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Abstract

Let X be a topological space equipped with a collection P of continuous paths. Associated to the
pair (X, P) we define a path topology that generalizes the &-topology of Hawking et al. [1] Moreover,
we axiomatize a collection P« that generates an order that we call an NRT full order. This in turn
generalizes the chronology order of spacetime defined via timelike paths. We also investigate the associated
Alexandrov topology using ideas of Penrose and Kronheimer[2l]. We conclude by defining the notion of
a strongly path ordered space (X, T, P« ) that generalizes the concept of strongly causal spacetimes and

prove an equivalence involving these topologies.

I. INTRODUCTION

Spacetimes have been studied as manifolds
equipped with a topology of a 4 dimensional
space. However, there are some problems with
this approach. E.C. Zeeman pointed out in his
1966 paper that considering a manifold with
such properties has its drawbacks, listed below:

1. The manifold topology is highly unphys-
ical. Since the latter is considered to have
the topology of a a 4 dimensional Eu-
clidean space, one cannot talk about open
neighborhoods, without referring to four
spheres, the latter of which have no phys-
ical meaning in space time.

2. Four dimensional Euclidean spaces have
a topology incompatible with space time.
The former is homogeneous at every
point (‘event’) however, this is physically
not true, as at every event in space time,
light cones separate regions of space like
separation and time like separation.

He suggested several improvements to this
notion of spacetime. Specifically, he suggested
a modification to the conventional notion of
spacetimes, by instead considering the latter
as manifolds with a new topology called the

Fine topology, tr. His work was later taken
by Hawking et al. and reconfigured so that
the theory would make more physical sense.
One of Hawking and company’s main critiques
was that while, T was more physically pleas-
ing, the definitions used to define the latter
(straight lines) has the information about iner-
tial observers a priori so the fact that the linear
structure comes out of this theory is not very
surprising.

Hawking and company instead opted to
construct a similar topology, what they called
the path topology p, that they propose is more
physical and produces more surprising results
with out so much a priori structure.[1] Among
one of the flagship differences between 7p and
Tr is that while the two induce a Euclidean
topology on timelike curves, the former for-
goes the requirement that such timelike curves
be smooth. In fact, 7p is the finest topology on
a manifold M with such quality. More interest-
ingly is the result that shows which particular
paths are continuous in this 7p topology. Such
paths are referred to by Hawking as Feynman
paths which are informally defined as paths on
the space (or manifold to be precise) that are
continuous (under the inherit topology) but are
constrained to move within a light cone. The
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open sets under this topology are also worth
noting, most notably light cones(including the
point of reference) are open in this topology
(a result that will be of interest later). Most,
importantly is the relationship between 7p and
Tr. Zeeman showed that 1 was strictly finer
that the inherit topology on the space (or mani-
fold), so one would assume that 7p is also finer
and maybe even comparable to 7r. Hawking
showed that while the first assertion was true,
the second is not, as there exists open sets in 1r
that when intersected with a continuous path
give singleton points, which are not open. [1]

David B. Malament’s work with the path
topology 7r of Hawking et al. also deserves
much credit. While Hawking and others
proved that 7r had physically useful proper-
ties and gave results useful in the study of
space time, Malament showed that these sets
of of continuous timelike curves gives the topo-
logical and differential structure of any space
time inherited with 7. However, the subtle
difference between Malament’s and Hawking’s
study of spacetimes is that Malament relaxes
some of the structure that Hawking deemed
necessary. Malament hypothesized that requir-
ing a set to be strongly causal was unnecessary.
[5] This result is particularly important in the
context of this paper, as seeing results while
removing structure may have interesting re-
sults. However, Malament’s as well as this pa-
per shows that some structure is vital, namely
the notion of future and past distinguishing is
the minimal level of structure that spacetimes
(or general spaces) need to make the topology
7r physically interesting.

The reader may question if the theories de-
veloped by the authors mentioned above can
be applied to different kinds of spaces (man-
ifolds). Laurents Hudetz’s Linear Structures,
Causal Sets and Topology proposes a method of
taking Tim Maudlin’s study of linear structures
and applying it to the theory of causal sets for
the purpose of studying discrete spaces. While
this work will focus only on the study of con-
tinuous spaces, it is worth noting that Hudetz
approach to discrete spaces does produce phys-
ically interesting results involving structures
used by Hawking and others in the continuous
analog. It is worth noting that while Hudetz

uses Maudlin’s theory to study discrete spaces,
she shows that Maudlin’s linear structure the-
ory can be easily integrated with the equivalent
notions of Alexendrov-interval topologies phys-
ically known as just the light cone structure.
The results of Hudetz work will not be dis-
cusses in further detail but it is important to
present, at least intuitavely, the connection that
the Hudetz work has with the work of the au-
thor

e Hudetz’s study of causal spaces comes
from the axiomatization of Minkowski
geometry and order, where the notion
of point events is given a structure that
differentiates between the notions of be-
fore and after. While this notion may ap-
pear simple and intuative, it is, according
to Hudetz, all that is needed to show
how causal set theory is an appropri-
ate methodology for studying discrete
spaces.[4]

The past literature most closely related to
the author’s present work (as well as the most
vital) is the work of R. Penrose and E. Kron-
heimer on differential topology. The first of
such works Techniques of Differential Topology
in Relativity is the source of one of the main
theorems of this paper. While this particular
work of Penrose resides closer to the topic of
physics, it did provide some insight into what
a possible anzats for generalizing spacetimes
may look like. The most important result (at
least for the purpose of this paper) comes from
Penrose’s attempt at studying "non-physical”
models of space time in order to understand
the global structure of the latter. In this work,
Penrose presents a specialized form of one of
the main theorems presented in this work. The
two most notable results include:

e Global Structure: Given a spacetime M
(note not a general space), three global
properties of the space time are equiva-
lent: [6]

— M is strongly causal

— The Alexandrov topology agrees
with the [inherit] topology

— The Alexandrov topology is Haus-
dorff

e The set of all point in M obeying strong
causality is an open set in the inherit
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topology.

This work by Penrose is extremely con-
straining for our purposes as the setting of
most if not all the theorems shown is a space
time. This extra structure, allows one to use the
concepts of geodesics, length of paths, etc. It
is his 1966 work alongside E. Kronheimer that
serves as the main foundation of this work. In
On The Structure of Causal Spaces, Penrose and
Kronheimer describe a lot of the concepts that
are taken for granted in most studies of space
time. The work begins with a simple defini-
tions for causal, chronological, and horisomes
ordering and imposes this structure on a gen-
eral topological space. Most notably, the idea
of a chronological order being the only order
needed to define the other two (as a matter of
fact, any one order suffices to define the other
two) . This becomes highly important for later
works, as Penrose’s global strucutre results
shown above requires more than the chrono-
logical order for validity. The next sections will
introduce some of the definition mentioned in
this section in more detail. In the third sec-
tions we present the results from our studies
of generalized spacetimes and their connection
to the works presented in this section. The last
section will present ideas the author believe
may be necessary to completely generalize the
properties of space time.

II. TororLoGYy DEFINITIONS

We begin this section by reviewing definitions
from basic topology, which can be found in
Munkres.[7]

Definition II.1. A topology on a set X is a col-
lection T of subsets of X having the following
properties:
e Pand X are in T;
e The union of any sub collection of sets in
Tisin T;
e The intersection of any finite sub-
collection of T is in T.

A set X for which a topology T has been
specified will be called a topological space.
Subsets U € T are said to be open. Examples
of topologies are defined below:

Definition II1.2. Let X be a non-empty set. We
define the trivial topology on this set as the
collection consisting of only X and @.

Definition II.3. Let X be a non empty set. We
define the discrete topology on this set as the
collection of all subsets of X, i.e. every single
subset of X is open under this topology.

A set X can have different topologies de-
fined on it. However, not all topologies on a set
X need be comparable to one another. By com-
parable we mean that given two topologies
on a set X say 74 and 1p then either 74 C 13
or g C T4. If neither is the case then we
say the two topologies on the set X are non-
comparable. If, on the other hand, two topolo-
gies on a set X are comparable, then we have
technical terms to describe their relationship:

Definition I1.4. We say that a topology on a
space X, T4 is finer than 1p if 75 C 74. Simi-
larly we say that a topology 74 is coarser than
g if T4 C 71g. If instead, the case is that
T4 G T, we say that 13 is strictly finer than 4.
The strictly coarser case is analogous.

Having presented the definition of a topol-
ogy T and the notion of open sets, we present
another feature of topological spaces known as
the Hausdorff condition:

Definition II.5. A topology T on a space X is
Hausdorff, if given any two elements x,y € X,
there exists two open sets A, B € T such that
xcAandyc Bwith ANB=0

Saying that a space X is equipped with the
Hausdorff condition essentially says that if we
have two elements in X, we can always find
open sets about these two elements that are
completely separated (i.e. disjoint). This leads
directly into our next definitions and other im-
portant qualities that we wish our space to
possess.

Definition II.6. We say that a space X is
metrizable is there exists a metric function d
(distance function) on the set X that induces
the topology of X.

Definition IL.7. Let X be a set with a given
topology 7. We say that this topological space
is connected, if the only two subsets of X that
are both open and closed are @ and X.
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Studying a metrizable space is more con-
crete due to its relation to Euclidean space, as
we can now speak of distances between points.
The connectedness property, in essence, states
that there does not exists a way to “partition’
the space X into two parts such that the union
of these two parts is the entire space X and
their intersection is empty. There does exists a
stronger condition on the space X than connect-
edness, however, and that condition is analo-
gous to the notion that any two points can be
connected via some path. Given points x and
y in X, a path in X from x to y is a continuous
map 7 : [a,b] — X such that y(a) = x and
v(b) = y. If every two points in a space X
can be joined by a path then X is said to be
path connected. Equipped with this definition,
we can study spaces, that are path connected
locally:

Definition II.8. A topological space X is lo-
cally path connected at a point x € X, if given
an open set U C X with x € U there exists an
open subset V of U that is path connected with
xeVcu

III. PROPERTIES AND RESULTS

In this section we shall be discussing different
topologies on the the set X when we refer to
our set X with the given topology, will sim-
ply refer to this as tx. Recall our definition
of a path given in the previous section. Con-
sider a collection P of continuous paths. The
next topology generalizes the path topology of
Hawking et al:

Definition III.1. Let X be a topological space
equipped with a collection P of continuous
paths. We define the path topology Tp on the
space X as the finest topology such that the
all the paths in P are still continuous (in the
standard topology 7x).

We will call subsets in this topology as the
path open subsets of X. Since Tp is the finest
topology such that paths in this collection are
still continuous then it follows that 7x C 7. In
the following lemma we characterize the path
open subsets of X

Lemma IIL.1. Let X be a Hausdorff space. An
open subset O € Tp iff Vy € P there exists

an open subset A € Tx such that y[I]NA =
y[IINO.

Proof. = Let O € tp and let ¥ € P be an ar-
bitrary path 7 : [a,b] — X. By definition of
p 7~ 1(0O) is open in [a.b].Thus it follows that
[a,b] \ 71O is closed in [a,b] which is compact
Hausdorff. Thus [a,b] \ 7~ 1(O) is compact
in [a,b]. This implies that y([a,b] \ 71(0))
is compact in X. By the Hausdorff condition
of X y([a,b] \ v~ 1(O)) is closed in X and
thus in ([a,b]). It follows that v(7~1(O))
is open in the subspace topology of v([a,b])
which implies that there exists an open set
A € 1y so that ONy([a,b]) = 7(v71(0)) =
AN7([a,b]).

< Now suppose O C X so that Vy € P
there exists A € Tx then

YIINA=7IlNn0O (1)

Then since v is continuous then the following
is true:

Y HY[IINO) =yt (y[IINA) =y 1(A)
2)

By the continuity condition on 7 then the last
equality is equal to 7 ~1(O) s.t. the set A is
open in the path topology 7). m|

This is nice first result, however, we would
like to know more about the two topologies 7p
and Ty in particular under what conditions the
two topologies agree. A reasonable assump-
tion is that we would want the space X to be
metrizable, so that we may be able to speak of
"arbitrarily small" neighborhoods or "balls of
radius €". We show that with the extra struc-
ture of metrizability the two topologies agree.

Theorem IIL.2. Let the space X be metrizable,
locally path connected and let P be the collec-
tion of all continuous paths. Then it follows
that Ty = ™

Proof. We are trying to show that 7, = 7. The
fact that ©x C 7, comes from Lemma IIL1.
Thus we only need to show that T C X, ie.
every path open subset is also X-open.

Assume to the contrary, that there exists a
path open set U that is not X-open. This im-
plies that there exists a "bad point" p € U such
that no open ball around p is contained in /.
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Using the metrizability and local-path con-
nectedness of X, we construct a nested se-
quence of open subsets B,,._; of X so that the
following hold:

1. B, C..C B CB
B, is path connected
Bn - Bl/n(p)

There exists a "bad" point p, € By so that
pn € U.

=L

It follows by construction that N, B, =
p = Ny=1 B1/4(p). Now, picking "bad" points
Pnt+1 € Buy1 C B, we define a path v, from
Pn to Pn+1 by

— X 3)

1 1}

Tn [;’H—l'ﬁ

We continue linking such points threading
down to the point p via a concatenated path:

p x=0

Yn(x) X € [%ﬂ'%}

7[0,1] = X = {
The path v is continuous (via the pasting
lemma), thus we have a continuous path
through p. By construction no point on < can
intersect U/ but this is a contradiction. O

Lemma III.1 and Theorem III.2 are useful
in demonstrating that even while changing the
topology of our spacetime we can still get two
seemingly different topologies to agree, given
the right conditions on the space.At this point
we move from a "generic" topological space X
into a close analog of what Hudetz referred
to as a "poset".[4] However, we need to modify
the definition of a partially ordered set to cre-
ate our generalization of Hudetz & Maudlin’s
work. [3][4]

Definition III.2. A NRT order < is a binary
relation of a set X possesing the following qual-
ities Vx,y,z € X: Vx,y,z € X
e It is never true that x < «x.
Reflexivity)
olf x < yand y < z then x < z.
(Transitivity )

(Non-

For this work we only consider finite intervals

There is an additional property that we can
require from our order. This quality, is almost
equivalent to the density criterion for a space
from real analysis. We call this property the
fullness criterion, and define it below:

Definition IIL.3. The order < is full if Vx € X
there exists an element p such that p < x and
if p1 < x and p; < x, there exists a third point
g such that p; < g, p» <gand q < x, and this
holds for the dual >.[2]

A simple example of a full NRT order, is
the > order on the real line; as for all x € R
there exists p € X s.t. p < x. Alsoif p; < x
and p; < x, there exists a third point g s.t.
p1 <4, p2<qgandgq < x.

We will call the set X with its underlying or-
der <, and ordered set and denote it by (X, <).
With each point x of this space we relate sub-
sets that correspond to points before and after
each point in question. Note that the following
generalize the chronology future in spacetime.
Those sets are defined below:

Definition II1.4. Let x be a point in the ordered
set (X, <) then the upset corresponding to x is
defined as:

It(x) ={ye X:x <y} (4)
The downsets are defined analogously:
I (x)={zeX:z<x} (5)

The reader should note that the above
definitions are related to the chronological
past/future in spacetime. It would then seem
natural that we should be able to "cover" our
entire partially order space, with a combina-
tion of up sets and down sets. This is the
destination we wish to get to, but first we need
a couple of definitions. Such combinations are
referred to as the intervalsﬂ In spacetime this
definition is analogous to causal diamonds in
special relativity:
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P

Figure 1: Casual Diamonds in

IH(P)NZI~(Q)

Spacetime  [18]

These intervals are defined as follows:

Definition IIL.5. The intervals are defined as
the sets given by:

It I (y) = {z eX:x<z< y} (6)

Recall that in spacetime, two events p and
q are timelike separated iff there is a future-
directed smooth timelike curve that goes from
p to g.[1] It is also worthwhile investigating
certain possible properties of NRT order.

Definition III.6. The order < is future dis-
tinguishing if for any x,y¥ € X we have that
It(x) = I (y) implies that x = y. The past
distinguishing case is similar. [2]

The next definition relates Definition IIL5 to
a topology on the set X. The latter is known as
the Alexandrov Interval Topology or Alexandrov
topology for short. However, there does exists
possible sources of confusion, as in the study of
spacetime topologies two "Alexandrov" topolo-
gies have been used (sometimes) interchange-
ably. We make the distinction clear here:

Definition IIL.7. Let (X, <) be an NRT ordered
space. We define the Alexandrov Interval
topology (denoted by 7,4;) as the coarsest topol-
ogy generated by the intervals of the < order.

Definition III.8. The Alexandrov topology
(denote by T4) as the coarsest topology on X in
which each upset 77 (x) and downset Z~ (x)
are open in X. However, the latter need not be
open in Tx.

The curious reader, may question if it is pos-
sible for the two topologies 74 and T4 to be
equal. It turns out there does exists a condition
guaranteeing that the two topologies are equal.

Lemma IIL.3. If the underlying order < on the
space X is full, then T4 = T4;.

Proof. First note that by definition we are given
the following relation between the two topolo-
gies

Tl € Ta )

This comes from the fact that since the
T4; is generated by the intervals then
It (x)NZ (y) € ta. This is easy to see since
It (x)NZ (y) € Z"(x). Since the order is full
it follows that

' =UT WNT 6

y>x

Equation 6 can be intuitively explained by the
fact that due to the fullness of the order, are
guaranteed an element between any two other
elements in the space. m]

While the fullness criterion of < may seem
like a quality separate from the topological
qualities of X. However, this is not the case as
the next two lemmas suggest:

Lemma II1.4. Let X be a set with an NRT order
<. Such order possesses the fullness criterion
iff the intervals form a basis for the Alexandrov

topology

Proof. => Note that fullness implies that
Zt(x)NZ (y) are a basis for 4. For the latter
to form a bais, certain conditions must be met.

e Vx € X there exists at least one basis
element ZT N Z~ must contain x. Since
the order < is full then there exists a
point p € X such that p < x. It follows
that x € Z7(p). Since the order < is
dual there must also exists a point p € X
Vx € X such that g > x. The it is clear
thatx € Zt(p) NZ (q)

elet By = It (p)NZ (g9) and B, =
Zt(s)NZ (t). For the intervals to be a
basis then if x € By B, there musts ex-
ists a third basis element B3 C containing
x as well. Note that if x € By B, then
p <x <gands < x < t. By the fullness
criterion we have two elements p and s
with p < x and s < x there there must
exists a third point w such that p < w
and s < w and w < x. We also have that
x < tand x < gq. By the dual nature of <
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there exists a third point z such that t > z
and g > z but z > x. Then it is clear to
see that x € ZT(w)NZ (z) C B1N B2

<— Now let the intervals Z+(p) N Z~ (g) form
a basis for 74 then we need to show that <
is a full NRT order. Since the intervals are a
basis then Vx € X at least one basis element
Zt(p)NZ (g) contains x. This implies that
Vx € X there exists p,q € X such that p < x
and x < g. Also, if x € By By (where B,
are the same as before ) then this implies that
we have p < x and s < x. Since the intervals
form a basis there exists a third basis element
Bs; =ZI"(w)NZ (z) C By N B, that also con-
tains x then this implies that when we have
p < x and s < x we also have a third point w
in X such that p < wand s < w but w < x.
The dual of this follows. m]

Moreover, it is interesting to see that there is
some connection between the Hausdorff condi-
tion and the future/past distinguishing properties
of the order <.

Lemma IIL5. If (X, <) is an NRT ordered
space and Alexandrov topology T4 is Haus-
dorff and the order < is full then the latter is
future/past distinguishing.[2]

The curious reader may wish to know how
the Alexandrov topology T4 relates to the given
topology on a space X. As the next example
shows, the answer to this can vary.

Example. Let X = R? = R ie. the one di-
mensional time with an absolute time order such
that (x,t) € X. Let p = (xq,t1) and (xo,t;) be
two elements of X. We say that p < q iff t; < t.
Such order is an NRT full order, the given topology
TRr2 is strictly finer than the Alexandrov topology
T4 but the latter is NOT Hausdorff. Figure Figure
2 illustrates that the Alexandrov topology lacks the
Hausdorff condition as given any two points p,q
we can never find two open sets in the Alexandrov
topology containing each, that are disjoint.

Fig. 2

It is at this point that we are ready to con-
nect what we have discussed thus far about
the properties of NRT orders and the study of
linear order i.e. lines, paths, timelike curves.
Recall the collection of paths presented before
P. We now show that we can axiomatize such
collection using ides from Maudlin’s Theory of
Linear Structures to generate an NRT full or-
der on the space X that generalizes the chronol-
ogy order on spacetimes. We present the ax-
ioms below and refer to the collection of ax-
iomatized paths as P«.

Definition I11.9. Let P, be the collection of
paths in X that satisfy the following axioms:

1. Each path 4 : [4,b] — X in P has a a
unique linear order on the range of 7y such
that:

e If [c,d] C [a,b] then V[ed) € Pe.

e If h: [c,d] — [a,]] is a continuous
increasing function then yoh € P«

2. For all v € P« there does not exists 7y
such that y(a) = y(b) (no closed loops)

3. Every point in X lies on the interior of
some path P.

4. For all x,y,z € X if there exists a path
Y1 € P« with initial point x and end-
point ¥ and another path 7, € P« with
initial point y and endpoint z, then there
exists a third path 3 € P« joining x to
y. (via the Pasting Lemma).

5. If there is a path ¢ € P« from p; to x
and a path 72 € P« from p; to x then
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there is a point g € X and a path in P«
from p; to g and p; to g and also g to x
and the dual of this also holds.

We are now ready to present the following
definition:

Definition IIL.10. Given p,q € (X, P«) we say
p < q iff there exists a path 7 € P« such that
vy(a) = p and y(b) = q. We shall call the order
generated by the collection of paths P« the
path order.

The following lemma shows that the order
< will attain all of the properties discussed
above.

Lemma IIL6. Given (X, Tx, P<) the order <
is a full NRT order.

This result follows immediately, since there
does not exists closed loops in this collection
of paths due to the unique linear oder on the
range of . The second condition for a NRT
order is satisfied via the fourth axiom. Lastly,
the fullness comes from the last axiom. In
previous literature, the physical analogous for
our path order was the order generated by the
smooth timelike curves. The reader may ques-
tion why our definition of path order lacks
the anti-symmetric property; we omitted this
property since events in a spacetime can be
space like separated and thus we cannot im-
pose this property for our generalized version
of timelike ordering.

The main property we wish to generalize is
the property of a space Penrose and Malament
called strongly causal.[6][5] The two author’s
definition is presented below:

Definition III.11. A spacetime is strongly
causal iff, for all points p and all open sets
O containing p, there exists an open set O
with p € 07 C O such that no future directed
smooth timelike curve which goes through p
and leave O, ever returns to O1.[6][5]

We now present our generalized version of
this definition:

Definition III.12. A space X is strongly path
ordered iff, Vp € X and all open sets O (w.r.t
the given topology) containing x, then there
exists an open set 07 with p € 07 C O with

the property that no path v € P« which goes
through p and leaves O; ever returns to O;.

We are now ready to present the main re-
sults of this work, a generalized albeit short-
ened version of the global structure theorem
proved by Penrose in his work on differential

topology.

Theorem IIL.7. Given a path ordered topo-
logical space (X,7tx,P«) so that the up-
sets/downsets are also in 7x the following
properties are equivalent:

1. The space X is strongly path ordered.
2. The two topologies T4 & Tx are equal.

Proof. We first show that 1.) = 2.). Take
the fact that X is strongly path ordered as a
given. By definition of the Alexandrov topol-
ogy T4 C Tx we need to prove that with con-
dition 1.) tx € T4. To accomplish this we
need only show that given a set U/ open in
the given topology of X that we can find a
set V open in the Alexandrov topology such
that V C U. Let x € U. Since the space X
is strongly path ordered given the open set U
there exists an open subset U s.t x € Uy C U
(with the property that given a path -y the set
v~ 1(Uy) = [c,d] C [0,1] is connected). This is
equivalent to saying that a path -y that passes
through U and exits the latter never returns.
Then by the fullness property of the space we
can see that y(c) < x < 7(d) which implies
that x € Z*(y(c))NZ (y(d)). However, the
latter is a causal diamond which is open in
the Alexandrov topology T4 suggesting that
YV CU; CU,thus tx C Ta.

Now we show that 2.) = 1.). Since the
two topologies are equal, then it follows that
T4 € ¢ and tx C T4. Now let U be an open
set in the given topology of X, then by the fact
that Tx € TA 3 a causal diamond,V, (an open
set in the Alexandrov topology) contained in
U, however, using the fact 74 C Tx again, 3
another open set (in the inherit topology) call
it Uy s.t. Uy C V. Then we can see that the
space X has to be strongly path ordered, as any
path that goes through /; and leaves the latter
must also go through the causal diamond V
and come back, which is not possible. m]
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IV. ConNcrusioN

We have taken quite a long trip to get to our
main theorem. It is worthwhile to recap. We
began by introducing the concepts of paths
on a topological space. We then took a col-
lection of continuous paths and introduced
the path topology, the finest topology on a
space X such that our collection of paths is
still continuous. We also showed that the only
requirements needed to make Tp = Tx were
metrizability and local path connectedness. We
then switched our attention to the study of
orders namely, the order we called an NRT
order. Equipping our order with the fullness
property allowed us to build the upsets and
the downsets, which were critical in being able
to study the Alexandrov and Alexandrov interval
topologies. We then connected the properties
of orders and paths in the axioms that gave
us the order <. Then, using the generalized
version of Maudlin’s strongly causal we were
able to present our main theorem. In future
work we will be aiming to add a third prop-
erty to Theorem IIL.7, namely the Hausdorff
condition to attain the full generalized version
of Penrose’s theorem given in Methods of Dif-
ferential Topology.

V. ACKNOWLEDGMENTS

First and foremost, I would like to thank Dr.
John D. (Jody) Trout for his patience and kind-
ness throughout my Dartmouth career. He
never gave up on me; to him an eagerness to
learn was all he required. I would also like to
thank Benjamin Mackey, for being the person
who ingrained in me a love for mathematics.

REFERENCES

[1] Hawking, S. W. and King, A. R. and Mc-
Carthy, P. J. (1976) A new topology for curved
spacedAStime which incorporates the causal,
differential, and conformal structures. Journal
of Mathematical Physics, 17 (2). pp. 174-181.
ISSN 0022-2488

[2] E. H. Kronheimer and R. Penrose On
the structure of causal spaces Mathemati-
cal Proceedings of the Cambridge Philo-
sophical Society / Volume 63 / Issue
02 / April 1967, pp 481 - 501 DOI:
10.1017/S030500410004144X, Published on-
line: 24 October 2008

[3] Tim Maudlin, New Foundations for Physi-
cal Geometry: The Theory of Linear Struc-
tures, Oxford University Press, 2014,
363pp.,(hbk), ISBN 9780198701309.

[4] Laurenz, Hudetz (2015) Linear structures,
causal sets and topology. Preprint avail-
able at http://philsci-archive.pitt.
edu/11681/

[5] Malament, David B The class of continuous
timelike curves determines the topology of space-
time Journal of Mathematical Physics 18,
1399 (1977); doi: 10.1063/1.523436

[6] Robert Penrose Techniques of Differential
Topology in Relativity Society for Industrial
and Applied Mathematics 1972

[7] Munkres, J. R. (1974). Topology; a first course.
Englewood Cliffs, NJ: Prentice-Hall.

[8] Scott Aaronson. Lecture 20 NotesL
Cosmology ~ and  Complexity ~ http:
//www.scottaaronson.com/democritus/
lec20.html


http://philsci-archive.pitt.edu/11681/
http://philsci-archive.pitt.edu/11681/
http://www.scottaaronson.com/democritus/lec20.html
http://www.scottaaronson.com/democritus/lec20.html
http://www.scottaaronson.com/democritus/lec20.html

	Introduction
	Topology Definitions
	Properties and Results
	Conclusion
	Acknowledgments

