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Abstract

Prior social contagion models consider the spread of either one contagion
at a time on interdependent networks or multiple contagions on single layer
networks and usually under assumptions of pure competition. We propose
a new threshold model for the diffusion of multiple contagions. Individuals
are placed on a periodic square lattice, and this population structure is
later expanded to a multiplex with the addition of a random-regular-graph
layer. On these population structures, we study the interface between
two key aspects of the diffusion process: the level of synergy between
two contagions, and the rate at which individuals become dormant after
adoption. Monte Carlo simulations reveal lower synergy makes contagions
more susceptible to percolation, especially those that diffuse on lattices.
I show that within a band of synergy, contagions on lattices undergo
bimodal or trimodal bifurcations if they are the slower diffusing contagion.
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Chapter 1

Introduction

The term ”social contagion” implicitly captures two worlds: the world of social sci-

ence and the world of epidemiology. Although the term was initially coined in 1895

by Gustave Le Bon [39] to describe undesirable collective behaviors in crowds, the

definition has been stretched to encompass and explain types of collective behavior

produced through social contact. This broad definition has led Contagion Theory’s

inclusion within many avenues of social science research [23], including marketing [58],

innovation diffusion [28], medicine [57] and sociology [5].

In the same way that two contagions may influence each other’s infectious paths,

related innovations such as ideas, behaviors, products or technologies influence each

others’ diffusion. Prior social contagion models consider the spread of either one

contagion at a time on interdependent networks or multiple contagions on single layer

networks, usually under assumptions of pure competition. There is thus a desire to

understand the diffusion of multiple social contagions under synergistic assumptions

and to model the mechanisms for their concurrent, interfering spread. The thesis has

three main objectives. First, drawing upon established models within epidemiology

and pharmacology, I propose a model which quantifies the amount of synergy between

two contagions. Secondly, I consider the effects of stochastic dormancy, or immunity,
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towards similar contagions. This allows for the modeling of phenomenon that can be

simultaneously cooperative and competitive. Lastly, I study the impact of network

topology on the diffusion across short-range and long-range connections using random-

regular-graphs.

In many ways, the term ”social contagion” is an oxymoron. The word contagion

by itself means a disease spread by contact, a process in which the active and passive

agents do not get to decide whether they are infected or not. On the other hand,

social sciences are built on the assumption that rational individuals have the agency

to make decisions.

As a form of complex system modeling, agent-based modeling is based on the

premise that simple assumptions about agents can lead to complex results, where

these assumptions are simply characteristics of agents and need not imply agency. As

we will discuss in Chapter 2, there are three scholars whose work this thesis draws

from extensively, one of which is political scientist Robert Axelrod. In the second

volume of the Handbook of Economics, he begins his chapter with his perspective on

Agent-Based Modeling:

This chapter describes some of my experiences with agent-based modeling
(ABM) as a bridge between disciplines. I offer these experiences to provide
concrete examples of how agent-based modeling can help overcome the
somewhat arbitrary boundaries between disciplines. In graduate school, I
took the micro-macro sequence designed to socialize the economic doctoral
students into their discipline. I distinctly remember an occasion when the
professor— a future Nobel Prize winner– was presenting a formal model
of consumer behavior. A student remarked, But that’s not how people
behave. The professor replied simply, You’re right, and without another
word, turned back to the blackboard and continued his presentation of
the model. We all got the idea.

The value of agent-based models is less so the transient observations in the simulation,

but the converging and telling end-behaviors of complex system analyses.
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Complex systems exhibit emergent phenomenon, and although the definition of

emergence is still debated, a common definition is that the outcome cannot be simply

predicted from its constituent parts. The framework used in mathematics to study

this phenomenon today is encoded in graph theory. While the application of statistical

physics to graphs was motivated by understanding percolation processes, scientists

soon realized these could be applied to study other complex systems in economics,

society and biology. This sub-field is generally known as network science.

A network reduces a system into individual entities called nodes which encapsulate

characteristics and properties of the original system. Connections are represented by

edges. One critique of any mathematical representation is that they are too reductive.

Thus, a primary motivation in the field is how to enrich the model while with more

information while keeping the tractable. An area of recent growth is with multiplex

networks, or networks where the same set nodes are connected in multiple network

layers and how this may be applied to Social Contagions [52].

This thesis is organized in the following way. Chapter 2 reviews the literature on

diffusion in the network sciences with focus on academic fields and the researchers

whom have made significant contribution. Chapter 3 develops necessary terminology,

formulates the methodology for the two experiments and states the hypotheses in the

context of the parameters. Chapter 4 analyzes the results of the experiments. Chap-

ter 5 concludes the study, examines the weaknesses, discusses interpretation within

certain areas of the social sciences, then proposes future avenues of investigation.

While I wrote this paper there was a debate about keeping terminology consistent.

To this end there were a few challenges. Since I am borrowing epidemiological models,

it is difficult to separate the vocabulary of biology such as infection, contagion and

immunity from the discussion. At the same time, since I am modeling social behaviors,
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the terms innovation and adoption seem more suitable. Thus, I default to contagion,

and interchange adoption and infection as required within the context of discussion.
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Chapter 2

Literature Review

This paper draws significantly from the seminal work of three scholars who work

in different fields of research, yet produced important general diffusion frameworks.

The first is communication theorist and sociologist Everett Rogers, who pioneered

Innovation Diffusion in 1962. The second is aforementioned political scientist Robert

Axelrod known for his application of agent-based modeling to study culture and

cooperation. The third is Martin Nowak, who imports evolutionary dynamics and

epidemiological modeling to study emergent social phenomenon. The contribution of

these scholars come chronologically and the literature review is organized in the same

fashion. I first give an overview of the historical development of innovation diffusion

and give two examples of potential areas of application: cultural diffusion using Ax-

elrod’s model as an example. Information diffusion and technology innovation. I end

with Nowak’s epidemiological models for social contagions as the most contemporary

example, which is the field this thesis offers contribution.
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2.1 A Brief History of Innovation Diffusion

The diffusion of innovations address how new ideas and practices spread across a

population. It has been studied since 1962, when Rogers published his work Diffusion

of Innovations [51]. Following Rogers’ initial publication, the 1960s saw a great deal

of diffusion research which utilized adoption and economic data [55]. Now in its

fifth edition, Roger’s book has been cited more than 86,000 times, due to its wide

applicability to information dynamics, economics [54], marketing, medicine and health

care policy [21], and other fields of the social sciences. Many of these models have

also introduced techniques and insight from the field of epidemiology [55]. Growth

of computation and the network sciences in the 1990s spurred further interest in the

aforementioned area, especially with the advent of large network technologies like the

Internet.

The first quantitative model was the Bass Model (1969) [51], which uses the

logistic function to estimate the rate of innovation [27]. The Bass Model served as

a precursor to the spatial autocorrelation model, then the network autocorrelation

model. More recently, researchers have adopted complex systems models to model

the social phenomenon. This involves generating a graph, where each node represents

an individual decision maker.

The classic Bass Diffusion Model exhibits behavior similar to the one-parameter

logistic function, given as

y =
1

1 + e−b1t
+ b0

with y the percentage of adopters, t as time, and b1 the rate of adoption. A constant b0

can be added to move the time scale. An extension allows feedback between adopters

and imitators [4], given as:
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y = b0 + (b1 − b0)yt−1b1(Yt−1)2 (2.1)

This formulation has been useful in particular for disease spread from a central loca-

tion [55]. In the social sciences, it has been useful for estimating the adoption from

mass media advertisement. However, the Bass Model does not consider distance in

any metric space; that is, it assumes perfect social mixing.

To mitigate this, an extension of Moran’s model was proposed in 1956, where

he considered the spatial distance between nodes. This is known as the Spatial

Autocorrelation Model, expressed as follows:

I =
N
∑N

i

∑N
j Dij(yi − ȳ)(yj − ȳ)

S
∑N

i (yi − ȳ)2

D is the distance matrix (so the coordinates correspond to the weight), y denotes the

adoption, and S is the sum of all distances. This allows Moran’s I statistic to measure

deviation of behavior from a nodes neighbor. For instance, the I statistic is high if

connected nodes exhibit very different behaviors. However, this model simply gives

a macroscopic indicator of diffusion, but does not show how the underlying network

structure, or the types of individuals, that would influence the diffusion. Models that

were built on networks and graphs were developed to address this deficiency.

2.1.1 Network Models of Innovation Diffusion

In network models, each node is its own decision maker who rationally decide whether

they should adopt a certain behavior. Information cascades, or herding, is a phe-

nomenon in which public information gleaned from those around an individual over-

powers a node’s private information and thus influence their decision making. These
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effects are largely classified as informational network effects or direct benefit effects.

Direct benefits exist when there is a benefit for copying the behavior of others. Any

messaging online messenger service falls into this category, as the more of your friends

adopt the communication technology the more likely you will be tempted to as well.

Thus, the likelihood of a node’s adoption, or infection, grows proportionally to his or

her neighbor’s adoption.

The second type falls under network effects. These are typically modeled with

network coordination games, where each node plays with its neighbors and can be

used to model competing contagions, for instance suppose n is a nodes neighbors, p

the fraction that holds innovation A and (1 − p) the fraction that holds innovation

B. The innovations have payoffs a and b respectively. Then the threshold is

p ≥ b

a+ b
(2.2)

Within the framework of coordination games, there have been well-established

conclusions about what can prevent a cascade. Specifically, clusters are obstacles to

cascades and clusters are the only inhibitor of cascades. This is shown in chap-

ter 19 of Networks, Crowds, and Markets: Reasoning about a Highly Connected

World [16]. Nodes with the highest potential to maximize spread are denoted as

Influential Users [14]. Within scale free networks, clusters are also known as hubs,

which are shown to be influential users [14]. Within single layered networks, seed

selection have been well documented [31] using techniques such as K-Shell [32] and

VoteRank [59]. Recent efforts focus on multi-layer networks as well using the same

seed selection, in addition to Degree Centrality [17]. Seed selection is intimately

tied with the topography of the network. Some models consider information as an
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exchange or bartering activity between agents [12], and has been extended to a co-

evolutionary experiment [44].

2.1.2 Culture Dissemination

In 1997, political scientist Robert Axelrod asked the question: if people tend to

become more alike in their beliefs, attitudes, and behavior when they interact, why

isn’t it that all differences disappear? [3] In other words, why does cultural diversity

persist even when homogeneous self-enforcement occurs within a group?

Axelrod defines culture as the set of features that are subject to social influence.

His model is built on two assumptions. First, people are more likely to interact with

people similar to them. Secondly, these interactions make them more similar. He

gives the example of language, where an individual is more likely to interact with

someone who speaks a similar language, and the interaction in turn will define future

patterns of speech between them.

In his model, Axelrod assumes an L × L lattice, where each node represents a

person with an embedded culture. Cultures have a set of features F , defined broadly

with examples such as language, religion, and cuisine. Within each feature, there are

q qualities or traits. Each individual xi is defined by a state vector with the dimension

of F , and each element takes on a value {0, 1, ..., q − 1}.

His experiment is asynchronous— at each time step, a random node xi is selected

as the active agent, then one of its neighbors denoted as the passive agent is selected.

They then interact based on probability n
F

, where n corresponds to the number of

features where they match. If the interaction is successful, then a random feature of

the passive agent is copied over to the active agent.

He showed that if the number of features were greater than the number of states
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for traits, then the system would converges to a monoculture. Stable homogeneous re-

gions decrease with the number of features and increases with the possible states of a

trait. Since then, researchers have extended his model in multiple directions. Klemm

et al. complicates the model by considering the effects of noise [33], dimensional-

ity [35][36], and topology [34]. Researchers have also addressed different interaction

mechanisms. Centola et al [9] considers ”network homophily”, where the interaction

mechanism changes concurrently with the actions of the nodes.

Because of the generality of agent-based models, Axelrod’s model had spillover

effects to other fields of the social sciences. Gonzalez-Avella et al. [20] consider the

effect of mass media in processes of cultural diffusion, while Leydesdorff [40] inves-

tigates the evolution of competing technologies. The work of Klemm on topology in

particular motivates this project, since we investigate long and short range relation-

ships. This may find application in analyzing the interaction of culture across local

connections and online networks like the world web.

2.1.3 Product and Technology Innovation

New products serve a purpose for both producers and consumers. Consumers mix

and match existing product offerings to satisfy their needs, while producers profit

from this supply and demand of innovation and differentiation. As a result, the

field of product and technology innovation is one of the most widely studied fields

of innovation diffusion. Langley et al. [37] note the role of social contagions in the

process of innovation, then identify primary determinants that influence the diffusion

process.

Chandrasekaran and Tellis notes competitive and complementary effects as an

area of study [10]. The difference between competition and complementary action
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becomes difficult to identify when competition may in fact help another innovation.

A new brand can 1) increase the entire market potential due to its promotion and

variety or 2) compete for the same market potential and slow down the diffusion.

Guevara et al. (2007) [22] model the diffusion of two interacting products under the

Generalized Bass diffusion Model (GBM) described in Equation 2.1, and more clearly

define the different types of interactions between products. This was one of the first

attempts to combine complementary and network effects under one GBM. They define

two types of interactions. Multi-product interactions occur across product categories,

such as hardware affecting software diffusion, while network externalities occur within

a category, such as the user base.

Diffusion models that consider multi-product effects have received less attention.

Bayus (2000) Growth Models for Multiproduct Interactions: Current Status and New

Directions was one of the first studies to distinguish multiple product interactions

beyond simple technological substitution and between successful generations. They

partition models into two categories. The first include single-innovation diffusion

models that parametrize the effects of multi-product interactions [50] [24]. The

second considers generations of products and their succession dynamics [46].

Peres, Muller and Mahajan give a review of contemporary research directions [49].

They explicitly define innovation diffusion as ”the process of the market penetration

of new products and services that is driven by social influences, which include all in-

terdependencies among consumers that affect various market players with or without

their explicit knowledge.” This is motivated by a movement towards higher degrees of

interaction during the diffusion process, but contemporary research primarily focuses

on competitive interactions. Literature that ties the general mathematical models

described in Chapter 3 show that network externalities affect the rate of adoption, as
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well as lead to adoption of an inferior technology if the network effects are sufficiently

high [18] [2]. A standard method these papers use to fit their model to empirical

data, such as IT to computer adoption [22].

General Purpose Technologies (GPTs) are an important concept in considering the

co-diffusion of innovations. GPTs denote technologies that have impact across sectors

and spillover effects as network externalities with economic benefits. Economists

Lipsey and Carlaw have defined 24 GPTs, classified with four criteria [42]:

1. Is a single, recognizable generic technology

2. Initially has much scope for improvement but comes to be widely used across
the economy

3. Has many different uses

4. Creates many spillover effects

GPTs often serve as pre-requisites for new eras of productivity, with Artificial In-

telligence being the most recent one. Jovanovic and Rousseau studied the diffusion of

electricity and information technologies, as well as their similarities [29]. Contempo-

rary efforts on the front of co-diffusion include Lazzati [38], who tackles the question

of maximizing technology with a fixed set of technologies to distribute.

with the eminent arrival of the next GPT revolution with artificial intelligence,

finding means to predict and benchmark the diffusion of related innovations within

artificial intelligence or relative to the GPT itself is both useful and timely. For

instance, technology adoption manifests through both observing physical neighbors

and online through the contemporary influence of social media.
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2.2 Epidemiological Modeling of Social Contagions

Within the epidemiology literature, multiple infections have been extensively stud-

ied and the increased likelihood of becoming infected conditional on a first due to

weakened immune systems is well-documented. Super-infection denotes the process

of infecting an already infected individual with a second, typically more severe virus.

Examples include HIV and Herpex Simplex Virus type 2.

Nowak and May were one of the first to model super-infection, where they as-

sumed only the strongest virus is active and thus the only one that spreads [48].

Shortly afterwards, they modeled co-infection where multiple viruses are active [45].

Super-infection was then shown to be a limit of co-infection, and also gives the param-

eters in which multiple viruses can coexist. Similar to technology diffusion studies,

competition is also modeled using cross-immunity in the context of a network [56].

Contemporary research can be divided into ones that focus on the network struc-

ture and ones that focus on the diffusion mechanism. Starting with network structure,

Shu et al. [52] presents the dynamics of social contagions on two interdependent two-

dimensional lattices. They give examples of nodes in communication networks which

are spatially embedded. Li et al. [41] has a similar set-up to study the spread of

epidemics, but in two experiments they first pair two interconnected lattices, then

pair two Erdos-Renyi networks. In contrast, this thesis considers one lattice and one

random-regular-graph, and thus investigates the interplay of spatial and long-range

graphs. Aleta and Moreno [1] give a comprehensive review of how multilayer networks

are used various contexts, including diffusion and percolation, and how this is applied

to ecology, biology, transportation, economics, game theory, and transportation.

In regards to the diffusion mechanism, one common paradigm is the susceptible-

infected-susceptible (SIS) model. In the basic SIS model, individuals transition be-
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tween states of susceptibility and infection, where recovered individuals are once more

susceptible. In other words, recovery from disease confer no immunity. Hill et al. [26]

characterizes an SISa model, in which they distinguish between spontaneous and con-

tagious infection. Hill et al. [25] has also modeled emotion as an infectious disease

in large scale networks using the same SISa model. Dodds and Watts [15] provide

a generalized model for social and biological contagions also using the SIS model,

and identify three basic classes of contagion models which they call epidemic thresh-

old, vanishing critical mass, and critical mass, and how one may interpret results for

prevention or facilitation based on these cases. While the examples above occur on

single layer networks, Liu et al. [43] has modeled epidemic spread on interconnected

small-world networks, where neighbors of a node are likely to be neighbors of other

nodes. Precisely, the typical distance L between two nodes chosen at random will

grow proportionally to logN with N the number of nodes.

In regards to multiple infections, Chen et al. [11] proposes a model built on intrinsic

properties of cooperative contagions A and B. Their model is also based on the SIS

model where host individuals are in two possible states: susceptible (S) or infected(I).

Susceptibles are equivalent to naive agents and can be infected by either A or B, each

associated with a cooperativity coefficient ξA and ξB respectively to capture their

mutual influence.

The Susceptible-Infection-Recovered (SIR) model in contrast confers a removed or

recovered status to individuals, who are no longer susceptible to disease [47]. Immu-

nity is a parameter that has analogous application in social systems, such as resistance

to rumors-spreading or belief-change.

In sum, my thesis provides three specific contributions. First, it considers a new

permutation of multiplex layer where a spatial network is coupled with one that
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allows long range connections. Second, it considers multiple contagion diffusion on

interdependent networks. Third, it considers the effect of immunity within the context

of social contagion diffusion.
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Chapter 3

Materials and Methods

3.1 Definitions and Terminology

Networks are represented mathematically by graphs. A graph is notated as G =

(V,E), where V is a set of nodes called vertices and E is the set of links called

edges. Every element in E is represented by the Cartesian Product of two vertices

V × V = (vi, vj), since each link must have two endpoints. If (vi, vj) is ordered, the

graph is said to be directed; if order is irrelevant such that (vi, vj) = (vj, vi) then the

graph is undirected.

A multiplex network is a network where the same set of nodes are represented in

every layer, although the interactions and links between the nodes may be different.

Indeed, the motivation for this thesis is to study the diffusion of different contagions

under different graph structures. For instance, a person’s physical neighbors exist

on a different network than the person’s online presence, since the first graph is

constrained physically while the latter allows for long-range links.
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3.2 The General Algorithm

It is tempting when working with mathematical models to introduce parameters that

may be only meaningful within the circle of applied mathematics. Thus, the variables

and framework included are justified with fundamental and well-established facts from

social contagion theory and innovation diffusion theory, and utilize analogous aspects

of existing epidemiological models.

Without loss of generality, assume that we have two contagions: Contagion A and

Contagion B. Every node in the experiment must take on one of four states: ∅, A,

B, and AB, which correspond to uninfected/naive individuals, adopters of Contagion

A, adopters of Contagion B, and adopters of both Contagion A and B. Diffusion

denotes the spread of a contagion across a network, which influences the particular

status of a node. Furthermore, each node is either active or dormant, represented by

the Boolean 1 or 0 respectively. The status for each node is expressed as the tuple

(State,Activity). For instance, an active node infected with A would be represented

by (A, 1). Each iteration of the simulation can be summarized as:

• Initialize a graph

• Seed Contagion A and Contagion B

• Diffuse graph by one time-step

• Count the nodes for the Uninfected, Contagion A, Contagion B, and both A

and B

• Repeat from Step 3 until the last time-step

The raw output for each experiment are four time series. The general algorithm

is described in Algorithm 1:
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α-list = list of alpha values
τA-list = list of τA values
τB-list = list of τB values, with the constraint that τB < τA
ParameterList = list of tuples containing (α, τA, τB)
for ParameterSet in ParameterList do

for Number of Iterations do
Create graph G
Randomly seed one of Contagion A and Contagion B into the nodes,
non-overlapping

Set a random threshold for each node
for All time-steps do

Diffuse the Contagions using a multivariate probability distribution
Deactivate nodes based on probabilities τA and τB
Count the total number of Uninfected, Contagion A, Contagion B,
and Both Contagions

end
Save the individual time-series

end
Average time-series for each of the four categories

end
Algorithm 1: Algorithm for simulating network diffusion

The full list of parameters can be found in Section 3.5. As this is computationally

very extensive, the for-loops were parallelized. Simulations were parallelized across

parameters and run using a cluster of 600 CPUs. The sections below walk through

the specific details of each step in Algorithm 1.

3.3 Initializing the Graph

Simulations were run on two types of graphs, all of which are undirected. The first

simulation is defined on a periodic square lattice with length L = 80, which totals

6400 nodes. This means the degree of each node is 4 and neighbors are all spatially

related.

The second simulation is a multilayer network diffusion experiment. One layer is
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Figure 3.1: Single-Layer Lattice Diffusion
Innovation A (yellow) and Innovation B (red) spread to their von Neumann

neighbors, then overlap with increased time steps as shown in blue.

Figure 3.2: Multiplex Diffusion
Innovation A (yellow) spreads across the periodic lattice. Innovation B (red)

spreads on the random-regular-graph, which show up as isolated points on the
lattice. The dark, faded blotches are the edges of the random-regular-graph.

the periodic square lattice, the second is a random-regular-graphs with degree four.

This is done to limit the effects of hubs, since every node has the same degree. The

distinction between the periodic square lattice and the random-regular-graph is that

now long-range edges are allowed, so I can compare the diffusion results of long-

range connections versus the spatially localized. As I will discuss in Section 3.4.2,

the threshold for A is determined by the neighbors on the lattice graph while the
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threshold for B is determined from the random-regular-graph. Figure 3.2 illustrates

the diffusion process.

From these nodes, one node is randomly selected, then seeded with Contagion A.

Another one is seeded with Contagion B, with no repetition.

3.4 Adoption Probability Kernel

Section 2 of the literature review describes the assumptions within innovation dif-

fusion, one of the main ones being that we can model the diffusion using a logistic

function. The Hill Function is the log-transform of the logistic function and is useful

in modeling density-dependent growth since it takes density as a direct parameter. It

has roots in biochemistry is was used to measure the rate of reaction between reactant

concentration and substrate density. The Hill function is given as:

f(X) =
[X]α

[X]α +Kα
(3.1)

where [X] is the density of X, K denotes the time-step that is half-way to full

saturation, and α is a shape parameter that determines how steep the slope of the

function is. In other words, increasing K corresponds to shift right, although its shape

becomes less steep as well. The ratio between α and K influences the steepness.

Researchers in pharmacology noticed that the effect of drugs on killing cells and

bacteria could be modeled similarly, and then extended the model to capture the

effects of drug interaction.
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3.4.1 The BLISS and Loewe Additivity

Traditional Chinese medicines typically use mixtures of herbs to maximize the potency

during the healing process. This notion has not escaped the contemporary field of

pharmacology, and the last century has seen the increased use of drug combinations.

Since studies have shown that for social contagions, density matters more than

numbers, existing models within the pharmacology literature prove suitable for the

co-diffusion model. Theoretical research within the field quantify the concepts of

synergy and antagonism, which go beyond the simple additive effect from using drugs

individually.

The Bliss Independence Model [19] assumes that drug effects are outcomes of

probabilistic processes, but each contribute to a common result. This model is filed

under a effect-based strategies, which compare the effects resulting from both drugs

versus individual components. In this case, effect refers to the efficacy of killing

bacteria or certain types of cells.

The second strategy for analyzing the efficacy of two drugs considers what con-

centration of each produces the same response [19]. The mathematical framework

known as Loewe Additivity utilizes this Dose Equivalence Principle (DEP) to formal-

ize definitions of synergy, additivism, and antagonism. The DEP states that dose a

is equivalent to ba where [19]

E(a+ b) = E(a+ ab) = E(ba + b)

For the sake of discussion in this section, suppose we have drugs A and B, each
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administered at doses a and b respectively. This yields the combination index

CI =
a

A
+
b

B

. For CI < 1, this indicates that that the combined amount of the two drugs required

to produce a certain effect is less than the amount required when they are used

individually. In other words, the combination is more effective and thus they act

synergistically. Similarly, CI > 1 indicates that the combination of a and b produces

a worse effect and is antagonistic.

Dose effects typically follow the logistic shape of the Hill equation defined as:

E = Emax
aα

ka + aα

where a denotes the concentration of A, Emax denotes the maximum effect or the

ceiling, and k is the inflection point of the curve. What this model gives us is a

general framework that is grounded in similar empirical observations in the fields of

innovation diffusion and drug effectiveness. Instead of considering how two drugs

work together to kill cells, I consider how innovations spread concurrently.

3.4.2 Probability Kernel for the Threshold

We treat an increase of the number of neighbors as a threshold lowering effect.

As with the typical threshold model, each node is assigned a threshold µk, where:

µi ∈ (0, 1) where i is the coordinate of each unique node
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A simple threshold is given in Equation 2.2, but it is insufficient to characterize the

logistic shape of diffusion in different network settings. Here we develop thresholds

under the assumption that each innovation individually diffuses according to the

shape of a Hill Function. We have assumed, without loss of generality, that we have

two products A and B. Assume that inclusive adoption is possible. We also assume

that only one innovation can be adopted per time-step. Then there are two possible

paths of adopting both A and B. Let i denote a node.

i(Naive)→ i(A)→ i(AB)

i(Naive)→ i(B)→ i(AB)

(3.2)

or simply put, the naive/uninfected individual must adopt A first or B first. This

is known as inclusive adoption. Exclusive adoption denotes the case where the state

φi(AB) is not possible. Next, we denote an indicator function for the status where:

SA(i) =


1 if i adopts A

0 if otherwise

SB(i) =


1 if i adopts B

0 if otherwise

Thus, the inclusive adoption probability of any state can be expressed using this

general formula:

P (i) =

(
1− SA(i)

)(
[A]
KA

)α
+
(

1− SB(i)
)(

[B]
KB

)α
1 +

(
1− SA(i)

)(
[A]
KA

)α
+
(

1− SB(i)
)(

[B]
KB

)α (3.3)

where KA and KB controls the attractiveness of each social contagion. The smaller

the value, the more attractive it is to the population since it controls for the time step

of the inflection point. [A] denotes the density of neighbor nodes that have already
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adopted innovation A. Specifically, let T be the total number of neighbors, then:

[A] =
No. of A

T
(3.4)

The assumption is that α and K are known and can be fit based on past data. For the

purpose of this study we assume KA = KB = 2.0, where the choice of this parameter

suits the simulation time scale. To clarify Equation 3.3, we break down the sub-cases.

For the naive individual i the values of SA(i) and SB(i) are both zero. Hence the

adoption rate of either A or B can be characterized by:

P (i← A or B) =

(
[A]
KA

)α
+
(

[B]
KB

)α
1 +

(
[A]
KA

)α
+
(

[B]
KB

)α (3.5)

The node is first activated with this probability. Then it will choose one of A and

B based on their relative proportions. That is,

Pr(i← A) =

(
[A]
KA

)α
(

[A]
KA

)α
+
(

[B]
KB

)α Pr(i← B) =

(
[B]
KB

)α
(

[A]
KA

)α
+
(

[B]
KB

)α (3.6)

Here, the notation Pr(i← A) denotes the probability of node i adopting Contagion

A, and it is the analogous case for B. The adoption probability is shown as a surface

in Figure 3.3. In lieu of Loewe Additivity described in Section 3.4.1, these surfaces

indicate the different relationships of synergy and antagonism. When 0 < α < 1.0, the

curve is concave downwards, which indicates that the effect of their sum is more than

their parts and thus synergistic. When α > 1.0 as with the case in the bottom right,

the relationship is concave upwards which indicates antagonism. This corresponds to

the formulation given in the isobologram analysis of [19].
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Figure 3.3: Adoption Probability Kernel
The surface of Equation 3.5, which describes the probability of adopting either A or

B, depending on the densities of A and B. Here we assume KA = KB = 2.0.

Now without loss of generality suppose i has already adopted A. Then the prob-
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ability of adopting B is given by

(
[B]
KB

)α
1 +

(
[B]
KB

)α
The case for adopting A after first adopting B is analogous.

In the experiment we set the thresholds as a function of this adoption probability.

The threshold µi is given in Equation 3.7:

µi = 1− P (i← A) (3.7)

Then at every time step a random number is chosen between 0 and 1 to deter-

mine the probability of adoption. Ultimately, the formulation shown in Equation 3.3

captures synergistic diffusion as the initial adoption depends on both densities.

3.4.3 Exclusive Adoption

While not explicitly studied in this paper, exclusive adoption is a useful contrast to

our case above. The adoption pathways can be represented as:

i(Naive)→ i(A)→ Immunity against B

i(Naive)→ i(B)→ Immunity against A

(3.8)

The expression for adopting any of the contagions is thus:

P (i← A or B) =
(

1− SA(i)
)(

1− SB(i)
) (

[A]
KA

)α
+
(

[B]
KB

)α
1 +

(
[A]
KA

)α
+
(

[B]
KB

)α (3.9)

It then chooses A or B with the coin-flip expressed in Equation 3.6.
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3.4.4 Stochastic Dormancy

The prior two parameters α and K model the shape of diffusion, and thus they

only influences the timescale of diffusion. As time approaches infinity, the diffusion

process will always diffuse to the maximal value. This is not the case in reality, as

the penetration depth is usually a subset. We model this by introducing stochastic

dormancy to every node on the graph, such that nodes are not active in perpetuity.

To do this, we attach a constant τA and τB to contagions A and B respectively. τA

denotes the probability that a node infected with A will become dormant at any given

time step. When a node is considering adoption, if a neighbor is dormant then that

neighbor is discounted from the numerator of the density, and is thus not included in

the threshold lowering effect. To be numerically precise,

[A] =
No. of Active A

T
(3.10)

The same holds for Contagion B. Another way of interpreting τ is that τA represents

the average proportion of nodes infected by A that will switch off at each time-step.

For nodes infected with both A and B, the τAB value is simply the arithmetic average;

different conditions for convexity is another line of inquiry. The expression is given

as:

τAB =
τA + τB

2

It is important to distinguish between immunity and dormancy. In epidemiology

both immunity and recovery imply two things— a recovered individual can no longer

be infected nor can it infect other nodes. For the purpose of studying social contagions

we relax the first condition. In other words, while inactive individuals no longer affect

other nodes, they themselves can still be infected by another contagion. Thus, they
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do not gain immunity from being infected, but they do less to help the contagion

spread. We make a basic assumption that neighbors have to make a decision and

play an active role in the diffusion process.

3.5 Experimental and Measured Variables

For each node at each time step, its activity and status (denoted as Uninfected, A, B,

or AB) is updated. The largest constraint on computational resources was memory,

so we updated via a dictionary approach rather than saving a copy of the graph.

Monte Carlo simulations were performed with 100 iterations per parameter set. The

following table summarizes the experimental parameters:

Table 3.1: Exogenous Variables

Parameter Quantity

Number of Nodes 6400
Total Timesteps 700
Number of Initial Seeds 1
Iterations per Parameter Set 100

Table 3.2: Independent Variables

Parameter Quantity

α range 0.0 to 1.3
τ range for Lattice 0.0 to 1.8
τ Range for Multiplex 0.0 to 1.0

The primary variable of interest is the depth of diffusion. This is taken as the

equilibrium value at the end of diffusion, found by taking the diffusion depth of the

final 20% of periods. Secondly, the rate is defined by the time-step that corresponds

to the inflection point, or exactly one half of the ceiling.
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3.5.1 Experiment 1: Diffusion on the Single Layer Lattice

Experiment 1 is defined on a single layer, 80 × 80 periodic square lattice. Since the

diffusion of contagion A and Contagion B is parametrized the same way, we can

simple perform half the necessary grid search as the results should be symmetric.

3.5.2 Experiment 2: Diffusion on the Multiplex Network

The diffusion on multiplex networks follows the same processes as Sections 3.4.2 and

3.4.4, however, the network topology is now a factor in counting the neighbors. As

previously described, Contagion A diffuses on a 80 × 80 periodic square lattice and

Contagion B diffuses on a random-regular-graph with degree 4. Precisely, for each

node considering the adoption of Contagion A, only the active neighbors on the lattice

graph are considered; for the adoption of Contagion B, only active neighbors on the

random-regular-graph is considered.

3.6 Theoretical Derivation

3.6.1 Co-Diffusion in Well-Mixed Populations

We derive an expression for the rate of co-diffusion in a well-mixed population with

degree κ. We define the adoption rate of Contagion j as φj and we denote the adoption

of A and B as AB. Thus explicitly:


φA := Adoption Rate of A

φB := Adoption Rate of B

φAB := Adoption Rate of A and B
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Next, define the proportion of each type as xA, xB, xAB, x∅, and xR, where the

subscript ∅ denotes naive individuals and R denotes dormant individuals. Note that

xA, xB and xAB only include naive individuals that— nodes that are dormant. Now

we state our mean-field equations:



1 = xA + xB + xAB + x∅ + xR

ẋA = x∅φA(xA, xB)− τAxA

ẋB = x∅φB(xA, xB)− τBxB

ẋAB = xAφAB(xA, xB) + xBφAB(xA, xB)− τABxAB

ẋR = τAxA + τBxB + τABxAB

(3.11)

In layman language, the first equation states that there are five groups whose

proportions sum to on. Equations two through five denote the rate of change for

each respective sub-group. The rate of change for A, denoted ẋA is equal to the

adoption rate of A multiplied by the total proportion of A, subtracted by τAxA, the

total number of nodes that go dormant. It is the same case for Contagion B and

both. The last equation describes the nodes that go dormant, which is the sum of all

the τ ’s multiplied by their respective sub-groups.
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Chapter 4

Results

4.1 Lattice Diffusion

Figure 4.1: Time-Series of One Parameter Set
The diffusion curves of Contagion A (blue), Contagion B (yellow), Both A and B

(red), and Uninfected nodes (grey). Parameters are set with α = 0.8, τA = 0.04, and
τB = 0.00.

The basic output of each experiment is shown in Figure 4.1. Contagion A shown
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in blue diffuses completely, whereas Contagion B shown in yellow diffuses partially.

Using the methods described in Chapter 3, the penetration depth and the inflection

point was extracted as our primary variables of measurement. I use the term ceiling

in lieu of penetration depth. I consider the inflection point as a proxy for rate, as it

represents the time-step where the diffusion curve attains exactly half of its ceiling.

If this point is pushed right, this indicates diffusion takes a longer time and thus the

rate is lower. However, because it is a function of the ceiling, the inflection point

decreases when the ceiling decreases so the use of rate is only useful for fixed-ceiling

comparisons.

Thus, the most important variable is the ceiling. Since the parametrization of

Contagion A and B are the equivalent, by symmetry we only need to analyze the

results for the statuses A and AB. The mean results are summarized using the heat-

map in Figure 4.2. The dark striations between the colored blocks are artifacts of

conserving computational resources used in the grid-search. When α = 0 the ceiling

is maximal regardless of the value of τA and τB. This can be seen in Figure 3.3. The

diffusion probability is a high 50% and as a result both contagions diffuses rapidly.

As we increase α the ceiling diminishes clearly, except for the case when τA =

τB = 0, in which the ceiling remains uniformly red. This can be observed in the

bottom left corner of all nine values of α. We can thus conclude that the value of

τ influences the ceiling significantly. Now, consider the bottom row of the facet grid

where α is equal to 1.1, 1.2, and 1.3. Indeed, as τA increases there is a clear gradient

between from red to blue spanning left to right that indicates a diminishing ceiling.

The gradient effect is particularly evident when we fix τB = 0. In contrast, τB only

produces an effect when it jumps from 0 to 0.02. This is actually a very deep result

that requires more analysis by studying the standard deviation of diffusion and the
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Figure 4.2: Ceiling Mean Heat-Map of Contagion A
Maximal penetration at 6,400 nodes is represented in red, while no penetration is

represented in blue. Each graph denotes a different value of α.

actual time-series itself.

Additionally, the gradient effect is much less pronounced at low values of α. This

suggests τ is sensitive to the rate of diffusion. To explain this we need to first refer to

Figure 4.3. There, it is clear that α slows the rate of diffusion as the time-step where

the curves reach the inflection points increases. The effect of α on timescale is by

construction. As shown in Figure 3.3, increasing α causes a diminished probability

of adoption, which, in the case where τA = τB = 0, that means it takes longer for the

contagions to diffuse to the maximal value of 6,400 nodes. In other words, the longer
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Figure 4.3: Rate of Diffusion increases with Alpha
The mean rate of diffusion (left) increases as α increases save a small plateau where
α = 0.8 and α = 0.9. The standard deviation (right) remains stable until α = 0.9.

it takes for diffusion to occur, the more time it allows nodes to gain dormancy and

thus reduce the maximal depth of penetration.

We are now ready to address the central topic of the study: how do intrinsic pa-

rameters of A influence the diffusion of B? Figure 4.4 depicts the effects of increasing

τA while holding constant α and τB, where α = 0.9 and τB = 0. When τA = 0,

Contagion A and Contagion B are equivalent and thus overlap each other. When

τA = 0.02 there is a drop in the ceiling of Contagion B from maximal diffusion to

around 5,500. How can the adjustment of an intrinsic parameter of A affect B? We

move on to When τA is further increased to 0.12. A certain proportion of Contagion

B returns to its previous curve. This can be observed in the two diffusion graphs on

the left, by matching the upper yellow curve when α = 0.12 with the original yellow
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Figure 4.4: Diffusion Curves while Varying τA
The value of τA increases from 0 to 0.16. This first produces a bifurcation when
τA = 0.02, then as diffusion of A slows the curve for Contagion B returns to its

original state.

curve when α = 0. When τA = 0.16 then most of the Contagion B diffusion curves

return to their previous shape albeit with more variance in its ceiling. It cannot

be simply concluded based on Figure 4.2 that the ceiling decreases uniformly as α

increases. Rather, when coupled with τ it splits the ceilings of the other contagion

into clusters, containing both the original curve and new curves that converge to a

diminished ceiling. This is known as bifurcation. This effect can be seen clearly in

Figure 4.8 of the next section.

Figure 4.3 is the key to understanding this phenomenon. While this depicts the

diffusion curve of A and B, the effect of τA is equivalent on Contagion A itself. As τA

increases, the rate also increases, marginally when α is small but much greater when

α > 0.8.
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So far, we’ve established two facts. First, τA and τB lower the ceilings of τA and τB

respectively by introducing ”immunity” within the population. Second, τA influences

the Contagion A’s rate of diffusion. Now we turn our eye to the diffusion curves of

Figure 4.4 again. When τA = 0.02 the rate of diffusion curve of A does not decrease

by much. This is evident as the blue curve does not shift to the right appreciably.

However, nodes infected by A no longer participate in the diffusion process and thus

the penetration depth of B is diminished. When τA is high, the rate of diffusion of

Contagion A slows down sufficiently such that Contagion B diffuses more quickly and

can thus fully diffuse.

The importance of primacy within the sequence of diffusion has thus become evi-

dent. If Contagion A diffuses more quickly, then the immunity towards participation

it creates will diminish the diffusion of B as shown in the top right of Figure 4.4.

Meanwhile, if Contagion A diffuses more slowly than B, and if τB = 0, then both

innovations will fully diffuse, as shown in the bottom right of Figure 4.4. This fact is

perhaps the most interesting observation of the study, and it also explains the plateau

and dip in Figure 4.3 that is accompanied by an increase in the standard deviation.

When bifurcation in the diffusion curves takes effect, a large portion of the curves

have diminished ceilings. Since the inflection point depends on the ceiling, the time

it takes to reach that point decreases. Thus, the rate of diffusion increases because

the ceiling decreases.

In fact, this instability can produce more than two clusters. As shown in the

kernel density estimate of Figure 4.5, a tri-modal distribution is possible, where we

vary τB relative to τA. When τA = τB = 0.04 the distribution remains bimodal, and

the graph shows that Contagion A diffuses either completely or almost not at all. The

reason why contagions do not spread far is because of percolation— the immunity
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Figure 4.5: Kernel Density of Lattice Ceilings
A difference of 0.04 between τA and τB produces a tri-modal distribution of ceilings,

while when they are equal the distribution is bi-modal.

decreases the participating active neighbors and thus restricts the innovation from

spreading from its spatial origin. When τB = 0.08 or when τB = 0.00 a central cluster

appears in addition to that of no diffusion and that of full diffusion. We can thus

conclude tri-modality occurs when τA >> τB or τA << τB, which is further shown

in Figure 4.6. In the last row, the greatest regions of instability marked in red are

regions where one τ is low and the other is high, which creates a large difference in

τ . In the context of diffusion even a difference of 0.01 between the two values is quite

significant.

It should be noted that the diffusion curve for both innovations will always be

bound from below by the slower diffusing innovation. Referring back to Figure 4.4

we observe that the red never extends past the yellow curves or blue curves. The
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Figure 4.6: Ceiling Standard Deviation for Contagion A

red curve is thus minimum function that captures the lower cluster, given that all

nodes are infected by at least one contagion. I show in Figure 4.7 the symmetry of

the diffusion ceiling. As α increases and diffusion slows, the ceiling diminishes and is

compressed towards τA = τB = 0, which by the logic of the previous discussions will

always diffuse fully with sufficient time-steps. In other words, Contagion A affects

the diffusion curve of both A and B the same way Contagion B does.

Lastly, it is useful to note that these observations on average agree with the mean-

field equations derived in Chapter 3. Logically, the slower the rate of diffusion φ, the

more nodes will be inactive at each stage of the diffusion process and thus the overall
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Figure 4.7: Ceiling Mean for Both A and B
The ceiling mean of state AB is symmetric.

ceiling will be lower. Furthermore, the mean-field equations can produce bi-stability

as well. Figure 4.7 shows the lowering of the ceiling as either τA or τB is increased.

Since τAB is defined as the mean of τA and τB it makes sense that the white line has

a slope of −1 by symmetry. Additional heat-maps are provided in the Appendix.
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4.2 Multiplex Diffusion

Figure 4.8: Multiplex Diffusion Curves while Varying τB
Introducing dormancy through τB produces a bifurcation.

Unlike the characterization of Contagions A and B in the lattice model, the two

contagions are no longer equivalent because they diffuse on different layers of the mul-

tiplex network. Thus, analysis of just Contagion A is insufficient to draw conclusions

about Contagion B and analysis of all three states (A, B, and AB) is required. Div-

ing directly into the diffusion curves in Figure 4.8, we immediately observe that the

diffusion of Contagion B (yellow) on the random-regular-graph is much faster than

the diffusion of Contagion A (blue) on the lattice graph. This can be attributed to

two advantages of long-range connections. First, as the diffusion process starts the

uninfected nodes that Contagion B is in contact with is much greater than that of

Contagion A. The uninfected nodes that Contagion A affects are always restricted

to some physical front as seen in the left-most figure of 3.1, like the propagation of a
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wave. Secondly, the long-range connections reduces the effect of percolation produced

by τB. In contrast, restricting diffusion to von Neumann neighborhood encourages

local percolation since many of the naive individuals share neighbors. This increasing

the chance that a mutual neighbor no longer participates and thus decreasing the

density-based adoption probability on the overall front.

We noted in the previous section that the first contagion to diffuse causes the

second contagion to bifurcate. Since Contagion B diffuses faster on the random-

regular-graph than Contagion A on the lattice, having τB > 0 splits the diffusion

curves of A. However, as τB increases from 0.02 to 0.07, the diffusion of B slows and

more instances where Contagion A diffuses fully appear. This is shown by the greater

density of the blue curves that diffuse fully. They converge to the original curve in

the top left when τB = 0, since TB only affects the diffusion rate of B.

Figure 4.9: α slows diffusion for Multiplex
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Figure 4.9 is analogous to Figure 4.3 and shows α as a shape parameter decreasing

the rate of diffusion. It has more lines due to more parameters tested in the grid-

search. It is tempting to say that by analyzing interdependent network diffusion

where one contagion spreads faster than the other, we do not need to adjust the

shape parameter K. K can be interpreted as the ”attractiveness” parameter, which

increases or decreases the rate of diffusion. However, since experiment 1 occurs on a

single layer lattice it does not account for the difference in topology. Thus, we can

only draw the conclusion that the way Contagion B impacts A the same way in both

experiment 1 and 2, is if Contagion B spreads sufficiently faster than A such that

their interaction is minimal.

Figure 4.10: Multiplex Diffusion Curves while Varying τA
τA destabalizes the diffusion rate but most curves still diffuse completely despite

percolation.

Another way to interpret the diffusion curves is that once B has fully diffused,

then A is diffusing on a network where each node has a τB chance of switching off
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at each time-step. The model then reduces to the case of single contagion diffusion

on a graph where nodes gain spontaneous dormancy at a rate of τB. Furthermore,

due to the random-regular-graph’s much faster diffusion, if we set τB = 0 then we

eliminate the potential interference of dormancy and can thus analyze the effects of

τA on Contagion A directly. This is shown in the top left of Figure 4.10.

As we intuited previously, Contagion A diffuses completely for the most part. The

exceptions that don’t are derivative of its own dormancy preventing sufficiently fast

diffusion. Having established what we can expect from holding one τ equal to zero,

we can begin to address the interaction of τA and τB with heat maps.

When α = 0 the diffusion probability is uniformly 0.5 as shown in the top left

of Figure 4.11. Diffusion is both constant and rapid which forces Contagion A to

converge maximally. This is similar to the case of single layer diffusion. As α increases

and diffusion slows, τB has a very pronounced effect on the ceiling. Consider the case

when α = 0.2 and τB jumps from 0.02 to 0.03. The mean ceiling diminishes rapidly

shown by the color change of red to white. As α increases the decrease in ceiling mean

is even more pronounced, which produces the very noticeable color jump between

τB = 0 and τB = 0.01. This rapid drop in ceiling is a testament to how much faster

τB diffuses, where even low values of τB have sufficient time to inject dormancy into

the populace.

Consider the last row of the grid where α = 1.1, 1.2 and 1.3. When we hold each

τB constant we observe a gradient effect left to right from increasing τA. This is most

pronounced when τB = 0. We conclude that if α > 1.0, then τA has a large effect on

the ceiling of Contagion A.

The previous two observations on τB and τA respectively allows us to conclude

that increasing α essentially compresses the graph from the right and from the top.
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Figure 4.11: Ceiling Mean of Contagion A for Multiplex Experiment
The ceiling of A demonstrates high sensitivity to τB when α < 0.8. It shows

sensitivity to τA when α > 1.0

The two red horizontal rows in the α = 0.2 grid is eventually compressed into one row

from above. The horizontal gradient of τB = 0 and α = 1.1, 1.2 and 1.3 (bottom row

of the grid) is compressed towards the left. α increases the timescale of the diffusion

by increasing the slope of the Hill-curve, which gives τA and τB more time to produce

dormancy although they demonstrate different sensitivities towards α.

When τB is high the ceiling of A actually increases. This phenomenon is due to

τB slowing the diffusion of Contagion B, which produces more bifurcated ”upper”

curves of Contagion A, and we can see this in Figure 4.8 by comparing τB = 0.02
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and τB = 0.1. I show more intuition for this phenomenon when I discussion of

Figure 4.15. Since the diffusion curve of AB is bounded from below by the slower

diffusion contagion, the ceiling heat-map of Contagion A and AB are almost identical.

The heat-map for AB can be found in Figure A.2 of the Appendix.

Figure 4.12: Multiplex Ceiling Mean of Contagion B
The white line indicates a linear relationship to Contagion B’s ceiling sensitivity

Contagion B produces a very different looking heat map. Given its fast diffusion

it penetrates fully or close to fully for α < 0.8. Then, a diagonal white line moves

from the top right downwards and compresses towards the bottom left. The slope

of this white line and its spread can be interpreted as Contagion B’s sensitivity to

τA. In other words, it quantifies how much the dormancy constant of Contagion A
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affects its own diffusion. In a similar vein, the prior heat maps are also sensitivity

analyses and also show the dominance of τB. The effects of τA only come in play with

sufficiently high α to slow the diffusion rate.

One observation is that in Figure 4.12 the block where τA = τB = 0 no longer

denotes maximal diffusion. This is because we used a subset of data where Innovation

B does not reach full diffusion (α > 1.4) to show this effect more clearly, but it

converges to the same result.

Figure 4.13: Multiplex Ceiling Standard Deviation of Contagion B
The standard deviation for Contagion B is greatest along the line in Figure 4.13

Once again, averages do not paint the full picture. Having established that bifur-

cation occurs we are interested in pinpointing the specific conditions that induce such

46



instabilities. Instabilities can be inferred from high levels of standard deviation and

we consider instability of Contagion B shown in Figure 4.13. The region of highest

instability shown in red overlaps with the white line shown . This is particularly

evident in the last row where α = 1.4 to 1.6. The region of the line becomes com-

pressed and is sandwiched between two blue areas. The blue zone in the bottom left

denotes the cases where Contagion B fully diffuses, the blue zone above denotes the

case where Contagion B does not diffusing at all due to percolation produced by the

high value of τB. Increasing α produces the compression effect towards τA = τB = 0

from above as timescale increases.

One implication of the ContagionB heat-map for standard deviation is that, unlike

the lattice diffusion experiment, instabilities for Contagion B not only occur when

τA >> τB or τB >> τA, but on any point of the white line. For instance, with each

parameter set denoted with the tuple (α, τA, τB), the outcome of (1.6, 0.00, 0.04) is

equal to (1.6, 0.10, 0.02), although there is greater instability in the latter case when

τA = 0.10.

For the Contagion A however, we observe that in comparison with Contagion B

the strongest nonlinearities occur once more when τA >> τB or τB >> τA, shown in

Figure 4.14. However, τB influences the diffusion variance of A for many low values

of τA, shown by the top-left white region when α > 1.0. In comparison, the effect

of τA is most pronounced when τB = 0. This does not mean τA does not influence

the variance for other values of τB, but rather it’s not a sensitive variable. In other

words, the dormancy variable of Contagion B influences the ceiling of Contagion A

greatly because of its diffusion primacy. Once more, we observe the ”compression”

effect towards τA = τB = 0 from increasing α. Note that that square is uniformly

blue because both Contagion A fully diffuses.
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Figure 4.14: Multiplex Ceiling Standard Deviation of Contagion A

Lastly, we consider when both values of τ are non-negative and analyze their

interaction. Figure 4.15 demonstrates the interaction of τA and τB where we set low

values equal to 0.01 and high values at 0.1. When both τA and τB are low, both

converge to one cluster of ceilings. When τA is low and τB is high, the splitting effect

is most pronounced. In fact, the number of Contagion A curves that split upward

is equal to the number of Contagion B curves that diffuse slower than it. However,

it should be noted that for the most part even when Contagion B diffuses slower

than Contagion A, it does not partial diffuse when α is sufficiently low, since it is

not affected by local percolation. To see this effect more clearly, refer to Figure A.3.
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This qualification is required as the heat map in Figure 4.12 shows that percolation

can still occur to Contagion B when τB and α are sufficiently high.

Figure 4.15: Interaction of τA and τB
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Chapter 5

Conclusion

5.1 Summary of Results

The objective of this study is to investigate the properties of a newly proposed dif-

fusion model by simulating two social contagions interacting on a periodic lattice

in Experiment 1 and a multiplex network in Experiment 2. These contagions are

parametrized based on shape parameters α and K, and their intrinsic dormancy τA,

τB and τAB for states A, B and both A and B respectively. Their relative attractive-

ness K is set to be equal, and τAB is assumed to be the arithmetic mean of τA and

τB.

We have determined how the parameters broadly influence the level of diffusion.

Increasing α increases the time of diffusion. Without loss of generality, the stochastic

dormancy constants τA lowers the penetration depth of Contagion A, and perhaps

surprisingly also ContagionB. We conclude that primacy is important in this model of

co-diffusion. Furthermore, if Contagion A diffuses more quickly, it will most probably

attain maximal penetration. If it diffuses more slowly than Contagion B, then it is
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subject to partial diffusion. This is due to the dormancy introduced by the initial

passage of Contagion B through the populace.

I hypothesized that the parameter set (α, τA, τB) is highly nonlinear; I can now

state how the nonlinearity manifests in different topological settings. Starting with

the single layer lattice, the decrease in the penetration depth of A caused by the first

passage of B is non-uniform. Rather, it bifurcates into two or three clusters based

on the ratio τA to τB for a set range of α. Generally, when the difference between τA

and τB is large within the region of 0.8 < α < 1.3, a bifurcation is expected. There

is an even split between clusters when the difference is large because, without loss of

generality, an increase in τA corresponds to a large decrease in the rate of diffusion for

A. The effect is marginal when α < 0.8, but grows greatly when α > 0.8 (as shown

in Figure 3.3).

In the multiplex network, given thatK are equal, Contagion B diffuses much faster

than Contagion A . It’s faster diffusion is due to two reasons. First, the random-

regular-graph’s larger diffusion front compared to the lattice’s, which is constrained

physically. Second, it’s diffusion is not constrained by local percolation. As we know,

when B diffuses first it diffuses fully to 6400 nodes. Interestingly, in the cases where B

diffuses after A, it will still diffuse fully to whatever maximum that A sets. Contagion

A on the lattice sets the minimal ceiling.

5.2 Applications

As I mentioned in the beginning, one critique of agent-based modeling is that its

reductivism diminishes its utility and applicability. The interpretation in biology is

clear: two diseases help each other spread by synergistically weakening the immune
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system of individuals, but once a certain number of hosts recover, the second disease

has a harder time penetrating the populace due to diminished density. However, there

are applications outside of biology. Here, I offer some potential ways to interpret

these results, in particular the notions of synergy and dormancy, in the areas of social

science mentioned in the literature review in Chapter 2.

5.2.1 Innovation Diffusion of Blockchain

Blockchain technology has recently been considered as a potential general purpose

technology [8] [30] [13]. The application of blockchain to cryptocurrencies, or Bitcoin,

spurned a large wave of interest and investment in 2017 [7] [6].

Given the speculation surrounding cryptocurrency, this investment behavior can

certainly be categorized as a social contagion [53]. While cryptocurrency theoreti-

cally serves as means substance for transactions, current investors treat it more as

a commodity or asset, rather than as liquid money. In that regard, the adoption of

cryptocurrency is not dissimilar to a firm’s adoption of a general-purpose technology

to increase output. In essence, there is an investment in the GPT, then an expected

benefit or return from the adoption.

If you are an investor with a finite portfolio, there are two questions that naturally

arise. First, do you adopt the technology and invest in Bitcoin? Second, which

cryptocurrency do you choose to invest in?

The first question corresponds to Equation 3.5, where all cryptocurrencies syner-

gistically contribute to the diffusion of the adoption behavior. The second question

refers to the coin-flip in Equation 3.6, which frames individual cryptocurrencies as

competitors. However, this does not preclude the possibility of adopting the one not

chosen at a future time. In this regard, the diffusion mechanism of this thesis captures
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both cooperative and quasi-competitive aspects of the technology that was mentioned

by Chandrasekaran [10] in Chapter 2.

5.2.2 Cultural Dissemination across Distance

Beyond the diffusion mechanism, this topology offers a natural extension to Axelrod’s

cultural diffusion model. Cultural dissemination is no longer confined to physical ge-

ography. As stated in Section 2.1.2, contemporary research has shown that emergent

phenomenon differ on different graph structures. Models of modern cultural dissem-

ination should contain multiple conduits for information, and have both long-range

and local connections.

Additionally, my model offers another way to model the traits in Axelrod’s model

by treating them as diffusing contagions. Similarity between agents is defined by how

many features they share, but there is no spectrum in which the features fall on, and

thus it does not consider features that are more or less similar to one another. In

contrast, the current model allows for the possibility of both A and B allow the model

to capture a mixtures of discrete states. The dormancy variable would represent a

resistance to changing traits. This formulation, while relying on a different set of

assumptions, adds information to the model while keeping it tractable.

5.3 Future work

There are multiple pathways for future inquiry that build on the weaknesses in this

study, specifically with shape parametrization, seeding, the diffusion mechanism, and

graph topologies. In this study we assume the shape characterization of contagion

adoption to be equal; that is, in our parametrization KA = KB. Changing this pa-
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rameter would allow for a more in-depth study of the effects of primacy by controlling

precisely how much faster one of the contagion diffuses relative to the other. Con-

trolling for KB would be meaningful for interdependent networks, such as controlling

for the much faster diffusion on the random-regular-graph. For τA to restrain the

diffusion of τB, B must diffuses slowly. Due to the difference in topology, the cur-

rent parameter pairs are insufficient to consider the case where Contagion B diffuses

slower than A.

Seeding may affect the diffusion, as there may be a relationship between the final

diffusion curves and the distance between the seeds. Similarly, the timing of entry is

an interesting question. Given that Contagion A diffuses first with a high value of τA,

late entry by Contagion B would most likely affect its penetration depth. Quantifying

this result would be useful for benchmarking the benefits or risks of late adaptation

of general purpose technologies.

Different topologies would certainly yield different results. However, we have

shown a difference in the diffusion of spatial and long-range graphs, for a model to

accurately describe how social media and physical newspapers help each other spread

news, more precise networks would have to be implemented. In this case, power-law

graphs and lattice graph may be suitable. Methods for extracting the ceiling such

as unsupervised learning to produce clusters would help understand the modality of

convergent behavior.

Another avenue for research is modeling exclusive adoption as we have outlined

in Section 3.4.3. Such a probability kernel for diffusion would be useful for model-

ing products that are purely competitive. For instance, two companies launch new

phones, each embedded with a new and attractive feature. However, consumers typ-

ically only need one phone. As a result, while the feature they share help the new
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phones diffuse synergistically in aggregate they still compete with each other. There

are also many limitations to threshold models. Instead, a network coordination model

could be be used to produce a more complicated, but still inherently rational diffusion

mechanism.
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Appendix A

A.1 Lattice

Figure A.1: Ceiling vs α for Contagion A
The ceiling of A decreases with α
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A.2 Multiplex

Figure A.2: Heat-map of Ceiling Mean of AB for Multiplex Experiment
The heat-map corresponds to the heat-map of Contagion A in Figure 4.11
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Figure A.3: Unstable diffusion without bifurcation from B
When Contagion B diffuses later than A it converges fully to the ceiling of A

Figure A.4: Ceiling Mean vs α for AB
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Figure A.5: Ceiling Mean vs α for A

Figure A.6: Ceiling Mean vs α for B
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