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Abstract

The dynamics of the spread of contagions on networks are often studied employing models
which are not sensitive to the structural properties of the underlying networks. I propose a new
model that allows us to study the influences of network structure on the dynamics occurring
on the network. I employ the voter model on a Watts-Strogatz network of 500 or 1000 nodes
and examine how networks with different levels of clustering in them influence the processes
involved in collective opinion formation. I then apply my new model to analyze structural
properties of real-world networks, in particular Facebook. The goal is to develop dynamics on

networks as a tool for analyzing the structure of real-world network data sets.
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Chapter 1

Introduction

“Mathematicians do not study objects, but the relations between objects.”

- Henri Poincaré

Networks exist everywhere. They are part of everyday life, whether realized or not. There
are biological networks, such as the metabolic system, technological networks, such as the
World Wide Web or power grids, and social networks. The most commonly conceived social
networks are social media networks, such as Facebook, Twitter, Instagram, or Pinterest, how-
ever there are also less well-known social networks, such as friend groups and sexual contact
networks [17]. The study of networks, otherwise known as network theory, is a topic of great
research and interest among quantitative scientists as they study various aspects of networks,
such as their structural properties, their generative processes, and various kinds of dynamics on
them. Next I will discuss a few basics about networks.

A network consists of nodes that are attached by edges. The edges can be directed, undi-

rected, or weighted. Networks can have non-trivial local and global clustering, both originating



from the tendency of nodes to form triangles of connections— in other words, the tendency of
nodes to link with neighbors of a neighbor [17]. This is especially true for social networks, as
it mimics the phenomenon of the high probability of two friends also having a common friend.
Furthering the notion of clustering are communities, in which groups of nodes are more highly
connected to those within their group than to those in outside groups [12].

Networks show a wide range of complex topological properties, ranging from having com-
pletely random connectivity to completely regular connectivity [17]. There has been much
interest in studying a variety of dynamics on complex networks, especially the spread of dif-
ferent kinds of contagions on such networks [1-10, 12-16, 18, 20-26]. In this work I will be
studying the spread of social contagions, namely opinions, and my main emphasis will be on
studying the role of network structure on the process of collective opinion formation. In this
thesis I will limit myself to the study of the influence of clustering on opinion formation, in
particular global clustering or transitivity and not local clustering or average local clustering.

Such studies are important in the context of the rising role of social media in forming
opinions. It is of great importance to identify aspects of social networks that may inhibit or
encourage the progress of certain views or opinions [20, 26]. Opinion formation is a complex
process involving many behavioral aspects; here I neglect many of them and try to build a
minimalistic model which only includes some of the essential aspects of opinion formation.
Though my model is minimalistic in nature, I observe that it is able to reproduce many of the
complex features observed in opinion formation.

To generate different network topologies I use the Watts-Strogatz model. In this network
model, nodes connect to neighboring nodes with no double edges or self edges, and there exists

a rewiring probability, which also determines the net clustering in the network [17]. The Watts-



Strogatz model has two main parameters: the average degree (k) and the rewiring probability
p, where p € {0, 1} with p = 0 forming a ring, i.e., every node has the same number of nearest
neighbors, and with p = 1 forming a completely random graph [7, 17]. The formula for the
clustering coefficient for the Watts-Strogatz model is C = %L%_ll)) x (1 —p)? [24]. This
explains why there is connected ring topology when p = 0, since the clustering coefficient C is
at a maximum. As p varies, one crosses a scenario in which average path length is small and
clustering is high— this case is also known as small world [22].

I use the well-known voter model, founded independently by Clifford and Sudbury and
Holley and Liggett, for simulating opinion formation [5]. The voter model has been a very
popular choice for simulating opinion dynamics, as it can generate a wide variety of dynamical
features and real-world scenarios [4, 6, 10, 13]. For example, Holme and Newman uncovered
a non-equilibrium transition point between two contrasting consensus states in a model with
multiple opinions and adaptive topology [10, 13]. Durrett et. al. identified critical parameters
involved in the transition between consensus states with different rewiring strategies [4].

In my model, I do not include rewiring, i.e., adaptive evolution of the network. Rather, voter
dynamics are made to evolve on a subgraph of the given initial graph. This choice provides me
with a couple of advantages. The first is that the influence of initial network structure can be
studied in detail. The second is that this model can be directly run over any given network
data sets. The second advantage provides an unique opportunity to employ this model in order
to study the structures of real-world networks. There have not been many attempts to study
network data using these dynamic models.

In addition, my model is more pragmatic in nature, as we do not have examples of real-

world data sets with adaptive network evolution. Apart from that, most models with an adaptive



network component only have a random rewiring step, which means that all the results obtained
on such models are only applicable to a specific kind of random network, namely Erdos-Rényi
random networks.

The influence of basic network properties on contagion dynamics has served as the moti-
vation for empirical studies. One such significant study was performed by Damon Centola [2].
His experiment resembled online dating. He observed social behavior and how it affects opin-
ion formation [2]. In it he investigated the hypothesis about opinion formation that contagions
spread faster on random networks than on clustered ones [2]. He found, contrary to the usual
intuition, that contagions spread faster on networks with clustering [2]. His main reason to
explain this observation was that the existence of strong social reinforcement in networks with
clustering helps in spreading the contagions faster [2].

Social reinforcement is not a structural property of networks, but a behavioral one. Here
in this work I try to understand whether or not only the structural properties of a clustered
network can make contagions spread faster on such networks. For this purpose, I propose to
employ the Watts-Strogatz network to study the voter dynamics. I simplify the network to
have binary opinions O or 1, remove any social influence factors, and execute my model on a
subgraph of a given network. I can control clustering C by varying the rewiring probability
p in the Watts-Srogatz network model. Therefore, by using this network model, I can study
the influence of clustering on the opinion dynamics. An additional goal of this work is to use
the voter dynamics to analyze the structural properties of real-world networks. I employ my
new model on Facebook data, obtained from the Stanford Large Network Dataset Collection

(SNAP) [11].



Chapter 2

The model

“The sciences do not try to explain, they hardly even try to
interpret, they mainly make models. By a model is meant a mathematical construct which, with
the addition of certain verbal interpretations, describes observed phenomena. The justification

of such a mathematical construct is solely and precisely that it is expected to work.

- John von Neumann

2.1 Algorithm

Let Go(N,L) be a network with N nodes and L edges. In my model G is a Watts-Strogatz
network, but when applied to Facebook data G is the Facebook network. Let O be an opinion
vector of length N, where O; € {0,1}. N; represents the density of total nodes holding opinion
1, whereas Ny represents the density of total nodes holding opinion 0. (k) stands for average
degree. p is the rewiring probability, and it determines the net clustering in the network— I

examine all p € {0,1} in increments of 0.1.
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Algorithm 1 Voter dynamics on subgraphs of static networks

1: Generate a network Go(N, L) of given topology with N nodes and L links.
2: Assign each node an opinion, i.e. O = [0;]'=Y, where O; € {0,1}.

3: for o € {0.1,0.9} do

4: Randomly select a subgraph G| (N,AL) C Gy.

5: AL edges in G| are referred to as active.
6: Calculate Ly for Gy, referred to as Lg;.
7: while Ly, # 0 do
8: Randomly choose a L;; € Lo;.
9: Generate a uniform random number x € {0, 1}.
10: if x > o then
11: 0, — 0;.
12: else
13: Find the subgraph Go; (N, (1 —A)L) C Gy with edges (1 —A)L not in G and in
Gy, referred to as inactive.
14: Calculate Ly for Gy, referred to as L61-
15: Randomly choose a Ly, € Ly, .
16: Remove edge L;; from Gy, making it inactive, and insert L, into G, making it
active.
17: Calculate p = %,ﬂ, where, forn € N,n =Ny if Y Ngo < Y, Ny and n = N; if Y N| <
Y No.

In my model I first select a subgraph G| C Gg, where G| has the same number of nodes as
Gy but fewer edges. Every edge that is included in G; C Gy is called active, whereas remaining
edges in Gy are referred as inactive.

In my model a node accepts an opinion of its neighbor with probability 1 — ¢, and an edge
turns from active to inactive with probability ¢, i.e., it is removed from G| C Gy. To keep the
number of edges conserved in G; C Gy at all times, I also turn one of the inactive edges into
active at random, 1.e., add one edge into G; C Gy. I call « the transformation probability, as
the transformation of an edge from active to inactive depends on .

An edge is called discordant if it connects two nodes with opposite opinions. The density
of discordant edges is represented by L. Similarly, harmonious edges connect nodes with the
same opinion. Their density is represented by Loy and L1;. p is defined as the fraction of nodes

with the minority opinion. In other words, if O is the majority opinion then p gives the fraction
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of nodes holding opinion 1.

2.2 Further details

I first create a Watts-Strogatz network, Gy, with N nodes, either N = 500 or N = 1000, and
L total edges. I evenly distribute randomly assigned opinions, O or 1, amongst the nodes. 1
make a fraction of edges from Gy, AL, as active and turn those active edges into a subgraph,
G| C Gy. The size of G; C Gy depends on into how many subgraphs Gy is divided— let A
represent this division. The fraction of edges (1 — A)L that are in Gy but not in G| C Gy are
inactive— the subgraph created from these edges is called Gy; C Go. We define the the set of
discordant edges in G| C Gy to be {Lg; }fi’lu and the set of discordant edges in Go; C G to be
{Lg et e

Within these active and inactive edges exist both harmonious edges, Log and Ly, and dis-
cordant edges, Loy, that together sum to L. The relation of these edges can be written as:
L = Loy + Ly + L1, where Lo accounts for both discordant edges 0 — 1 and 1 — 0. I then
randomly pick up a discordant edge, {Lo; };—, € G1 C Gy, and with probability 1 — o flip the
opinion O; — O;. I randomly choose a discordant edge, {L{,, };—n € Go1 C G and make that
edge active while simultaneously making {Lg; },—; inactive. Thus, now {Lo; };—, ¢ G| C Gy
and {L, }i= € G1 C Gy. I continue this process until Ly; =0 Va € {0.1,0.9} in increments of
0.1 and Vp € {0.0, 1.0} in increments of 0.1, which corresponds to changing values of C. Note
that I do not include ot = 0 or & = 1. This is because at &« = 0 we flip the opinion O; — O; with
probability 1 to make ] —0to 1 — 1 0or0—1to 0 — 0. If we allow for ox =0, it is the same
as performing the procedure on the entire supergraph Gy, and in this way the opinions will end

up being homogenous across the network, thus making it an uninteresting and unrealistic case.
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Figure 2.1: Selection of subgraph G from Gy. The p = 0 case represents unanimous consensus and
the p = 0.5 case represents fractured consensus. Red nodes represent nodes with opinion 1, blue nodes
represent nodes with opinion 0, orange edges represent discordant edges, and green edges represent
harmonious edges. For the p = 0 case, the parameters used are: p =0, (k) =6, L = %, and oo = 0.4.
For the p = 0.5 case, the parameters used are: p=1, (k) =4, A = % and oo = 0.8.

There must exist some chance that new active links will be inserted into G; C Gy in order to
make the simulation realistic. At o = 1 we only make {Lo; };—, inactive and {L{,, };— active,
thus never reducing the number of Ly; and never reaching Ly, = 0.

Figure 2.1 illustrates the division of Gy into nodes of opinion 1 and 0, as well as into active
and inactive edges. It shows the subgraph G| C Gy, containing only active edges, and how
that subgraph is further divided into nodes of differing opinions based on the resulting p value,
p =0or p =0.5. Red nodes represents nodes with opinion 1 and blue nodes represent nodes
with opinion 0. Orange edges represent discordant edges and green edges represent harmonious
edges.

One question that arises during simulations is, “What is the cutoff time to determine whether

13



or not the network converges to Lg; = 0?” In order to answer this question, I test different com-
binations of (k) and A, timing how long each combination of p and o takes to reach Ly; = 0. I

define convergence for my model as the following:

lim Lo () = 0, thus converging (2.1a)
t—tF
tlg? Lo1(t) # 0, thus not converging, or having a jammed state (2.1b)
F

Where at any time ¢ we have the following conservation law for edges:

LOI(I)—I—L()()(t)—l—L]](Z‘):L (2.1¢)

Note that equation (2.1a) can be described as converging in finite time, whereas equation (2.1b)
can be described as non-converging in finite time, or converging in infinite time and can thus be

rewritten as:

lim Loy (1) = 0 (2.1d)

t—o0

My model only works within finite time. The value I set for f7 is the longest time ¢ I
observe it takes for any one combination of p and & to reach Ly; = 0. Define tr ~ O(N?).
Thus |tr| < MN?, where M € R*. In my simulations I test different values for ¢ and find that
the results remain constant regardless of which value I choose. I allow the model to run up
to tr = 200,000 and 7z = 1,500,000, in which cases, when N = 1000, M = 0.2 and M = 1.5,

respectively.
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Chapter 3

Simulation results on a Watts-Strogatz

network

“In mathematics the art of proposing a question must be held of higher value than solving
ir.”

- Georg Cantor
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Figure 3.1: p versus clustering C in a Watts-Strogatz network of N = 5000, (k) = 5. This graph re-
sembles the characteristic curve for C in a Watts-Strogatz network. Cy represents the value for C when
p = 0. C, represents C for when p # 0.
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In this chapter I will discuss the simulation results. Figure 3.1 shows the characteristic
curve for C for the Watts-Strogatz model. Observe as the rewiring probability p increases the

clustering C decreases. There exist upper and lower bounds for C:

Upper Bound:

3x ((k)—1)

Cupper = m X (1 _p)3
3x(5-1)

=~ 7 «(1-0)°
Cupper = 3 axs—1) <10

3x4

Cupper = m x 1

12 2
Cupper = g = 3 = 0.667

Lower Bound:

3% ((k)—1)

2><(2</<>—1)><(1_p)3

Cl ower —

3x(5-1)

2><(2><5—1)><(1_1)3

Clower =

3x4

2x9XO

Clower -
Cl()wer =0
Within these two bounds for C, there exists a critical value for the clustering coefficient C,

called C¢, at which the values for p transition between 0 and 0.5. I assert that:

dC¢suchthat C < Ce, p =0.5 (3.1a)
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and

JFCcsuch thatC > Ce, p =0 (3.1b)

Iidentify C¢ to be C¢ ~ 0.25, since the exact value of C¢ is not identifiable unless the sim-
ulation is continuously performed over the full range of p € {0,1}. One can see this existence
of a C¢ by examining a graph of o vs. p, as shown in Figure 3.2. If p depends on ¢, the dots
for each C, as represented by varying colors, would follow the same trajectory, peaking at the
same ¢. What happens in this new model, however, is that each trajectory differs, following
very different patterns for different combinations of & and p. p, in turn, varies with clustering
C.

I begin my simulations using fr = 200,000. Figure 3.2 is divided into two subplots: (A),
when p # 0, and (B), when p = 0. The reason for this is to distinguish between the usual
result and the exception. When p =0, C is at a maximum. This means that Gy, and thus
G1 C Gy, 1s a perfectly connected graph. Due to this, the simulation happens so fast on such
a clustered network that the voter model dynamics never come into play. The results show a
highly clustered network with high p for each ¢. By separating out this one case, it is easier to
examine how, for higher values of C, you have lower values of p.

Another case is that of the jammed state, as shown in Figure 3.3. A jammed state is when
Ly does not converge to 0 before t = tf, or tlgg Loi(t) # 0. This graph is interesting because
it is observable how many cases reach the limit # =tz when tr = 200,000. For C < 0.25, the
simulation results in a jammed state. It is notable that for 0.25 < C < 0.45 we have 0 < p < 0.3,
and for C > 0.45 we have 0.4 < p <0.5. In addition, higher values of C have shorter simulation

times ¢ for those cases that do not result in a jammed state. This is what Centola found in

17



0.50} . . ! i o ' ! i g
8 ® s 8
®
2025 & - Oog@o —————————
o o o o
0.00, A © © O pef0.1,1.0}] 0.45
050} m " = 0.25%
| [ |
QO.25F < 0.05
0.00¢ B | | | | p=0-
0.2 0.4 0.6 0.8 1.0

«

Figure 3.2: Progression of o versus p for N = 1000, (k) =5, A = %, and tg = 200,000. The colors
of the dots represent C. As C decreases, p increases except for when p = 0 due to the highly clustered

nature of the network at that p value.
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Figure 3.3: Depiction of a jammed state. Progression of t versus o when N = 1000, (k) =5, A = %,
and tp = 200,000. The color of the dots represent C, while the size of the dots represents p. Note the
logarithmic scale on t and the ticks for t are in powers of 10. The grey line represents the cutoff time,
tr. When C < 0.25, the simulation results in a jammed state. For 0.25 < C < 0.45 we have 0 < p < 0.3,
and for C > 0.45 we have 0.4 < p <0.5. In addition, the highest C yields the shortest simulation time t.
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his empirical study, which resembled online dating, though he accounted this phenomenon to
social reinforcement. I have been able to create a similar kind of feature in opinion formation
without employing any kind of social reinforcement. Rather I show that one does not need
social reinforcement for faster diffusion of opinions on networks with clustering.

One interesting result is that as p > 0.5, approximately, the value for C — 0 and p — 0.5. 1
run the simulation allowing p € {0,0.5} in increments of 0.1 and & € {0.1,0.95} in increments
of 0.05 to observe what happens to C. I keep 7 = 200,000. The results remain the same as

before and are shown in Figure 3.4. Cy e remains the same as before, but Cj,,,., becomes:

Lower Bound:

3x((k)—1)

= (1—p)
Clowe 7 % (2<k>—1) X( P)
3x(5-1) 3
Clower 2X(2><5—1)X( 05)
3x4
Crower = m X (05>3

12
Clover = g % (0-125)

2
Clower = 5  (0.125) = 0.083

I then run the simulation allowing p € {0,0.5} in increment of 0.05 and a € {0.1,0.9} in
increments of 0.1. I also increase tr to be tr = 1,500,000 and examine how these changes
affect my results. The upper and lower bounds for C remain the same as in the previous trial,
when p € {0,0.5} in increments of 0.1 and & € {0.1,0.95} in increments of 0.05, and the
results also remain the same. This is shown in Figure 3.5. One can observe that the critical

value C¢ also remains as C¢ =~ 0.25. The case for the jammed state of this simulation is shown
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Figure 3.4: Progression of & versus p for N =1000, (k) =5, A = % and tp =200,000 when p € {0,0.5}
in increments of 0.1 and o € {0.1,0.95} in increments of 0.05. The colors of the dots represent C. As C
decreases, p increases except for when p = 0 due to the highly clustered nature of the network at that p
value. Note there exists slightly more variation in p than in Figure 3.2.
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C. As C decreases, p increases except for when p = 0 due to the highly clustered nature of the network
at that p value. Note there exists slightly more variation in p than in Figure 3.2.

in Figure 3.6.

One interesting aspect evident from these graphs of o versus p is that higher a C yields a
lower p. We know that social networks tend to show non-trivial clustering— in that context the
above observation is very significant. This result indicates that one must take into account the
influences of clustering on contagion dynamics on a social network.

My results also further signify that not only does clustering in one’s network influence the
chance of contracting a contagion, but it also influences the speed at which one can contract
a contagion. The jammed states graphs show that as C increases, the time it takes for the
simulation to complete, 7, decreases for cases that do not result in a jammed state. This means
that in highly clustered networks a consensus state is reached faster with less churning in the

society. Also, highly clustered networks can show both kinds of consensus, namely unanimous
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Figure 3.6: Depiction of a jammed state. Progression of t versus o when N = 1000, (k) =5, A = %
and tr = 1,500,000. The color of the dots represent C, while the size of the dots represents p. Note the
logarithmic scale on t and the ticks for t are in powers of 10. The grey line represents the cutoff time,
tr. When C < 0.25 we have a jammed state. For 0.25 < C < 0.45 we have p values 0 < p < 0.2. For
C > 0.45 we have p values 0.3 < p <0.5. In addition, higher C yields a shorter simulation time t.

consensus (p = 0) or fractured consensus (p = 0.5).

Next I study the temporal trajectories of different variables involved in the model. Figure
3.7 shows plots between Nj and Lo with time, highlighted by color. The parameters I use to
generate Figure 3.7(A) are N = 500, p =0, (k) =6, A = %, and o = 0.4. The parameters I
use to generate Figure 3.7(B) are N =500, p =1, (k) =4, A = %, and a = 0.8. 1 observe
trajectories which resemble random walks in two dimensional space, though I have not carried
out the analysis required to establish the same result. Figure 3.7(A) and (B) show the cases in
which I observe convergent dynamics. Observe that in Figure 3.7(A) there will exist a small
minority population whereas in Figure 3.7(B) there will exist a large minority population.

What happens when the model results in a nonconvergent, or jammed, state? Figure 3.7(C)

’

N —

demonstrates this case. For this simulation, the parameters [ use are p =1, (k) =4, A =
and o = 0.6. I allow the model to run for 200,000 run-throughs, yielding 200,000 data points
of Nj versus Ly;. It begins with N| = 1N due to the initial distribution of opinions. However,

once again we observe that this distribution remains fairly constant as Ly; — 0. However, Lo
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Figure 3.7: The colorbar on the right of the graph shows the progression of time. (A) Ny versus Lo as
time increases for N = 500 and p = 0. The initial distribution of nodes’ opinions is N1 = %N. There
is much discord in N1 as Loy — 0, however it finalizes at the distribution of Ny = N. (B) Ny versus Ly
as time increases for N = 500 and p = 0.5. The initial distribution of nodes’ opinions is N; = %N,
and this distribution remains nearly constant until Loy = 0. (C) Nj versus Lo as time increases for
tli}rg Loi(t) # 0, or a jammed state, for N = 500. The initial distribution of nodes’ opinions is N| = %N,

and this distribution remains nearly constant. Note that Lo settles in around the value Ly, ~ 0.15L. (D)
A zoomed in version of (C). As time progresses the circles of red overlap and form nearly concentric
circles rather than migrating downward to the case where Ly; = 0.
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never reaches 0. It reaches around 0.15L, but then stays in that range as t — co. Figure 3.7(D)
represents a zoomed in version of Figure 3.7(C). One can observe in the picture that the circle
of red, representing time progression, becomes smaller and forms concentric circles rather than
migrating downward toward the case where Ly; = 0. Once the network reaches this jammed
state, Lo, and N remain constant.

My above model is simple and minimalistic. It incorporates only a few basic processes
that might be involved in opinion formation, but it is still able to reproduce a wide array of
real-world scenarios. For example, in light of the current United States presidential election,
the recently concluded Kentucky Democratic party primary election ended in nearly a 50%-
50% split between Hillary Clinton and Bernie Sanders [19]. This is similar to the case in my
simulation when p = 0.5, the fractured consensus, since the opinions split evenly amongst
the nodes of the network. The other extreme, p = 0, the united consensus, is similar to the
Vermont Democratic party primary election where Bernie Sanders defeated Hillary Clinton
around 86.1%-13.6% [19]. Although it is not a perfect case, it is closer to the case where there
exists a clear majority opinion, versus an almost even split amongst opinions. Such political
divide has been a topic of discussion for years, since 2008 when Bill Bishop wrote his book

The Big Sort. An article from The Washington Post found that Americans have become more

clustered according lifestyle and that this geographical clustering has been a source of political

divide [23]. Our results mimic this finding, since p depends on C.
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Chapter 4

Analysis of Facebook data

“Mathematics is the music of reason.”

- James Joseph Sylvester

One of my motivations for developing this model is to analyze structural properties of
real-world network data sets. Using data from Stanford’s Large Network Dataset Collection
(SNAP), I run the model on Facebook data consisting of 4,039 nodes and 88,234 edges [11].
Figure 4.1 shows a representation of this network prior to the model being applied. A few
key differences between this simulation and my model on the Watts-Strogatz network include
lacking directly controllable parameters, p and (k), since C and (k) are inherent in the Facebook
network data. I do, however, control the distribution of O on N and the parameter . I allow
tr = 1,500,000. I first divide the data into A = 5%' Interestingly, p ~ 0.5 Vo € {0.1,0.9} in
increments of 0.1 and C = 0.51917. This is analogous to the case where p = 0 on the Watts-
Strogatz network, since that is the highest value of C achieved for that network. This is shown

in Figure 4.2.
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Figure 4.1: Graph of a real-world Facebook network.

In order to generate more interesting results with this simulation, I then try sampling the
data before running my model. I let the Facebook data equal Gy and randomly sample 1000
of the nodes to create a subgraph G| C Gy, before dividing G; C Gy into further subgraphs,
G| C G; C Gy, where A represents the division of subgraphs. In this way I test if a smaller
number of subdivisions will change C and thus p. I repeat this sampling process 5 times,
taking a different combination of 1000 nodes each time to examine the effects on C and p so
the results are not unique to a specific subgroup of nodes. The reason for first sampling and
not just running my model on the entire network with fewer subdivisions is that the network
is too large. It will take too much time to perform the simulation on such a large network,

given that my computer has limited memory space. One way to sample nodes is to use a formal
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Figure 4.2: a versus p for Facebook data, when A = %. The colors of the dots represent C. There are
high values of C and p for all o values.

sampling method. Although I did not do that in my research, that would be an area of further
investigation.

I test cases where A = %, A= %, A= 31—0, and A = %. Interestingly, for all cases, C ~ 0.5,
normally staying in the range 0.4 < C < 0.6. p =~ 0.5 for all cases, but the time ¢ it takes to
complete the simulation lessens as A decreases. Figure 4.3 shows graphs of o versus p, where
the colors of the dots represents C for different A values.

The Facebook network is a very dense network with high clustering. In this way, p ~ 0.5
for most values of C in the Facebook data. This case is similar to that in the Watts-Strogatz
network when p = 0, yielding a maximum for C. In fact, C for the Facebook data reaches
values C > 0.5. This may have to do with the fact that my model divides a dense network into
many smaller subgraphs, so the actual voter model dynamics do not reach their full effects. My

main conclusion from this analysis is that, under a variety of parameter regimes attempted, the
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Figure 4.3: o versus p for Facebook data with an initial sampling of 1000 nodes and tg = 1,500, 000.

(A) shows the case when A = 1—10. (B) shows the case when A = 2—10. (C) shows the case when A = %. (D)
shows the case when A = 4—10. The colors of the dots represent C. There is high clustering C and p for
all values of o for all subdivisions A. This is synonymous to when p = 0 in the Watts-Strogatz network,

due to the high density and clustering present in the network.
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Facebook network never undergoes an unanimous consensus, rather it always has a fractured
consensus. The reason seems to be the dense nature of the network data and the very high

clustering in the data.
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Chapter 5

Conclusions

“Probable impossibilities are to be preferred to improbable possibilities.”

- Aristotle

I create a model for opinion formation on a static network, employing the Watts-Strogatz
network and voter model. I simplify the voter model to have opinions 0 and 1 and examine
the structure of the underlying model and how it influences the voter dynamics. I observe
that the density of the minority opinion p and end states in the model can be fundamentally
altered by the clustering C in the model. As C increases, p decreases and vice versa. The one
exception is when the clustering determinant p = 0, since that forms a complete ring topology
and consensus is reached before the dynamics can take effect. I observe that there exists a
critical value for C, which I identify to be between C¢ ~ 0.25 for the Watts-Strogatz network,
that marks the transition between unanimous consensus and fractured consensus. I also observe
that the consensus states are reached faster on clustered networks than on random networks,

which is counterintuitive. Another important finding is the existence of a jammed state for
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certain combinations of (k) and p, in which the number of discordant edges never reaches 0
and consensus is never achieved.

In this work I also attempt to develop a technique to use the dynamics on networks for
analyzing real-world network data. I analyze Facebook data, which has very high clustering. I
determine that the Facebook data is similar to the case when p = 0 in a Watts-Strogatz network
due to the high clustering of the network and find that it is not possible to achieve a unanimous
consensus on Facebook data.

My findings emphasize the importance of the structural properties of networks in the pro-
cesses involved in collective opinion formation. This work suggests that models which do
not explore the role of clustering in the spread of contagions on networks may be of limited

applicability.
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Appendix A

Python code

A.1 Main model

A.1.1 Functions module

# Import all the required packages

slimport matplotlib.pyplot as plt
import numpy as np

s|import scipy as sci

from scipy import stats

import networkx as netx

import random as random

from random import choice

# Function for calculating discordant edges

sldef dis_calcu (G, O):

edges_in_G=np.array (G.edges ())
D_f=np.abs(O[edges_in_G[:, 0]]—-O[edges_-in_.G[:, 1]])
Didx_f=np.nonzero(D_f==1)
discordant_edges_f=edges_in_.G[Didx_f]

return discordant_edges_f

# Function for finding indices of discordant edges
def dis_idx (G, O):
edges_in_G=np. array (G.edges ())
D_f=np.abs(O[edges_in_G[:, 0]]-O[edges_in_-G[:, 1]])
Didx_f=np.nonzero(D_f==1)

return Didx_f

# Function for voter model steps
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def voter_-model_step (GO, Gl, O, alpha):

gledges=np.array (Gl.edges ())
g0edges=np.array (GO.edges ())

discordant_edges=dis_calcu (Gl, O)

edge_index=random.randrange (len (discordant_edges));

nL=discordant_edges[edge_index ][0];
nr=discordant_edges[edge_index ][1]

xi=random . uniform (0,1)

if xi>alpha:
O[nL]=0O[nr]

else:
GOl=netx . difference (GO, Gl)
discordant_edges=dis_calcu (G01, O)
xnl=choice (discordant_edges); nLl=xnl[0];

Gl.remove_edge (nL, nr)
Gl.add_edge (nL1, nrl)

return [Gl, GO, O]

nrl=xnl[1]

A.1.2 Main simulation code

# import all the required packages

slimport matplotlib.pyplot as plt

import numpy as np

import scipy as sci

from scipy import stats
import networkx as netx
import random as random
from voter_model_fx import =x

avg_degree=5 # average degree k
divide=2 # number of subgraphs, lambda

dl_alpha_rho=np.zeros ((5, 99))
k1=0;

# run over range of pO, the clustering determinant

for p0 in np.arange(0.0, 1.1, 1.0):
no_of_nodes=1000

GO=netx . watts_strogatz_graph (no_-of_nodes, avg_degree, p0)

# run over range of alpha
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25 for alpha in np.arange (0.1, 1.0, 0.1):

counter=0

27 O=np.zeros (no_of_nodes)

O[0:(no_of_nodes/2)]=1; O[(no_of_nodes/2):no_of_nodes]=0

29 np.random. shuffle (O); O=np.int32(0); # evenly distributed opinion
vector

g0edges=np.array (GO.edges ())
ac_n=np.int32 (len (gledges)/divide)
np.random. shuffle (gOedges)
active_edges=g0ledges[0:ac_n]
Gl=netx .create_empty_copy (GO)
Gl.add_edges_from (active_edges)

gledges=np.array (Gl.edges ())
discordant_edges=dis_calcu (GO, O)
41

discordant_edges=dis_calcu (Gl, O)

while len(discordant_edges) !=0:

15 [Gl, GO, O]=voter_model_step (GO, Gl1, O, alpha)
rhol=sum(O)/np. float32 (no_of_nodes);

47 discordant_edges=dis_calcu (Gl, O)
if (rhol >0.5):

49 rho=abs (rhol —1.0)
else:

51 rho=rhol

gledges=np.array (Gl.edges ())
counter=counter+1

if (counter >1500000): # run the code until t=t_F
break ;

59 dl1_alpha_rho[0, kl]=alpha

d1_alpha_rho[1l, kl]=rho

61 dl_alpha_rho[2, kl]=p0

dl_alpha_rho[3, kl]=counter

63 dl_alpha_rho[4, kl]=netx.transitivity (GO)
kl=k1+1

A.2 Plotting Figure 2.1, diagram of simulation

# import all the required packages

sl import matplotlib.pyplot as plt
import numpy as np

import scipy as sci

from scipy import stats

7l import networkx as netx

W
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import random as random
from voter_model_fx import x

import networkx as nx

;) from networkx .drawing.nx_agraph import graphviz_layout

#for rho=0, use p=0, avg_deg=6, divide=2, alpha=0.4

#for rho=0.5, use p=1, avg_deg=4, divide=3, alpha=0.8

#for when LOl does not converge to 0, use p=1, avg_.deg=4, divide=2, alpha
=0.6

avg_degree=4
divide=3

p0=1

;) alpha=0.8

sidl_alpha_rho=np.zeros ((3, 99))

k1=0;
no_of_nodes=500

GO=netx . watts_strogatz_graph (no_of_nodes, avg_degree, p0)
O=np.zeros(no_of_nodes)

O[0:(no_of_nodes/2)]=1; O[(no_of_nodes/2):no_of_nodes]=0
np.random. shuffle (O); O=np.int32 (0);

gOedges=np.array (GO.edges ())

sfac_n=np.int32 (len (gledges)/divide)

np.random. shuffle (gOedges)
active_edges=glOedges[0:ac_n]
c=np.zeros(len(gledges))
clactive_edges]=1

# create edges’ colors based on harmonious/discordant

cx=np.ones ((len(gledges), 3))
cx=cxx[0.75, 0.75, 0.75]

ncx=np.zeros ((len(0O), 3))

ncx [O==1]=[1.0, 0.0, 0.0] #red is opinion 1
ncx [0O==0]=[0.0, 0.0, 1.0] #blue is opinion 0
plt.figure (figsize=(12, 12))

# draw the original network, G_0

pos=graphviz_layout (GO, prog="neato )

plt.axis(’off’)

nodes = netx.draw_networkx_nodes (GO, pos, node_size=120, node_color=ncx)
nodes.set_edgecolor (’none’)

netx .draw_networkx_edges (GO, pos, edge_color=cx, width=1.0)

plt.savefig(’drawing_original _GO_rho=0.0.eps’)
plt.show ()
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03| Gl=netx .create_empty_copy (GO)
Gl.add_edges_from (active_edges)
65

gledges=np.array (Gl.edges ())

discordant_idx=dis_idx (Gl, O)
69
c=np.zeros(len(gledges))
7nilc[discordant_idx |=1

73| cx=np.zeros ((len(gledges), 3))
cx[c==1]=[1.0, 0.457, 0.0] # discordant edges are orange
slex[c==0]= [0.3, 0.7, 0.3] # harmonious edges are green

7l ncx=np. zeros ((len(0), 3))
ncx [O==1]=[1.0, 0.0, 0.0] # red is opinion 1
v ncx [0O==0]=[0.0, 0.0, 1.0] # blue is opinion 0O

sif plt. figure (figsize=(12, 12))
g3| # draw the original subgraph, G_1

ss| pos=graphviz_layout (Gl, prog="neato ')

plt.axis(’off’)

g7l nodes = netx.draw_networkx_nodes (Gl, pos, node_size=120, node_color=ncx)
nodes.set_edgecolor ( ’none’)

89
netx .draw_networkx_edges (Gl, pos, edge_color=cx, width=1.0)
91

discordant_edges=dis_calcu (Gl, O)

plt.savefig(’ drawing _original Gl _rho=0.0.eps’)
os| plt . show ()

971 counter=0

while len(discordant_edges) !=0:

99 [G1, GO, O]=voter_model_step (GO, Gl1, O, alpha)
rhol=sum(O)/np. float32 (no_of_nodes);

101 discordant_edges=dis_calcu (Gl, O)

if (rhol >0.5):

103 rho=abs (rhol —1.0)
else:
105 rho=rhol
107 gledges=np.array (Gl.edges())

109 print rhol, rho, alpha, sum(O), len(discordant_edges)
print alpha, rho, sum(O)

c=np.zeros(len(gledges))
3| discordant_idx=dis_idx (G1, O)

ns|c[discordant_idx J=1
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7| cx=np.zeros ((len(gledges), 3))
cx[c==1]=[1.0, 0.457, 0.0] # discordant edges are orange
9| cx [c==0]= [0.3, 0.7, 0.3] # harmonious edges are green

i nex=np.zeros ((len(O), 3))
ncx [O==1]=[1.0, 0.0, 0.0] #red is opinion 1
23 nex [0O==0]=[0.0, 0.0, 1.0] #blue is opinion O

ps| plt. figure (figsize=(12, 12))
i27|# draw the new subgraph, G_l1, with no discordant edges

9| os=graphviz_layout(Gl, prog='neato’)

plt.axis(’off ")

31 nodes = netx.draw_networkx_nodes(Gl, pos, node_size=120, node_color=ncx)
nodes.set_edgecolor ( ’none’)

13| netx . draw_networkx_edges (Gl, pos, edge_color=cx, width=1.0)

35| plt.savefig (’drawing_rho=0.0.eps’)
plt.show ()

dl_alpha_rho [0, kl]=alpha
| dl_alpha_rho[1l, kl]=rho
dl_alpha_rho[2, kl]=pO

141
print alpha, rho, sum(O)
43 k1=k1+1

A.3 Plotting Figure 3.1, C for my model

A.3.1 Find C for G

iI|# import all the required packages

slimport matplotlib.pyplot as plt
import numpy as np

s|import scipy as sci

from scipy import stats

7l import networkx as netx

import random as random

ol from voter_model_fx import =x

njavg_degree=5

divide=2

3/ dl_alpha_rho=np.zeros((3, 11))
k1=0;

# calculate transitivity for the whole range of clustering determinant, pO

for pO in np.arange (0.0, 1.1, 0.1):
19 no_of_nodes=5000
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GO=netx . watts_strogatz_graph (no_-of_nodes, avg_degree, p0)

dl_alpha_rho[0, kl]=netx.transitivity (GO)
d1_alpha_rho[l, kl]=netx.average_shortest_path_length (GO)
dl_alpha_rho[2, kl]=p0

print dl_alpha_rho[O, k1], dl_alpha_rho[l, k1], dl_alpha_rho[2, k1]

kl1=k1+1

np.savetxt( CvsL.txt’, dl_alpha_rho)

A.3.2 Plot the graph of C

# import all the required packages

sl import matplotlib.pyplot as plt

import numpy as np
import scipy as sci
from scipy import stats
import networkx as netx
import random as random
import math

dl_alpha_rho=np.loadtxt( CvsL. txt")

s|# p is the list of pO0 values

p=I]

for i in range (1, len(dl_alpha_rho[2, :])):
gq=d1l_alpha_rho[2, i]
p.append(q)

print p

# plot C/CO for when p=0

sl plt.scatter (0, (dl_alpha_rho[0, 0O])/dl_alpha_rho[0, 0], s=120,

marker="0")

s|# plot C/CO for when p!=0

plt.scatter (p, (dl_alpha_rho[0, 1:])/dl_alpha_rho[0, 0], s=120,
marker="0")

plt. xticks (fontsize=15)

plt.yticks(fontsize=15)

plt.ylim (0, 1.2)

plt.xlabel (’$p$’, labelpad=10, fontsize=24)

plt.ylabel (r’$\frac{Cp}{C.0}$", fontsize=24)

5| plt. tight_layout ()

plt.savefig (' CvsL_mine.eps’)
plt.show ()

c="b"’,

c="b’,
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A.4 Plotting o versus p for when 7z = 200,000

#import all the required packages

import numpy as np

import matplotlib.pyplot as plt
import networkx as nx

from time import time

import matplotlib as mpl

# set the standard parameters

params = { ’figure.figsize’: (10, 6),
axes.labelsize’: 20,
text.fontsize’ : 24,
>xtick.labelsize’: 18,
‘ytick.labelsize ’: 18,

"legend . fontsize ’: 18,
text.usetex ': False,
"mathtext.bf’: ’helvetica:bold’,

}

plt.rcParams.update (params)
# create a colorbar

col0l =[165./255., 0./255., 38./255.]
coll=[215./255., 48./255., 39./255.]
col2=[244./255., 109./255., 67./255.]
col3=[253./255., 174./255., 97./255.]
col4=[254./255., 224./255., 144./255.]
col41=[255./255., 255./255., 191./255.]
cold42=[224./255., 243./255., 248./255.]

2| col51=[171./255., 217./255., 233./255.]

col52=[116./255., 173./255., 209./255.]
col6=[69./255., 117./255., 180./255.]
col6l1=[49./255., 54./255.,1 49./255.]

colO=np.array ([col01l, coll, col2, col3, cold, coldl, cold42, col51,
col6, col6l1])

cm = mpl.colors.ListedColormap (col0)

# load the necessary data

dl_alpha_rho=np.loadtxt( 1000timed_k5_acn2_counter200000. txt ")
f, axes = plt.subplots(2, 2)

# plot alpha versus rho for when p0!=0

axl=plt.subplot(2, 1, 1)

s s

axl.axhline(y=.25, xmin=0.0, xmax=1.0, ls="—", color="grey’)
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axl.scatter (dl_alpha_rho[0, 9:], dl_alpha_rho[l, 9:], s=120, c=dl_alpha_rho
[4, 9:], cmap=cm, marker="0", vmin=0, vmax=0.55)
axl.annotate ("$p$° r’$\in \{0.1,1.0\}$’, xy=(1, 0.01), xycoords="axes

fraction’, fontsize=15, xytext=(—-5, 5), textcoords=’offset points’, ha=’
right’, va=’bottom’)

axl.set_xticks ([0.2, 0.4, 0.6, 0.8, 1.0])
axl.set_yticks ([0.0, 0.25, 0.5])
axl.set_ylabel (r’$\rho$’, fontsize=20)
axl.set_xticklabels ([])

ax1l.set_xlim ([0.05, 1])
axl.set_ylim([—0.05, 0.55])

# plot alpha versus rho for when p0=0

ax2=plt.subplot(2, 1, 2)

ax2.axhline (y=.25, xmin=0.0, xmax=1.0, ls="—", color="grey’)
pl=ax2.scatter (dl_alpha_rho[0, 0:9], dl_alpha_rho[l, 0:9], s=120, c=
d1_alpha_rho[4, 0:9], cmap=cm, marker="s’, vmin=0, vmax=0.55)

ax2.annotate ("$p=0$", xy=(1, 0.01), xycoords=’axes fraction’, fontsize=15,
xytext=(—-5, 5), textcoords=’offset points’, ha="right’, va=’bottom’)

# format the axes

ax2.set_xticks ([0.2, O
ax2.set_yticks ([0.0, O
ax2.set_x1lim ([0.05, 1])
ax2.set_ylim([—-0.05, 0.55])
ax2.set_ylabel (r’$\rho$’, fontsize=20)
ax2.set_xlabel (r’$\alpha$’, fontsize=20)
axl.set_position ([0.1, 0.575, 0.77, 0.4])
ax2.set_position ([0.1, 0.12, 0.77, 0.4])

4, 0.6, 0.8, 1.0])
.25, 0.5])

# add text to label subplots

f.text(0.145, 0.2, B’, transform=ax2.transAxes, fontsize=18, fontweight="
bold’, va="top’, ha=’right’)

f.text(0.145, 0.65, 'A’, transform=axl.transAxes, fontsize=18, fontweight="
bold’, va="top’, ha=’right’)

# add the colorbar

cbar_ax = f.add_axes([0.885, 0.285, 0.025, 0.4])
cbar=f.colorbar(pl, cax=cbar_ax,ticks=([0.05, 0.25, 0.45]))
cbar.set_label (r’$C$’, fontsize=20)

plt.savefig (’1000timed_k5_acn2_counter200000_new .eps’)
plt.show ()
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A.5 Plotting Figure 3.5, plotting o versus p for when ¢ =

1,500,000

#import all the required packages

import numpy as np

import matplotlib.pyplot as plt
import networkx as nx

from time import time

import matplotlib as mpl

# set the standard parameters

params = { ’figure.figsize’: (10, 6),

axes.labelsize’: 20,
text.fontsize’: 24,
>xtick . labelsize’: 18,
“ytick . labelsize : 18,
"legend . fontsize ’: 18,
text.usetex ' : False,
"mathtext.bf’: “helvetica:bold’,
}

plt.rcParams.update (params)
#create a colorbar

col0l =[165./255., 0./255., 38./255.]
coll=[215./255., 48./255., 39./255.]
col2=[244./255., 109./255., 67./255.]
col3=[253./255., 174./255., 97./255.]
col4=[254./255., 224./255., 144./255.]
col41=[255./255., 255./255., 191./255.]
col42=[224./255., 243./255., 248./255.]
col51=[171./255., 217./255., 233./255.]
col52=[116./255., 173./255., 209./255.]
col6=[69./255., 117./255., 180./255.]
col6l =[49./255., 54./255., 149./255.]

colO=np.array ([colO1, coll, col2, col3, col4, coldl, cold2, col51,
col6, col6l])

cm = mpl.colors.ListedColormap (col0Q)

# load the necessary data
data=np.genfromtxt(’ timed_data_anm_brk.txt’)
f, axes = plt.subplots (2, 2)

# plot alpha versus rho for when p0!=0

axl=plt.subplot(2, 1, 1)
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axl.axhline (y=.25, xmin=0.0, xmax=1.0, ls="—", color="grey’)

>laxl.scatter (data[9:, 1], data[9:, 3], s=120, c=data[9:, 2], cmap=cm, marker

s s

=’0’, vmin=0, vmax=0.55)

axl.annotate ("$p$’ r’$\in \{0.1,0.5\}$’, xy=(1, 0), xycoords="axes fraction
*, fontsize=12, xytext=(—5, 5), textcoords='offset points’, ha="right’,
va=’bottom )

# format the axes

ax1l.set_xticks ([0.2, 0.4, 0.6, 0.8, 1.0])
axl.set_yticks ([0.0, 0.25, 0.5])
axl.set_ylabel (r’$\rho$’, fontsize=20)
axl.set_xticklabels ([])

axl.set_xlim ([0.05, 1])
axl.set_ylim ([ -0.05, 0.55])

# plot alpha versus rho for p0=0

ax2=plt.subplot(2, 1, 2)

ax2.axhline(y=.25, xmin=0.0, xmax=1.0, ls="—", color="grey’)

pl=ax2.scatter (data[0:9, 1], data[0:9, 3], s=120, c=data[0:9, 2], cmap=cm,
marker="s’, vmin=0, vmax=0.55)

ax2.annotate ("$p=0$", xy=(1, 0), xycoords=’axes fraction’, fontsize=12,

xytext=(—5, 5), textcoords="offset points’, ha="right’, va=’bottom’)

# format the axes

ax2.set_xticks ([0.2, 0.4, 0.6, 0.8, 1.0])
ax2.set_yticks ([0.0, 0.25, 0.5])
ax2.set_xlim ([0.05, 1])

ax2.set_ylim ([ -0.05, 0.55])
ax2.set_ylabel (r’$\rho$’, fontsize=20)
ax2.set_xlabel (r’$\alpha$’, fontsize=20)
axl.set_position ([0.1, 0.575, 0.77, 0.4])
ax2.set_position ([0.1, 0.12, 0.77, 0.4])

# add text to label subplots

f.text(0.125, 0.2, 'B’, transform=ax2.transAxes, fontsize=18, fontweight="
bold’, va=’top’, ha="right’)

f.text(0.125, 0.65, ’A’, transform=axl.transAxes, fontsize=18, fontweight="
bold’, va="top’, ha=’right’)

# add the colorbar

cbar_ax = f.add_axes([0.885, 0.285, 0.025, 0.4])
cbar=f.colorbar(pl, cax=cbar_ax ,ticks=([0.05,0.25,0.45]))

o cbar.set_label (r’$C$’ ,fontsize =20)

plt.savefig( tF1500000_interval.eps’)
plt.show ()
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A.6 Plotting Figure 3.3 and 3.6, representation of a jammed
state

# import all the required packages

import numpy as np

import matplotlib.pyplot as plt
import networkx as nx

from time import time

import matplotlib as mpl

# set the standard parameters

params = { ’figure.figsize’: (14, 5.5),

axes.labelsize’: 20,
text.fontsize’: 24,
>xtick . labelsize’: 18,
“ytick . labelsize : 18,
"legend . fontsize ’: 18,
text.usetex ' : False,
"mathtext.bf’: “helvetica:bold’,
}

plt.rcParams.update (params)
# create a colorbar

col0l =[165./255., 0./255., 38./255.]
coll=[215./255., 48./255.,39./255.]
col2=[244./255., 109./255., 67./255.]
col3=[253./255., 174./255., 97./255.]
col4=[254./255., 224./255., 144./255.]
col41=[255./255., 255./255., 191./255.]
col42=[224./255., 243./255., 248./255.]
col51=[171./255., 217./255., 233./255.]
col52=[116./255., 173./255., 209./255.]
col6=[69./255., 117./255., 180./255.]
col6l =[49./255., 54./255., 149./255.]

fig = plt.figure ()

colO=np.array ([col0l, coll, col2, col3, cold, coldl, cold42, col51, col52,
col6, col61])

>lcm = mpl. colors.ListedColormap (col0)

# load the necessary data

dl_alpha_rho=np.loadtxt(’ timed_data_anm_brk.txt’)

s| # plot t versus alpha

# size of the marker is the value of rho
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plt.axvline (x=1500000, ymin=0.0, ymax=1.0, 1s="-", color="grey’, lw=3,
zorder=1)

#type V marker

dx1=d1_alpha_rho[(dl_alpha_rho[:, 3]>0.4) & (dl_alpha_rho[:, 3]<0.51), 6]
so)dx2=d1_alpha_rho [(dl_alpha_rho[:, 3]>0.4) & (dl_alpha_rho[:, 3]<0.51), 1]

dx3=dl1_alpha_rho[(dl_alpha_rho[:, 3]>0.4) & (dl_alpha_rho[:, 3]<0.51), 2]
ssfdx4=d1_alpha_rho [(dl_alpha_rho[:, 3]>0.4) & (dl_alpha_rho[:, 3]<0.51), 3]

pS=plt.scatter (dx1, dx2, s=400.0, c=dx3, cmap=cm, marker="0’, alpha=0.95,
vmin=0.0, vmax=0.5, zorder=2)

#type IV marker

dxl=dl_alpha_rho[(dl_alpha_rho[:, 3]>0.3) & (dl_alpha_rho[:, 3]<0.4), 6]
o4+ dx2=d1_alpha_rho[(dl_alpha_rho[:, 3]1>0.3) & (dl_alpha_rho[:, 3]<0.4), 1]
dx3=dl_alpha_rho[(dl_alpha_rho[:, 3]>0.3) & (dl_alpha_rho[:, 3]<0.4), 2]
oo|dx4=d1_alpha_rho[(dl_alpha_rho[:, 3]>0.3) & (dl_alpha_rho[:, 3]1<0.4), 3]

p4=plt.scatter (dxl, dx2, s=400.0, c=dx3, cmap=cm, marker="o0’, alpha=0.95,
vmin=0.0, vmax=0.5, zorder=2)
68

#type III marker

dxl=dl_alpha_rho[(dl_alpha_rho[:, 3]>0.2) & (dl_alpha_rho[:, 3]<0.3), 6]
»|dx2=d1_alpha_rho[(dl_alpha_rho[:, 3]>0.2) & (dl_alpha_rho[:, 3]<0.3), 1]
dx3=d1_alpha_rho[(dl_alpha_rho[:, 3]>0.2) & (dl_alpha_rho[:, 3]<0.3), 2]
74| dx4=d1_alpha_rho[(dl_alpha_rho[:, 3]>0.2) & (dl_alpha_rho[:, 3]1<0.3), 3]

p3=plt.scatter (dxl, dx2, s=300.0, c=dx3, cmap=cm, marker="o0’, alpha=0.95,
vmin=0.0, vmax=0.5, zorder=2)

#type II marker

dx1l=d1_alpha_rho[(dl_alpha_rho[:, 3]>0.1) & (dl_alpha_rho[:, 3]<0.2), 6]
s0|dx2=d1_alpha_rho[(dl_alpha_rho[:, 3]>0.1) & (dl_alpha_rho[:, 3]1<0.2), 1]
dx3=dl_alpha_rho[(dl_alpha_rho[:, 3]>0.1) & (dl_alpha_rho[:, 3]<0.2), 2]
2| dx4=d1_alpha_rho[(dl_alpha_rho[:, 3]>0.1) & (dl_alpha_rho[:, 3]<0.2), 3]

p2=plt.scatter (dx1, dx2, $=200.0, c=dx3, cmap=cm, marker="0’, alpha=0.95,
vmin=0.0, vmax=0.5, zorder=2)
84
#type I marker
86
dxl=dl_alpha_rho[(dl_alpha_rho[:, 3]>=0.0) & (dl_alpha_rho[:, 3]<0.1), 6]
ss| dx2=d 1 _alpha_rho [(d1l_alpha_rho[:, 3]>=0.0) & (dl_alpha_rho[:, 3]<0.1), 1]
dx3=dl_alpha_rho[(dl_alpha_rho[:, 3]>=0.0) & (dl_alpha_rho[:, 3]<0.1), 2]
ow|dx4=d1_alpha_rho[(dl_alpha_rho[:, 3]>=0.0) & (dl_alpha_rho[:, 3]<0.1), 3]
pl=plt.scatter (dx1, dx2, s=100.0, c=dx3, cmap=cm, marker="0’, alpha=0.95,
vmin=0.0, vmax=0.5, zorder=2)

# plot a legend for rho

94

labels = [r’$\rho<0.1$", r’$0.1<\rho<0.2$", r’$0.2<\rho<0.3$*, r’$0.3<\rho
<0.4$°, r’$0.4<\rho \leq 0.5$°]

96

leg = plt.legend ([pl, p2, p3, p4, p5], labels, ncol=5, bbox_to_anchor
=(—0.005, 1.01), frameon=True, fontsize=16, handlelength=2, loc =3,
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borderpad =1.8, handletextpad=0.1, scatterpoints=1)
# format the axes

plt.yticks ([0, 0.2, 0.4, 0.6, 0.8, 1])
plt.xscale(’log’)

plt.ylim (0, 1)

plt.xlim(—100000, 1690000.)
plt.xlabel (r’$t$’°, fontsize=24)
plt.ylabel(r’$\alpha$’, fontsize=24)

# add the colorbar

cbaxes = fig.add_axes([0.9025, 0.125, 0.02, 0.625])
colorbar=plt.colorbar(cax = cbaxes)
colorbar.ax.set_ylabel (r’$C$’, rotation=90)
colorbar.set_clim ([0.01, 0.5])

colorbar.set_ticks ([0.05, 0.25, 0.45])

# format the legend

s s

leg.legendHandles [0]. set_color (’k’)
leg.legendHandles[1].set_color(’k’)
leg.legendHandles [2]. set_color ("k’)
k™)
k™)

s s

s

leg.legendHandles [3]. set_color (’
leg.legendHandles [4]. set_color (

s s

plt.savefig(’jammed_state_plot.eps’)
plt.show ()

A.7 Plotting Figure 3.7, subplot of different convergent states

# import all the required packages

import matplotlib.pyplot as plt
import numpy as np

import scipy as sci

from scipy import stats

import networkx as netx

import random as random

import matplotlib

# set the standard parameters

params = { ’“figure.figsize’: (10, 10),
axes.labelsize’: 20,
text.fontsize’ : 24,
>xtick.labelsize’: 18,
“ytick.labelsize ’: 18,
"legend . fontsize ’: 18,
text.usetex ' : False,
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20 "mathtext.bf’: “helvetica:bold’,
2| plt.rcParams . update (params)

|# import the necessary data for each case, when rho=0, rho=0.5, and the
jammed state

23/ SumO_O=np. genfromtxt( LO1_sumO _data_p=0.0 _normalized . txt’, “f8’, usecols=0)

LO1_0O=np. genfromtxt( L0l _sumO_data_.p=0.0 _normalized.txt’, “f8 , usecols=1)
30

SumO_l=np. genfromtxt( LOl_sumO_data_p=0.5 _normalized.txt’, "f8°, usecols=0)
2| LOI_1=np. genfromtxt( LOIl_sumO_data_p=0.5 _normalized.txt’, *f8’, usecols=1)
34| SumO_2=np. genfromtxt( LO1_sumO _data_p=1.0 _noconverge _normalized.txt’, "f8°,

usecols=0)
LO1_2=np.genfromtxt( LOl_sumO_data_.p=1.0 _noconverge_normalized.txt’, "f8°,

usecols=1)

SumO_3=np. genfromtxt( LOl_sumO_data_p=1.0 _noconverge_normalized.txt’, {8,
usecols=0)
33| LO1_3=np. genfromtxt( LOl_sumO_data_p=1.0 _-noconverge_normalized . txt’, 87,

usecols=1)
4|# color is according to time

©|tl_O=np.arange (0, len(SumO.0));
t1_0=t1_0/np.float32 (len (SumO.0))
44
tl_l=np.arange (0, len(SumO_1));
w|tl_1=tl_1/np.float32 (len(SumO_1))

s tl_2=np.arange (0, len(SumO.2));
tl1_2=t1_2/np.float32 (len(SumO.2))
50
tl1_3=np.arange (0, len(Sum0O.2));
s21t1 _3=t1_2/np. float32 (len (SumO_2))

s f, axes = plt.subplots(2, 2)
so| # format the plot

ss| super_axis = f.add_subplot(111)

super_axis.set_axis_bgcolor(’none’)

6| super_axis.axes.get_xaxis().set_ticks ([])

super_axis.axes.get_yaxis().set_ticks ([])

| super_axis.tick_params(labelcolor="none’, top="off’, bottom="off’, left=
off’, right="off")

super_axis.spines[ bottom’].set_color(’none’)

o4 super_axis.spines[ top’].set_color(’ none’)

super_axis.spines[ left’].set_color(’none’)

e| super_axis.spines[’ right’].set_color(’none’)

—_r———

es|# plot the data
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axes[0, O].scatter (SumO.0, LO1.0, c=t1_.0, marker=".", s=30, edgecolor="none
’, cmap=plt.cm.nipy_spectral)

axes[0, O0].text (0.1, 0.9, "A’, transform=axes[0, O].transAxes, fontsize=24,
fontweight="bold’, va="top’, ha="right’)

axes[0, O].set_ylabel (r’$L_{01}$")

axes[0, 1].scatter (SumO_1, LO1_1, c=tl_1, marker=".", s=30, edgecolor="none
>, cmap=plt.cm.nipy_spectral)

axes[0, 1].text (0.1, 0.9, 'B’, transform=axes[0, 1].transAxes, fontsize=24,
fontweight="bold’, va="top’, ha="right’)

axes[1, O].scatter (SumO_2, LO1.2, c=t1_.2, marker=".", s=30, edgecolor="none
>, cmap=plt.cm.nipy_spectral)

axes[1l, O0].text(0.1, 0.9, 'C’, transform=axes[1l, O].transAxes, fontsize=24,
fontweight="bold’, va=’top’, ha="right’)

axes[1l, O].set_xlabel(r’$N_1$")

axes[l, 0].set_ylabel (r’$L_{01}$")

pl=axes[l, 1].scatter (SumO.3, LO1.3, c=t1_3, marker=".", s=210, edgecolor="
none’, cmap=plt.cm.nipy_spectral)

axes[1l, 1].text(0.1, 0.9, 'D’, transform=axes[1l, 1].transAxes, fontsize=24,
fontweight="bold’, va="top’, ha="right’)

axes[l, 1].set_xlabel(r’$N_1$")

axes[0, O].set_position ([0.1, 0.5, 0.35, 0.35])
axes [0, 1].set_position ([0.525, 0.5, 0.35, 0.35])

axes[1l, O].set_position ([0.1, 0.1, 0.35, 0.35])
axes[l, 1].set_position ([0.525, 0.1, 0.35, 0.35])

# format the axes

plt.sca(axes[0, 0])
plt.xticks ([0.3, 0.6, 0.9])
plt.sca(axes[0, 0])
plt.yticks ([0.0, 0.25, 0.5])
plt.ylim(—-0.01, 0.51)

plt.sca(axes[0, 1])

plt. xticks ([0.3, 0.6, 0.9])
plt.sca(axes[0, 1])
plt.yticks ([0.0, 0.25, 0.5])
plt.ylim(—0.01, 0.51)

plt.sca(axes[1l, 0])
plt.xticks ([0.3, 0.6, 0.9])
plt.sca(axes[1l, 0])
plt.yticks ([0.0, 0.25, 0.5])
plt.ylim(—-0.01, 0.51)

plt.sca(axes[1l, 1])
plt.xticks ([0.45, 0.55, 0.65])
plt.sca(axes[l, 1])
plt.yticks ([0.15, 0.2, 0.23])
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plt.ylim(0.13, 0.235)
# add the colorbar

cbar_ax = f.add_axes([0.9, 0.285, 0.028, 0.4])

| cbar=f.colorbar (pl, cax=cbar_ax, ticks=([]), cmap=plt.cm.RdYIGn)

cbar.set_label (r’Time —— >, fontsize =20)

plt.savefig(’subplot.eps’)
plt.show ()

A.8 Simulation code for Facebook network

# import all the required packages

import matplotlib.pyplot as plt
import numpy as np

import scipy as sci

from scipy import stats

import networkx as netx

import random as random

import math

from voter_model_fx_facebook import =

# load the necessary data

facebook=np.genfromtxt(’ facebook_data.txt’, dtype=[(’i8° ), (’i8°)])
dl_alpha_rho=np.zeros ((4, 45))

k1=0;

n_divide=1000 # how many nodes you will be taking in the initial sampling
divide=15 # how many subgraphs the SAMPLING will have

# create a graph from the Facebook data

F=netx . Graph ()

F.add_edges_from (facebook)

edges=np.array (F.edges ())

nodes=np. array (F.nodes()) # 4039 total nodes

# repeat the sampling process 5 times

for i in range (0, 5):
# create G_0 from a sampling of nodes from the Facebook data
np.random. shuffle (nodes)
n_list=nodes[0:n_divide ]

GO_prime=F.subgraph(n_list)
mapping=dict (zip (GO_prime .nodes (), range (0, n_divide)))
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#relabel the nodes in G.0 to be within the range of [0, n_divide]

GO=netx .relabel_nodes (GO_prime, mapping)
g0nodes=np.array (GO.nodes ())

# test cases for the entire range of alphas

for alpha in np.arange (0.1, 1.0, 0.1):
no_of_nodes=len (gOnodes)
print no_of_nodes
counter=0
O=np.zeros (no_-of_nodes)
O[0:(no_of_nodes/2)]=1; O[(no_of_nodes/2):no_of_nodes]=0
np.random. shuffle (O); O=np.int32 (0);
print sum(O)

gO0edges=np.array (GO.edges ())
ac_n=np.int32 (len(gledges)/divide)

# create subgraph G_l1 from G.0
np.random. shuffle (gOedges)
active_edges=g0Oedges[0:ac_n]
Gl=netx .create_empty_copy (GO)
Gl.add_edges_from (active_edges)
gledges=np.array (Gl.edges())

discordant_edges=dis_calcu (G1,0)

print sum(O)/np. float32(no_of_nodes), len(gledges), len(gOedges)

while len(discordant_edges) !=0:
[Gl, GO, O]=voter_-model_step (GO, Gl, O, alpha)
rhol=sum(O)/np. float32 (no_of_nodes);
discordant_edges=dis_calcu (Gl, O)
if (rhol >0.5):
rho=abs (rhol —1.0)
else:
rho=rhol

gledges=np.array (Gl.edges ())
counter=counter+1

if (counter >1500000): # run the code until t=t_F
break ;

dl_alpha_rho[0, kl]=alpha

d1_alpha_rho[1l, kl]=rho

dl_alpha_rho[2, kl]=counter
dl_alpha_rho[3, kl]=netx.transitivity (GO)

print alpha, rho, sum(O), len(gledges), dl_alpha_rho[3, k1],
counter
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kl1=kl+1

np.savetxt(’ facebook_subgraph_dividel5.txt’, dl_alpha_rho)
plt.plot(dl_alpha_rho[0O, :], dl_alpha_rho[l, :], 'bo’)
plt.xlabel(r’$\alpha$’)

plt.ylabel(r’$\rho$’)
plt.savefig(’facebook_data_subgraph_plot.eps’)

plt.title (' Facebook Data’)

plt.show ()

A.9 Plotting Figure 4.2, o versus p for Facebook data when
A=<
50

#import all the required packages

import numpy as np

import matplotlib.pyplot as plt
import networkx as nx

from time import time

import matplotlib as mpl

# set the standard parameters

params = { ’figure.figsize’: (10, 6),
axes.labelsize’: 20,
text.fontsize’: 24,
>xtick .labelsize’: 18,
“ytick . labelsize ’: 18,

"legend. fontsize ’: 18,
text.usetex ': False,
"mathtext.bf’: *helvetica:bold’,

}

plt.rcParams.update (params)
# create a colorbar

col01=[165./255., 0./255., 38./255.]
coll=[215./255., 48./255., 39./255.]
col2=[244./255., 109./255., 67./255.]
col3=[253./255., 174./255., 97./255.]
col4=[254./255., 224./255., 144./255.]
cold41=[255./255., 255./255., 191./255.]
cold42=[224./255., 243./255., 248./255.]
col51=[171./255., 217./255., 233./255.]
col52=[116./255., 173./255., 209./255.]
col6=[69./255., 117./255., 180./255.]
col6l =[49./255., 54./255., 149./255.]

colO=np.array ([col0l, coll, col2, col3, col4, coldl, cold4d2, col51, col52,
col6, col61])
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cm = mpl.colors.ListedColormap (col0)

# load the necessary data
d1_alpha_rho=np.loadtxt(’ facebookl_50.txt")
# plot alpha versus rho

plt.scatter (dl_alpha_rho[0O, :], dl_alpha_rho[1l, :], s=120, c=dl_alpha_rho

[3, :], cmap=cm, marker="0")
ax.annotate (r’$\lambda= \frac{1}{50}$", xy=(l, 0.1), xycoords=’axes
fraction’, fontsize=15, xytext=(—5, 5), textcoords="offset points’, ha=’

right’, va=’bottom’)

plt.xlim (0, 1)

plt.ylim(0, 0.51)

plt. xticks (np.arange(min(dl_alpha_rho [0, :]), max(dl_alpha_rho[0O, :])+0.1,
0.1))

plt.xlabel(r’$\alpha$’, fontsize=20)

plt.ylabel(r’$\rho$’, fontsize=20)

# add the colorbar
colorbar=plt.colorbar ()
colorbar.ax.get_yaxis().labelpad = 20

colorbar.ax.set_ylabel ("$C$’, rotation=90)

plt.savefig(’facebook_data_colorbargraph.eps’)

2| plt.show ()

A.10 Plotting Figure 4.3, o versus p for Facebook data with
initial sampling and varied A

#import all the required packages

import numpy as np

import matplotlib.pyplot as plt
import networkx as nx

from time import time

import matplotlib as mpl

# set the standard parameters

params = { ’figure.figsize’: (10, 6),
axes.labelsize’: 20,
text.fontsize’: 24,
>xtick .labelsize’: 18,
“ytick.labelsize ’: 18,
"legend . fontsize ’: 18,
text.usetex ': False,
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"mathtext.bf’:

plt.rcParams.update (params)

# create

col0l =[165./255.,
coll=[215./255.,
col2=[244./255.,
col3=[253./255.,
col4=[254./255.,
col41=[255./255.,
cold42=[224./255.,
col51=[171./255.,
col52=[116./255.,
col6=[69./255.,
col6l =[49./255.,

colO=np. array ([col01 ,
col6l])

col6 ,
cm =

# load

dl_alpha_rhol=np.
dl_alpha_rho2=np.
dl_alpha_rho3=np.
d1_alpha_rho4=np.

# create a

f, axes =
# format

super_axis

super_axis.
.axes.get_xaxis ().set_ticks ([])
.axes.get_yaxis ().set_ticks ([])
.tick_params (labelcolor="none’,

super_axis
super_axis
super_axis

plt.subplots (2,

a colorbar

0./255., 38./255.]
48./255., 39./255.]
109./255., 67./255.]
174./255., 97./255.]
224./255., 144./255.]
255./255., 191./255.]
243./255., 248./255.]
217./255., 233./255.]
173./255., 209./255.]
117./255., 180./255.]
54./255., 149./255.]
coll , col2, col3, col4, coldl,

mpl. colors.ListedColormap (col0)

the necessary data

loadtxt (’facebook_subgraph_dividelO.
loadtxt(’facebook_subgraph_divide20.
loadtxt(’facebook_subgraph_divide30.
loadtxt (’facebook_subgraph_divide40.
different values of lambda

subplot for

2)

the plot

= f.add_subplot(111)
set_axis_bgcolor (' none’)

top="off’,

off >, right="off")
super_axis.spines|[ bottom’].set_color( none’)
super_axis.spines[ top’].set_color( none’)
super_axis.spines|[ left’].set_color(’none’)
super_axis.spines[ right’].set_color(’none’)
# lambda= 1/10
axes[0, O].scatter(dl_alpha_rhol [0, :], dl_alpha_rhol
d1_alpha_rhol [3, :], cmap=cm, marker="0’, vmin=0,

axes [0,

0].axhline(y=.25, xmin=0.0, xmax=1.0,

s

Is="—
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>helvetica:bold’,

col42, col51, col52,
txt’)

txt’)

txt’)

txt’)

bottom="off’, left="
[1, :], s=100, c=
vmax=0.55)

, color="grey’)
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94

96

98

100

102

104

106

108

axes [0, O0].text(0.1, 0.3, A’ , transform=axes[0, O].transAxes, fontsize=24,
fontweight="bold’, va="top’, ha="right’)

axes[0, 0].set_ylabel(r’$\rho$")

axes[0, O].annotate(r’$\lambda=\frac{1}{10}$", xy=(1, 0.01), xycoords=’axes

fraction’, fontsize=15, xytext=(—5, 5), textcoords=’offset points’, ha=
"right’, va=’bottom )

# lambda=1/20

axes [0, 1].scatter(dl_alpha_rho2[0, :], dl_alpha_rho2[1, :], s=100, c=
dl_alpha_rho2[3, :], cmap=cm, marker="0’, vmin=0, vmax=0.55)

axes[0, 1].axhline(y=.25, xmin=0.0, xmax=1.0, Is="—", color="grey’)

axes[0, 1].text(0.1, 0.3, 'B’, transform=axes[0, 1].transAxes, fontsize=24,
fontweight="bold’, va="top’, ha="right’)

axes[0, 1].annotate(r’$\lambda=\frac{1}{20}$", xy=(1, 0.01), xycoords=’axes

fraction’, fontsize=15, xytext=(—5, 5), textcoords="offset points’, ha=
‘right’, va=’bottom’)

#lambda=1/30

axes[l, 0].set_ylabel (r’$\rho$")

axes[1, O].scatter(dl_alpha_rho3[0, :], dl_alpha_rho3[1, :], s=100, c=
dl_alpha_rho3[3, :], cmap=cm, marker="0’, vmin=0, vmax=0.55)

axes[l, O].axhline(y=.25, xmin=0.0, xmax=1.0, Is="—", color="grey’)

axes[1l, O0].text(0.1, 0.3, 'C’, transform=axes[1l, O].transAxes, fontsize=24,
fontweight="bold’, va=’top’, ha="right’)

axes[l, 0].set_xlabel(r’$\alpha$’)

axes[1, 0].annotate (r’$\lambda=\frac{1}{30}$°, xy=(1, 0.01), xycoords="axes
fraction’, fontsize=15, xytext=(—5, 5), textcoords=’offset points’, ha=
right’, va=’bottom )

# lambda=1/40

pl=axes[l, 1].scatter(dl_alpha_rho4[0, :], dl_alpha_rho4[1l, :], s=100, c=
d1_alpha_rho4[3, :], cmap=cm, marker="0’, vmin=0, vmax=0.55)

axes[l, 1].axhline(y=.25, xmin=0.0, xmax=1.0, Is="—", color="grey’)

axes[1l, 1].text (0.1, 0.3, 'D’, transform=axes[1l, 1].transAxes, fontsize=24,
fontweight="bold’, va="top’, ha="right’)

axes[1, 1].set_xlabel(r’$\alpha$’)

axes[1, 1].annotate(r’$\lambda=\frac{1}{40}$", xy=(1, 0.01), xycoords=’axes
fraction’, fontsize=15, xytext=(—5, 5), textcoords=’offset points’, ha=
right’, va=’bottom )

# format the axes

axes[0, O].set_position([0.1, 0.5 35,

axes[0, 1].set_position ([0.525, 0.5, 0.35, 0.35])
axes[1, O].set_position ([0.1, 0.1 3

axes[1, 1].set_position ([0.525, O 0

plt.sca(axes[0, 0])
plt.xticks ([0.3, 0.6, 0.9])
plt.sca(axes[0, 0])
plt.yticks ([0.0, 0.25, 0.5])
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plt.ylim(—-0.01,

| plt.sca(axes|[O0,

plt.xticks ([0.3,
plt.sca(axes|[O0,
plt.yticks ([0.0,
plt.ylim(—-0.01,

plt.sca(axes|[1,
plt.xticks ([0.3,
plt.sca(axes|[1,
plt.yticks ([0.0,

ol plt.ylim(—0.01,

plt.sca(axes|[1,
plt.xticks ([0.3,
plt.sca(axes|[1,
plt.yticks ([0.0,
plt.ylim(—-0.01,

0.52)

1)
0.6,

1D
0.25,

0.52)

0D)
0.6,

01)
0.25,

0.52)

1]
0.6,

1)
0.25,

0.52)

# add the colorbar

0.91)

0.5])

0.91)

0.51])

0.91)

0.51)

»|cbar_ax = f.add_axes ([0.9, 0.285,
cbar=f.colorbar (pl,

cbar.ax.tick_params (labelsize=10)
cbar.set_label (r’$C$’,

0.028,

fontsize=20)

plt.savefig(’facebook_diff_lambda.eps’)

plt.show ()

0.41)

cax=cbar_ax , ticks =([0.05,

0.25,

0.451))
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