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Abstract

The invention of vaccine has significantly reduced the levels of morbidity and mortality
from infectious diseases. However, the success of vaccines is often impaired by the
free-rider problem: while vaccinated individuals incur the cost of vaccination,
unvaccinated individuals are protected from the disease given that population immunity
is in effect. This provides self-interested individuals an incentive to forgo vaccination. An
emerging literature has investigated the epidemiology of individuals facing the free-rider
problem given the choice of voluntary vaccination. Such studies properly apply the
framework of game theory to describe how individuals react when facing the vaccination
dilemma. In this paper, we extend previous work in imitation dynamics of vaccine uptake
by accounting for imperfect vaccines, whose effects on individuals’ vaccination behavior
on spatial populations have not been fully answered. We combine vaccination dynamics
with an epidemiological model, in particular the SIR model. We then further extend our
model to account for varying perceived vaccination costs during the decision-making for
vaccination. The results from this paper show incomplete information together with
ineffective vaccines in a population of imitators further aggravate the problem of
suboptimal level of vaccination if the initial vaccination rate is low. A bi-stability
phenomenon is observed: two separate equilibrium vaccination rates exist for high initial
vaccination and low initial vaccination. When initial vaccination rate is high, vaccination
rate moves to a high equilibrium. When initial vaccination rate is low, vaccination rate
moves to a low equilibrium. The effect is observed when the population is homogeneous
in terms of beliefs of vaccination effectiveness or heterogeneous with fixed beliefs or
spreading beliefs. Our results provide support for intensifying vaccination campaigns to
overcome vaccine hesitancy and to boost initial vaccination rate.

Introduction

The invention of vaccine has significantly reduced the levels of morbidity and mortality
from infectious diseases [1]. However, achieving widespread population immunity by
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voluntary vaccination poses a major public health challenge [2]. It often concerns public
health administration that voluntary vaccination cannot lead to sufficiently high herd
immunity for disease eradication due to the free rider problem [3–6]: while vaccinated
individuals incur the cost of vaccination, unvaccinated individuals are protected from the
disease given that population immunity is in effect. This provides self-interested
individuals an incentive to escape vaccination, free-riding on those who vaccinate. The
free rider problem is further aggravated by the rise of vaccination refusal [7–9] due to
increasing concerns about vaccine safety and a low level of concern about the risk of
many vaccine-preventable diseases [8]. For example, the common belief that the
measles-mumps-rubella (MMR) vaccine causes autism and irritable bowel syndrome
caused a severe decline in MMR vaccine uptake in Britain, which was well below the
target herd immunity level of 95% [1,10–12]. In 2003, polio was on the verge of global
eradication when vaccine scares in northern Nigeria caused an international resurgence of
the disease [13,14]. Vaccine scares or other forms of free-riding, which may result in low
vaccination levels and severe consequences, could become more common as we approach
eradication goals for many vaccine-preventable diseases [10, 13, 15], and therefore require
studies dedicated to analyzing their mechanism and effects.

An emerging literature [1, 6, 10, 15,17–20] has investigated the epidemiology of
individuals facing the free rider problem given the choice of voluntary vaccination. Such
studies properly apply the framework of game theory to describe how individuals react
when facing the vaccination dilemma [21–31]. Many studies incorporate complex network
theory to account for contact patterns of populations [2, 10,11,33–36], as traditional
mathematical methods mainly based on ordinary differential equations have been proven
to be inadequate to reflect the vaccination dynamics in structured populations [11] and
interests in understanding and controlling the spreading of diseases in complex
networks [16,32,50,59] are growing. In particular, our previous work [10] uses an
evolutionary game-theoretic approach to explore the roles of individual imitation
behavior [37,38] and population structure in vaccination. An individual’s vaccination
decisions are often influenced by opinions of his social neighbors. Individuals have
incomplete information and tend to reply on salient anecdotes from friends and media in
order to form opinions of disease risks and prevention [10,39–41]. Each person can
encounter different anecdotal evidence, depending on her social network [19,42]. We
realistically model this aspect of social learning in spatial populations, which shapes
individuals’ decision-making about vaccination, and find that the coverage of vaccination
is sensitively dependent on the effectiveness of vaccination.

Here, we extend previous work by accounting for imperfect vaccines, whose effects on
individuals’ vaccination behavior in spatial populations have not been fully answered.
Previous literature usually assumes that the vaccinated individuals gain perfect immunity
against the disease [10, 15, 17], which is not true, for example, in the cases of measles [43]
and malaria [44]. Moreover, individuals’ perceptions of vaccine effectiveness vary. This
perceived efficacy of vaccination, influenced by psychological effects, plays a determinant
role since individuals adjust their strategic behavior based on perceptions of the
vaccination efficacy and cost rather than the actual ones [2, 6, 18]. Therefore, imperfect
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vaccine and individuals’ varying perceptions of vaccination effectiveness and cost, should
be taken into account in the game theoretical analysis of the vaccination
behavior [2, 45–47]. Motivated by the issues discussed above, we propose a model that
incorporates imperfect vaccines into the interaction between disease and vaccination in
structured populations. We combine vaccination dynamics with an epidemiological
model, in particular the SIR model, to track populations of susceptible, infected and
recovered individuals over time, within each season of epidemic [2]. Individuals make
vaccination decisions during a vaccination campaign, before each epidemic season.
Whether each susceptible individual becomes infected at some point during the season is
then determined by the epidemiological model. Vaccinated individuals have reduced
chance of being infected. At the end of the season, individuals revise their vaccination
decision for the next season based on their payoffs, taken into account of their health
outcomes and cost incurred. We then further extend our model to account for varying
perceived vaccination costs during the decision-making for vaccination. Our model is
most appropriate for describing flu-like diseases, for which vaccines are usually available
prior to the seasonal epidemic and are only effective for the strain of pathogen of that
particular season [48].

Materials and Methods

In view of the periodic outbreak of infections such as influenza and imperfect vaccines,
we use an evolutionary game-theoretical approach to study the seasonal vaccination
game. A feedback loop exists between the vaccination decisions of individuals and their
health outcomes. The disease incidence feeds on vaccination behavior: high level of
vaccine coverage can decrease disease incidence to very low levels, reducing the perceived
risk of infection and hence the need to get vaccinated, in turn, the drop in vaccine
coverage allows the number of individuals who are susceptible to infection to
accumulate [49]. When the percentage of susceptible individuals exceeds a tipping point,
an outbreak of infectious disease can occur [49]. A surge in disease incidence can
convince individuals to start being vaccinated again [13].

The vaccination game has two stages: a vaccination campaign at the beginning of the
season, followed by the disease epidemic [10,11,17,51,52]. The proposed model is
illustrated in Fig 1. As shown in Fig 1, during the vaccination campaign, each individual
decides whether or not to get vaccinated based on anecdotal evidence to estimate costs
and benefits of vaccination. A vaccinated individual pays a cost Cv > 0 while an
unvaccinated individual pays nothing. This cost includes the time spent in taking the
vaccination as well as the perceived risks of vaccination, long-term health impacts, and
other intangibles. During the epidemic season, the epidemic is initiated by a number I0
of individuals and then spreads in the square lattice with Moore neighborhood according
to susceptible-infected-recovered (SIR) dynamics, with per day per infected neighbor
transmission rate β and per day recovery rate γ. Let vaccination effectiveness be E, then
the vaccinated population has a reduced transmission rate of β(1− E). The epidemic
continues until there are no more newly infected individuals (which occurs in under 200
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days for all cases simulated). The SIR epidemiological process in the epidemic season is
simulated by the Gillespie algorithm [10,35]. Once the epidemic ends, individuals can
revise their vaccination decisions for the next season. The infection bears a cost CI > 0,
which includes expenses and time for health care as well as an elevated chance of
mortality. Without loss of generality, we set CI = 1 and 0 ≤ Cv ≤ 1.

When the epidemic season ends, individuals adjust their strategies by imitation where
successful individual’s strategy is more likely to be followed [53,54]. An individual’s
imitation behavior is based on the current payoff difference between herself and a
randomly selected neighbor. If the strategy of the selected neighbor has a higher payoff
than his own strategy in the past epidemic season, then the individual imitates his
neighbor’s strategy with a higher probability. Here we use the Fermi function to
determine the probability of imitation [55–57,57,58] to account for potential stochasticity
in the decision process. Individual i randomly selects one neighbor j from her immediate
neighborhood, then the probability that individual i adopts individual j’s strategy is
given by [37,55,56]:

W (Si ← Sj) =
1

1 + exp(−K(P (j, t)− P (i, t)))
, (1)

where Si means the vaccination choice for individual i: vaccination or non-vaccination.
P (i, t) denotes the current payoff of individual i at season t. For i’s payoff, we have:

P (i, t) = −Cv if i is vaccinated and is not infected;

P (i, t) = −Cv − 1 if i is vaccinated and is infected;

P (i, t) = −1 if i is not vaccinated and is infected;

P (i, t) = 0 if i is not vaccinated and is not infected.

K is the selection intensity indicating how strongly individuals are responsive to payoff
difference. It has been suggested that the selection intensity for human imitation is
rather weak [38,54]. Here we adopt K = 0.1, which is widely used in many previous
work [37,55]. This updating dynamic diverges from a fully rational model. Individuals
adjust their strategies retrospectively, in response only to the observed payoff outcomes
and not the expected payoffs of strategies. In a population with low vaccination uptake,
many non-vaccinators fall ill, but if individual i happens to choose one of the few
successful free riders as a role model, then he will be more likely to imitate the free
rider’s strategy [10].

The initial state consists of a fraction V0 of vaccinated individuals, randomly
distributed throughout the population. Each two-stage iteration (vaccination strategy
updating followed by an epidemic process) updates the proportion of each strategy. The
equilibrium results are obtained by averaging over the last 500 iterations from a total of
10000 iterations, and each data point presented in this paper results from an average of
over 45 realizations, for which the system does not reach the absorbing state within first

4



Fig 1. Schematic diagram of our model. We model the vaccination dilemma as a
two-stage game. At stage 1 (vaccination choice), a proportion V − 0 of the population
decides to vaccinate. Vaccination costs Cv and provides imperfect protection from the
disease. At stage 2 (health outcome), we use the SIR model to simulate the
epidemiological process. Each individual faces the risk of infection, which varies with the
individual’s vaccination status and the number of infected neighbors he has. The cost of
infection is CI . Those unvaccinated individuals who remain healthy are free-riders off the
vaccination efforts of others, and they are indirectly protected by the herd immunity [10].

3000 iterations. In the paper (by the same title) being prepared for publication in PLoS
Computational Biology, we use different parameter combinations and are able to obtain
qualitatively similar results without dropping the realizations that reach the absorbing
states within first 3000 iterations. For the square lattice, the population size N = 2500,
the number of initial infection seed I0 = 50. We assume that vaccination prevents the
epidemic if the average final epidemic size is less than twice the size of I0.

In our basic model, we assume that individuals have homogenous perceptions of the
cost of vaccination — Cv is the same for all individuals. In our extended model, we
consider two groups of individuals: believers of vaccine effectiveness and non-believers.
For the nonbelievers, an additional vaccination cost θ > 0 is incurred. The perceived
payoffs for the two groups differ in the following way. For believers, the possible payoffs
are the same as those described above. For nonbelievers, we have:

P (i, t) = −Cv − θ if i is vaccinated and is not infected;

P (i, t) = −Cv − θ − 1 if i is vaccinated and is infected;

P (i, t) = −1 if i is not vaccinated and is infected;
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P (i, t) = 0 if i is not vaccinated and is not infected.

We investigate two scenarios for our extended model: one where such beliefs about
ineffective vaccination are fixed, and one where the beliefs are contagious, and spread in
a same way as the imitation dynamics in vaccination decisions based on payoff
differences. In this way, we explore systems in which both social contagions and
epidemiological contagions are coupled to one another, and offer insight into the resulting
disease-behavior system that exhibits dynamics that do not occur when the two
subsystems are isolated from one another [65].

Results

Homogeneous perceptions of cost of vaccination

In this section, we present results from our basic model, where we assume that
individuals have homogenous perceptions of the cost of vaccination. We consider a
population of individuals arranged on a square lattice where each individual has eight
immediately adjacent neighbors.

Previous research has shown that individuals who carefully pay attention to his
neighbors’ payoffs and imitate the behavior of successful neighbors will end up
attempting to free-ride more than they rationally ‘ought’ to [10]. In this paper, we
discover that when the initial vaccination rate is low, this effect is even more pronounced.
For example, Fig 2(A) shows that when infection is 20 times as costly as vaccination
(Cv = 0.05), vaccination level for V0 = 0.05 reaches approximately 50% while vaccination
level for V0 = 0.95 reaches approximately 70%. A low initial vaccination rate lowers
vaccination coverage by approximately 20% as compared to a high initial vaccination
rate. Fig 2(B,C) show snapshots of the system at equilibrium with high and low initial
vaccination rates, respectively. It is visually apparent that the when the initial
vaccination rate is low, more people opt to free ride, which results in larger disease
outbreak. Fig S1 shows the time courses of changes of subpopulations of the iteration
shown in Fig 2(B,C).

As shown in Fig 3(A), equilibrium level falls with increasing Cv. When Cv increases,
the equilibrium vaccination level follows a rotated ‘S’ shape: the vaccination level is close
to 1 when cost is low, then it drops rapidly in the range Cv ≈ 0.03 to 0.08. Above a cost
threshold of Cv ≈ 0.12, no one chooses vaccination and the epidemic reaches its
maximum size like there is no option to vaccinate. This result is qualitative the same as
results in [10]. In particular, for the range of vaccination cost appropriate to influenza
(i.e. Cv ≈ 0.002 to 0.08) [10], a high initial vaccination rate and a low initial vaccination
rate result in two separate equilibrium vaccination rates. The difference is most
pronounced in the range of vaccination cost Cv ≈ 0.02 to 0.08.

Our analysis also shows the relationship between vaccination effectiveness and
equilibrium vaccination rate. As shown in Fig 3(B), vaccination rate rises with increasing
E. When E increases, the equilibrium vaccination level also follows a rotated ‘S’ shape:
the vaccination level is zero when the vaccine is completely ineffective (E = 0), then it
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Fig 2. Vaccination rates in non-well-mixed populations at equilibrium. (A)
The fractions of the vaccinated evolve as the number of iterations increases. The black
line represents simulation results when the initial vaccination rate V0 = 0.95. The red
line represents simulation results when the initial vaccination rate V0 = 0.05. Parameters:
the population size N = 2500 with Moore neighborhood, the number of initial infection
seed I0 = 50, per day per infected neighbor transmission rate beta = 0.025, per day
recovery rate γ = 0.10, selection intensity K = 0.1, cost of vaccination Cv = 0.05,
vaccination effectiveness E= 0.80. (B,C) Snapshots of the system at equilibrium with
high and low initial vaccination rates, respectively. Dark blue denotes unvaccinated
individuals who are uninfected (successful free riders). Light blue denotes vaccinated
individuals who are uninfected. Yellow denotes unvaccinated individuals who are infected.
Red denotes vaccinated individuals who are infected.

increases rapidly in the range E ≈ 0.2 to 0.6. Between E ≈ 0.7 to 0.9, we observe an
overshoot of vaccine uptake level as the effectiveness of vaccination increases. Past
research has documented this overshoot in well-mixed populations in a similar range of
vaccination effectiveness [2]. It has been shown that there is a tradeoff effect between
vaccination effectiveness and vaccination uptake level: when vaccination effectiveness is
already high and when it increases further, it encourages more free-riding and leads to
decreases in vaccination uptake. However, the disease is still better mitigated because the
number is traded for efficiency: though the number of people who vaccinate decreases,
still more people are effectively protected by vaccines. (For proof, see [2].) This paper
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Fig 3. Bi-stability of vaccination rates caused by imperfect vaccination. (A)
The fractions of the vaccinated at equilibrium are shown as functions of the relative cost
of vaccination Cv. The lines are fitted values by using the smoothing spline method. The
black line represents simulation results when the initial vaccination rate V0 = 0.95. The
red line represents simulation results when the initial vaccination rate V0 = 0.05.
Parameters: the population size N = 2500, the number of initial infection seed I0 = 50,
per day per infected neighbor transmission rate β = 0.025, per day recovery rate
γ = 0.10, selection intensity K = 0.1, vaccination effectiveness E= 0.80. (B) The
fractions of the vaccinated at equilibrium are shown as functions of the vaccination
effectiveness E. The lines are fitted values by using the smoothing spline method. The
black line represents simulation results when the initial vaccination rate V0 = 0.95. The
red line represents simulation results when the initial vaccination rate V0 = 0.05.
Parameters: the population size N = 2500, the number of initial infection seed I0 = 50,
per day per infected neighbor transmission rate beta = 0.025, per day recovery rate
γ = 0.10, selection intensity K = 0.1, cost of vaccination Cv = 0.05.

shows the results are qualitatively similar for non-well-mixed populations. Moreover, we
discover a bi-stability of equilibrium vaccination rate, which we believe is the first time
reported for vaccination decisions. When the vaccine is completely effective (E = 1),
vaccine uptake level is approximately 0.6.

For a range of vaccination effectiveness, a high initial vaccination rate and a low initial
vaccination rate result in two separate equilibrium vaccination rates. We note an
important fact that two separate equilibrium vaccination levels only exist when
vaccination effectiveness E 6= 1. As shown in Fig 3(B), when vaccines are completely
effective in preventing the disease, equilibrium vaccination levels for high initial
vaccination and low initial vaccination converge to approximately 0.6. When vaccines are
not completely effective, a low initial vaccination rate always lowers vaccination coverage
as compared to a high initial vaccination rate. The difference can be as large as 30%
(when E= 0.4) in our simulations.
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Fig 4. Vaccination dynamics in non-well-mixed populations with
heterogeneous beliefs. Green: nonbelievers who vaccinate, blue: believers who
vaccinate, red: nonbelievers who do not vaccinate, beige: believers who do not vaccinate.
(A) shows the evolution of the fractions of the four subpopulations as the number of
iterations increases when beliefs of ineffective vaccines are fixed. The upper panel shows
the scenario when the initial vaccination rate V0 = 0.95. The bottom panel shows the
scenario when the initial vaccination rate V0 = 0.05. Parameters: the population size
N = 2500, believer population Nb = 1250, the number of initial infection seed I0 = 50,
per day per infected neighbor transmission rate β = 0.025, per day recovery rate
γ = 0.10, selection intensity K = 0.1, cost of vaccination Cv = 0.03, additional
vaccination cost θ = 0.1. (B) shows the evolution of the fractions of the four
subpopulations as the number of iterations increases when beliefs of effective vaccines are
spreading. The upper panel shows the scenario when the initial vaccination rate
V0 = 0.95. The bottom panel shows the scenario when the initial vaccination rate
V0 = 0.05. Parameters: the population size N = 2500, initial believer population
Nb0 = 1250, the number of initial infection seed I0 = 50, per day per infected neighbor
transmission rate β = 0.025, per day recovery rate γ = 0.10, selection intensity K = 0.1,
cost of vaccination Cv = 0.03, additional vaccination cost θ = 0.1.

Heterogeneous perceptions of cost of vaccination

Our extended model which incorporates heterogenous perception of cost of vaccination, is
motivated by the the spread of opinions about vaccination like a social contagion in the
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Fig 5. Proportions of four subpopulations in vaccination dynamics with
heterogeneous beliefs. Blue bars: the proportions of four subpopulations when
V0 = 0.05, red bars: the proportions of four subpopulations when V0 = 0.95. (A) presents
the proportions of four subpopulations in Fig4 (A). (B) presents the proportions of four
subpopulations in Fig4 (B).

real world [49]. Vaccine confidence and immunization decisions are driven by perceived
social norms or collective values. For example, many parents reply on other parents or
family members as sources of vaccine-related information. Specifically, decisions to
immunize are mediated in part by perceptions of what other parents in the community
are doing [9]. In today’s world, many diseases, such as smallpox, have been controlled
due to a successful vaccination program. Consequently, fear has shifted from many
vaccine-preventable diseases to fear of the vaccines. Vaccines are not only victims of their
own success, but also struggle to maintain public confidence given the heuristics that
often influence risk perceptions and decision-making [63]. It is therefore of particular
importance that our model studies how the vaccination dynamics are influenced by social
contagion.

We first study the scenario when a fixed population of individuals believe vaccines are
ineffective. For this population, they perceive an additional vaccination cost θ. As shown
in Fig 4(A), we observe that even with very low actual vaccination cost Cv = 0.03, the
equilibrium vaccination level for this group of believers as well as for the non-believers
become very low as compared to the homogenous population where no one perceives an
additional cost. However, the vaccination rate is higher than that in a homogenous
population where everyone perceives an additional cost. The vaccination rate among
believers and nonbelievers are similar. As shown in Fig 5(A), the effect of two separate
equilibria of vaccination levels is preserved.

We then study the scenario when beliefs about vaccination effectiveness are a social
contagion and spread in the same way as the spread of disease. As shown in Fig 4(B), we
observe that, similar to Fig 4(A), even with very low actual vaccination cost Cv = 0.03,
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the equilibrium vaccination level for this group of believers as well as for the non-believers
become lower as compared to the homogenous population where no one perceives an
additional cost. The vaccination rate is higher than that in a homogenous population
where everyone perceives an additional cost. We observe that the populations of believers
and nonbelievers change over the number of iterations. In this simulation, the population
of nonbelievers grows at the expense of believers. Moreover, individuals select on
vaccination decisions based on their beliefs about vaccination effectiveness. Believers are
unlikely to vaccinate in equilibrium while nonbelievers are likely to vaccinate. As shown
in Fig 5(B), the effect of two separate equilibria of vaccination levels is also preserved.

Discussion and Conclusion

Previous research has shown voluntary vaccination can be a viable policy for achieving
high vaccination coverage and eradicating diseases, but the outcome is sensitive to small
changes of (actual or perceived) vaccination cost in social networks [10]. Achieving
socially optimal coverage through voluntary vaccination is a problem of cooperation with
limited information and uncertainty about outcomes and often fail to protect populations
from epidemic [10]. Despite these concerns, vaccine have significantly reduced the levels
of morbidity and mortality from infectious diseases [1].

However, recent trends suggest that past gains in reducing vaccine-preventable
diseases are threatened with shift in perceptions of disease experience and heightened
concerns regarding vaccine safety [63,64]. Factors such as expanding immunization
requirements and increased media coverage of alleged associations between vaccinations
and chronic illnesses have heightened concerns regarding vaccine safety [63,64]. Many
individuals also feel that the risk of infection is low because of herd immunity. As a
consequence, vaccine hesitancy has increases significantly over the last decade. Vaccine
hesitancy has potentially severe consequences. For example, the belief that the
measles-mumps-rubella (MMR) vaccine causes autism and irritable bowel syndrome
caused a severe decline in MMR vaccine uptake in Britain [1, 10–12]. In 2003, polio was
on the verge of global eradication when vaccine hesitancy in northern Nigeria caused an
international resurgence of the disease [13,14]. A resurgence of outbreaks of these
vaccine-preventable diseases has brought attention to the issue of vaccine hesitancy and
its threat to public health [9].

An emerging literature [1, 6, 10, 15,17–20] has investigated the epidemiology of
individuals facing the free rider problem given the choice of voluntary vaccination. Here,
we extend previous work by accounting for imperfect vaccines, whose effects on
individuals’ vaccination behavior in spatial populations have not been fully answered. We
propose a model that incorporates imperfect vaccines into the interaction between disease
and vaccination in structured populations. We combine vaccination dynamics with an
epidemiological model, in particular the SIR model, to study flu-like diseases.

The results from this paper show incomplete information together with ineffective
vaccines in a population of imitators further aggravate the problem of suboptimal level of
vaccination if the initial vaccination rate is low. This is because two separate equilibria
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exist for high initial vaccination and low initial vaccination. This bi-stability effect is
observed when the population is homogeneous in terms of beliefs of vaccination
effectiveness or heterogeneous with fixed beliefs or spreading beliefs. Taking into
considerations of recent trends of vaccine hesitancy, results from this paper provide
justification for intensifying vaccination campaigns to boost initial vaccination rate and
discourage people from opting out of immunization programs.

Supporting Information

S1 Fig. Vaccination dynamics in non-well-mixed populations. This figure
supplements Fig 2. (1) shows the time course of the iteration shown in Fig 2(B). (2)
shows the time course of the iteration shown in Fig 2(C). Blue solid lines, susceptible
population that is not vaccinated; blue dotted lines, susceptible population that is
vaccinated; red solid lines, infected population that is not vaccinated; red dotted lines,
infected population that is vaccinated; yellow solid lines, recovered population that is not
vaccinated; yellow dotted lines, recovered population that is vaccinated.
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