy right skew shows that most gamblers in this DApp are mainly recreational

gamblers who place anywhere from 1 to 10 bets (See Table 4.1, Figure 4.1).

Table 4.1: Total Bet Distribution of Gamblers

Number of Total Bets Contract 1(%) Contract 2(%) Contract 3(%) Contract 4(%)

1− 10 66.16 62.57 55.16 60.47
10− 100 29.85 24.02 31.87 26.36
> 100 3.98 18.99 12.86 12.98

Figure 4.1: Bet Frequency Distributions

An interesting qualitative feature of these distributions is that throughout each

contract iteration, the relative bet frequencies of these gamblers remained relatively

constant. Another interesting feature of the data is the existence of a tail of gamblers
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who bet at high frequency. The “Whale Bettors”, or bettors who bet more than a

hundred bets and contribute most of the actual bets on the website comprise only a

small fraction of the actual gamblers. Due to gambler’s ruin, we see that these whale

bettors, who frequently gamble, must be more risk-taking. In contrast, the gamblers

who gamble less must be more risk-averse.

Figure 4.2: Bet Size Distributions

We see a very similar right skew in the distributions of Contracts 1, 2, 3 and 4.

However, Contract 1 displays a surprising amount of gamblers that are willing to

gamble at large bet sizes. Additionally, there are always a few gamblers willing to

bet at significant sizings (> 80 ETH). Possible reasons for this were probably due to

the relatively low price of Ethereum (approximately 1 ETH : 50 USD). Additionally,

there were only 90,000 total transactions on the Ethereum network at the time. Many

of these gamblers probably did not expect the prices to exponentially rise to 500
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USD/ETH.

4.1.2 Probability Distributions

Figure 4.3: Total Population Distribution

In observing the overall distribution of the probabilities that the gamblers on Etheroll

gamble at, we observe two interesting fixations. First, gamblers are extremely drawn

to probabilities within the bound of p = 0.4 − 0.6. This is slightly different from

what median Cumulative Prospect Theory preferences specify, as probabilities around

0.35− 0.6 are underweighted, rather than overweighted. Lower probabilities have the

opposite pattern. Additionally, these gamblers also have a fixation towards probabil-

ities with very high chances of winning, within p = 0.8− 0.99. This showcases these

gamblers are qualitatively more risk averse. This is an odd result. First, we observe

that theoretically, gamblers in this casino are more likely to be a self-selecting, risk
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seeking group. First, these gamblers must have some interest in Ethereum, and are

also forced to bet significant minimum bet sizings (5-53 USD).

Additionally, we wish to look at the probability distributions of two possible co-

horts of the gambling population: gamblers who win, and gamblers who lose. To do

this, we segment our data into gambles of gamblers who lose and those who win.

Figure 4.4: Losing Cohort Distributions

In all four contracts, the losing cohort of gamblers have very similar losing dis-

tributions (see Figure 4.3). In general, there is a large central mean at p = 0.5. In

Contracts 2 and 3, there is a nearly normal distribution in their probabilities. We

observe that in every contract, nearly 25% of bets are losing bets at around p = 0.5.

Additionally, many of the extremely risky gamblers who bet at p < 0.5 are repre-

sented in this cohort. Naturally, gamblers who bet like this will tend to lose more

often. The other tail end of the distribution comprises of the gamblers take p > 0.5
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gamblers, tending to be less risky and loss averse. However, as p 6= 1, they are still

bound to lose, and with a maximum probability of 0.99, they will still lose at least 1

out of 100 times on average.

Figure 4.5: Winning Cohort Distributions

Lastly, we observe that the winning cohort also has relatively similar general

distribution throughout the four contracts. This is due to the fact that with a large

enough sample, individuality is mostly canceled out. At first glance, it is apparent

that there is a distinct left skew in the distribution, with a large amount of bets

being distributed at p > 0.5. However, there is still a noticeable fixation by these

gamblers to bet at p = 0.5. We also notice that these winners probably tend to be

more risk averse, as most of the data is accumulated at p > 0.7. Very few winners

occur in the region of p < 0.5, which comprises less than 10% of the data on average

per each contract iteration. Lastly, an interesting feature in almost every distribution
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is an aversion to 0.5 < p < 0.7. This may be due to the shape of the probability

weighting function, where probabilities that are higher than p > 0.5 are overweighted.

An explanation for why p > 0.7 is so popular comes in the loss-aversion formulation

of the value function. As gamblers generally wish to avoid losses, they tune their

probabilities very high to avoid losses.

4.1.3 Probability vs Wager Sizing

Another way we can observe risk attitudes is in evaluating the relative bet sizing of

gamblers versus their tuned probabilities of winning.

Figure 4.6: Wager Sizing versus Probability of Winning

These plots showcase the loss aversion of most gamblers. When staking very large

bets, these gamblers exclusively bet at very high probabilities. The largest bets are

always bet at extremely high probabilities. With smaller sizings, we see a whole range
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of probabilities of winning. In general, this is not an extremely surprising finding, as

we expect most gamblers to be loss averse.

4.1.4 Cumulative Profit Distributions

Another interesting function of this is that these Bet Frequency and Probability

distributions mostly shared similar shapes throughout all four contract iterations.

However, the actual value of these bets greatly varied.

Additionally, it is interesting to see the distribution of the cumulative profits at

the end of each gamblers gambling time (See Figure 4.6).

(a) µ = −0.006 (b) µ = −0.537

(c) µ = −2.880 (d) µ = −0.658

Figure 4.7: Distributions of Cumulative Profits

It appears that Contract 1, Contract 4 have a distinctly normal distribution with
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µ < 0. However, Contract 3 seems to have a left skewed distribution, and Contract

4 seems to have a right skewed distribution. We hypothesize that this distribution

is most likely transient, meaning that the skew in Contracts 2 and 4 are determined

by variance. We also can conclude that most gamblers do not really win anything

(matching up with the fact that 60% of gamblers are recreational gamblers). We see

that the mathematical edge of the casino has effectively shifted the normal distri-

bution to the left, as expected. This implies that most gamblers are net losers, as

expected from an edged game.

4.2 Gamblers of Empirical Interest

We are interested in looking at the existence of gambling strategies because it allows

us to validate some of the ideas behind theoretical predictions. We search for strate-

gies that are path independent and path dependent, allowing us to verify the types

of gamblers in Barberis’ Casino model. However, we will observe that it is impossi-

ble for us to observe sophisticated, committed gamblers gamblers from an empirical

standpoint, as we do not know what devices .

Unfortunately, we will be unable to evaluate gamblers that follow proportional

betting standards, as it is not possible to parse wallet data at the times they bet at.

Because of this, we do not have access to their total wealth, and we cannot search for

proportions they bet at. In response to this, we will evaluate gamblers that bet at a

fixed wager in place of proportional bets. Another interesting system is the betting

system in which a gambler continuously bets at a high probability (analogous to the

bet everything system). This is one of the most common systems. Additionally, we

will be able to evaluate gamblers who bet with negative progression, staking betting
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systems. We will evaluate the most common system: the martingale. This is because

gamblers following the martingale always return to their original stake, making it

easier for us to detect the usage of this system. We also aim to see if gamblers have

a mixture of systems, such that they transition strategies over some timescale. The

reason we choose these systems is because it allows us to possibly observe time incon-

sistencies in both path-independent (fixed wager/fixed probability/high probability)

and path-dependent (mixed) strategies.

To find more simple systems, such as fixed probability, fixed wager or high prob-

ability betting systems, we will use Python’s Pandas package for data analysis. To

classify fixed systems, we convert our data, stored in csv files into Pandas Dataframe,

and search for gamblers who have zero variance in their probability choice and wager

sets. To classify high probability bettors, we choose any bettor who bets only at

p > 0.9.

We also will only apply these methods to gamblers who have sufficient gambling

data, e.g. whale bettors (bettors with over 100 total gambles). Additionally, we

assume that the initial reference frame that these gamblers once they enter the online

casino is the beginning of the day their betting session starts at. In this way, we will be

able to see possible time inconsistencies in daily data. With this as our reference point,

we found many gamblers that behave similar to the hypothesized path-independent

betting, naive gamblers who are unaware of the time inconsistencies. However, we

observe some interesting path dependent betting strategies (such as the martingales),

or some mixture of betting strategies.
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4.2.1 Fixed Probability

The most common and popular “strategy” found in this population is the fixed proba-

bility betting strategy. In this strategy, the gambler chooses some probability, usually

p > 0.5 and continually bets. In evaluating gamblers who bet with fixed probabili-

ties or wagers, we can observe what happens when a gambler has no strategic time

inconsistency (irrespective to exit strategies).

An example of this strategy is found in the betting history of Professional #5619.

Through the three date periods of 11/23/2017 3:17:43 PM - 11/23/2017 7:54:43 PM,

11/24/2017 8:22:40 AM - 11/24/2017 11:30:14 PM, and 11/25/2017 8:20:38 AM -

11/25/2017 10:04:12 PM, this gambler gambled 147 (whale) times, all at p = 0.49.

This is an example of a simple, path-independent strategy. No matter what his results

are, the gambler sticks to his initial strategy. Upon entering the casino, the gambler

commits to a strategy, and even upon accumulating losses, he or she continues to

gamble at a suboptimal probability. In gambling at p < 0.5, this gambler is taking

significant risk - in the long run his or her expectation runs negative.

Figure 4.8: Raw Cumulative Profit vs. Timescale for 11/23/2017 - 11/25/2017
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Figure 4.9: Wager Sizing vs. Timescale for 11/23/2017 - 11/25/2017

This gambler may have a time inconsistency in terms of exit strategies, but this

is something we cannot empirically deduce. He or she follows the betting strategy,

but exits once the losses reach some arbitrary stop-loss. We also observe loss-chasing

behavior in the third day. This gambler begins by betting at an extremely large initial

wager size of around 2 Ether (which is around the same size as the maximum bet he

or she bet at in the past two days), and progressively increases bet sizing as losses

accumulate. We observe a two-peak plateau in the bet sizing of this gambler. The first

plateau is positive for the gambler. The gambler won two consecutive large bets (20

ETH), recovering a significant portion of his or her accumulated losses. Immediately,

we observe a drastic decreasing in bet size, and a subsequent loss. The gambler

continues to bet at high values, putting themselves more and more negative. After a

string of consecutive losses, the gambler adjusts his or her bet size, eventually exiting

a a loss of 41.44 Ether. Attempting to chase a few initial losses through increasing bet

sizing only resulted in a larger loss. It seems that this gambler followed a gain exit

pattern. Upon large wins at the end of his or her first sessions, the gambler stopped

betting.
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Figure 4.10: Wager Sizing vs. Timescale for 11/23/2017 - 11/25/2017

In a very heuristic way, we can label these kinds of gamblers as more risk seeking

if p < 0.5 and less risk seeking if p > 0.5.

4.2.2 Fixed Wager

Rarer is the fixed wager strategy. This strategy is extremely simple. A gambler takes

some initial stake W0, and continually gambles, tuning his probability through wins

and losses. Oddly, this strategy never the only strategy the gambler employed over

the timescale of a day.

4.2.3 Martingale

As the Etheroll minimum bet size is quite large, we observe that a martingale system

diverges very quickly. However, certain gamblers still follow this system. As observed,

this gambler follows a martingale strategy. His bet size starts with an initial staking

size w0 = 0.2 Ether, and follows:

wi+1 =


2iw0 if loss

w0 if win

Where wi+1 is the i + 1-th bet conditioned on i losses. In the wager sizing graphs

(Figure 4.10), we observe a very clear return to the initial staking size after every
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win. These graphs showcase the nearly linear staking gains of the martingale for a

gambler from the timespan of 5/6/17− 5/7/17 (where he bet a total of 172 times).

Figure 4.11: 5/6/2017− 5/7/2017 Wager and Cumulative Profit Graphs

This is because of the guaranteed return of w0 from this system. However, we

notice on 5/6/17 there is a distinct drop in cumulative profits due the gambler having

a stop loss after 6 consecutive lost bets. This showcases the dangerous fast divergence

of the martingale system. We also see an interesting time inconsistency from this

gambler. Looking at the data, we see the gambler’s exact deviation from this strategy

at his or her 69-th bet, where the gambler bets 23(0.2) = 1.6 Ether at probability

0.5 and loses. If this gambler is following the martingale system, he or she should

bet 24(0.2) = 3.2 Ether at the same probability (to get a 1 : 1 return). However, the

gambler disregards this, and gambles the same gamble of 1.6 Ether, and loses again.

This causes a sharp decrease in his or her cumulative gains. Interestingly, the gambler
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makes a third bet of the same amount, and same probability. Probabilistically, he or

she will win this bet on average, but it comes with significant risk. This showcases the

tendency of gamblers to chase losses - similar to the idea of gain-exit strategies. It also

matches with the concept of the value function (Tversky and Kahneman’s Prospect

Theory). Theoretically, when making decisions under risk, gamblers become risk

seeking when faced with losses. This helps to explain the “loss-chasing” phenomenon.

Other possible reasons for this sudden time inconsistency in strategy could involve

the gambler’s total, overall bankroll. From observing his or her wager sizing, we

observe that the gambler never bets past 1.6 Ether. Hypothetically, the next bet in

the martingale sequence (3.2) could simply be too much for the gambler to continue,

forcing the gambler to deviate from the planned strategy.

(a) 5/6/17 Scaled Cumulative Profit (b) 5/7/17 Scaled Cumulative Profit

The trajectory of the scaled cumulative profit of this gambler shows his or her

valuation (“satisfaction”) through the losses and gains, framed near the exit time.

We observe that even though this gambler was a net positive (on 5/6/17), his or her

scaled cumulative profit is very faintly positive, representing the effect of the severe

loss. In contrast, we see the effect of ending with a large win on 5/7/17. The gambler’s

scaled cumulative profit is at a global maximum at his or her exit time, influencing

his or her exit time. This gambler ended up as a net winner, winning 4.34 Ether.
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Chapter 5

Conclusion

Through this initial data exploration, we discovered patterns of gambling behav-

ior. One of these findings is that as expected, a large proportion (approximately 60%)

of gamblers are recreational (0-10 lifetime bets). Additionally, we observe a nearly

normal distribution (µ < 0) of gamblers by cumulative profit, which is expected from

Etheroll’s 1% commission. Surprisingly, gamblers on Etheroll also follow a generally

more loss-averse distribution of probabilities (p > 0.5). We also find some interesting

gamblers who follow betting strategies (path-independent and path-dependent), and

attempt to qualitatively explain their exit times, behavior and risk profiles through

the lens of prospect theory and cumulative profit. In looking at a mixture of strate-

gies, we see gamblers who display strategic time inconsistencies, gain-exit and loss-exit

strategies, and loss-chasing behavior.

There are still many ways to explore this environment. As each individual has

his or her unique utility function, it would be interesting to approximate this using

a fitting of prospect theory’s value function. Additionally, if we apply a similar

parameter estimation as the one used by Tversky and Kahneman to approximate
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w+, w−, we could approximate individual probability distortion functions. The issue

with this method comes from the fact that many gamblers do not necessarily bet

amongst the whole spectrum of probabilities (0,1), but instead bet within some chosen

subset. Thus, it becomes almost impossible to estimate the whole distortion function.

Having an estimate of the probability distortion or value function would allow us to

quantify the riskiness of individuals. It could be interesting to see if certain gamblers

have weighting functions which underweight low probabilities, but overweight high

probabilities. Individuals with value functions that have steeper loss regions are more

sensitive to losses, and thus more willing to take risks and chase losses.

Another item of interest could be using some kind of machine learning algorithm to

search for other path-dependent strategies. Many other negative-progression, staking

strategies exist, such as the D’alambert, Fibonacci, and Labouchere system. However,

it is very hard to classify gamblers as gambling under these strategies, as it is rare

for a gambler to perfectly follow a strategy. Being able to observe the deviation of

gamblers from their ignitial strategies would be way to characterize the risk attitudes

of the gamblers, and possible gain-exit vs. loss-exit patterns. It would also be of

interest to find the existence of gamblers who are clearly loss-exiting against gain

exiting.
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