
Scalable Inference Algorithms for

Clustering Large Networks

Joseph Futoma

Department of Mathematics

Dartmouth College

A thesis submitted for the degree of

Bachelor of Arts in Mathematics

June 9, 2013

mailto:joseph.d.futoma@dartmouth.edu
http://www.math.dartmouth.edu/
http://www.dartmouth.edu

ii

Abstract

Clustering is an important task in network analysis, with applications in

fields such as biology and the social sciences. We present a novel inference

algorithm for the Stochastic Block Model (SBM), a well known network

clustering model. Previous inference in this model typically utilizes Markov

Chain Monte Carlo or Variational Bayes, but our method is the first to

utilize Stochastic Variational Inference to allow the SBM to scale to massive

networks. We derive both Variational Bayes and Stochastic Variational

Inference algorithms for the SBM, and empirically demonstrate the superior

speed and accuracy of Stochastic Variational Inference on synthetic and real

networks.

iv

To David Futoma, for your love and support over the years.

Acknowledgements

Without the help of others, this thesis would not have been possible. First

and foremost, a huge thank you to my advisor, Prof. Daniel Rockmore, for

being hugely supportive along the way. You have been all that I could ask

for in a mentor over the past year. Additionally, Nick Foti proved to be

an invaluable person to turn to with questions and problems throughout

the creation of this thesis. I am very grateful for his thoughtful input

to my work, and his dedication to making sure that I do things right. I

am also very thankful for the help of my friend, Kevin Miao, who was

instrumental in helping me overcome several bottlenecks in my code, and

helped with multiple implementation issues. I would also like to thank

Prof. Alex Barnett, for insightful conversations and good advice over the

past three years at Dartmouth, and for introducing me to the applied side of

math. Many friends throughout Dartmouth have provided love and support

along the way, but I’d like to especially thank Emily Eisner, with whom

I’ve taken a number of math classes with and collaborated on a machine

learning project. Thanks also to my girlfriend Jen Estrada for her endless

support, optimism, and enthusiasm over the past few weeks as this thesis

came together and took up much of my time. Finally, many thanks to

my parents for their constant support, enduring love, and insistence that I

always perform to my full potential.

Contents

List of Figures v

1 Bayesian Inference and Probabilistic Modeling 1

1.1 Probabilistic Modeling . 1

1.2 Graphical Models . 1

1.3 Bayesian Inference . 2

1.4 Outline . 4

2 Models for Network Data 5

2.1 Introduction . 5

2.2 Erdős-Rényi Random Graphs . 6

2.3 Barabási-Albert Model of Preferential Attachment 7

2.4 Exponential Family Random Graphs . 8

2.5 Spectral Clustering . 9

2.6 Stochastic Block Model . 10

2.7 The Infinite Relational Model . 12

2.8 Mixed Membership Stochastic Blockmodel 13

2.9 Nonparametric Latent Feature Relational Model 14

3 Inference Algorithms for the Stochastic Block Model 17

3.1 Overview . 17

3.2 Mean Field Variational Inference . 17

3.2.1 Coordinate Ascent Inference Derivation 20

3.3 Stochastic Variational Inference . 24

3.3.1 Natural Gradients . 24

3.3.2 Stochastic Optimization . 25

iii

CONTENTS

3.3.3 Stochastic Variational Inference Derivation 25

4 Experiments 27

4.1 Introduction . 27

4.2 Sampling Schemes . 28

4.3 Synthetic Data Experiment . 31

4.4 Scalability . 32

4.5 Real Data Experiments . 34

5 Discussion 39

References 41

iv

List of Figures

1.1 Approximating an arbitrary multivariate Gaussian (green) with a prod-

uct of two independent Gaussians (red). 3

2.1 Synthetic network examples. 6

2.2 Graphical Model for the SBM . 12

4.1 The three subsampling schemes evaluated. 29

4.2 S1: Induced subgraph. S2: 1-neighborhood of a node. S3: 1-neighborhood

of S nodes. ELBO vs. time plot on left and ARI vs. time plot on right,

for best parameter settings of each method. 30

4.3 Synthetic Network, N = 2000, K = 25. Left: Input adjacency matrix.

Right: Learned clustering. 32

4.4 Testing Scalability of Stochastic vs. Batch 33

4.5 Testing Scalability of Stochastic vs. Batch 34

4.6 Scalability Results for N = 1, 000, 000. There is only one curve as batch

could not finish a single iteration, while for S = 1000 stochastic is able

to learn something. 34

4.7 Results for the Citation Network. 36

4.8 Results for the Genetic Network. 37

4.9 Learned Block Structure of citation network. 38

v

LIST OF FIGURES

vi

1

Bayesian Inference and

Probabilistic Modeling

1.1 Probabilistic Modeling

Given the vast amount of readily available information today, e�cient and accurate

techniques for analyzing data have become crucial [29]. Probabilistic modeling has

proven to be a critical aspect of modern artificial intelligence research, providing e↵ec-

tive tools for managing the vast amount of data available in the sciences and everyday

life. Probabilistic models have been applied to a variety of domains with great suc-

cess, including functional analysis of genes [39], identification of spam emails [28], and

predicting an online customer’s future purchases [20], and many others (see [51]). In

particular, the goal of this thesis is to derive a new inference algorithm for a specific

probabilistic model for clustering large networks. We demonstrate the e�cacy of our

model by applying it to real and synthetic networks.

1.2 Graphical Models

For the past several decades, researchers in machine learning and statistic have em-

ployed probabilistic graphical models as a tool for modeling data. In essence, these

types of models combine graph theory with probability, allowing a user to encode as-

sumptions about their data in the structure of a graph. In a graphical model, nodes

are used to represent random variables, and edges or lack of edges denote conditional

dependence assumptions between random variables [1].

1

1. BAYESIAN INFERENCE AND PROBABILISTIC MODELING

1.3 Bayesian Inference

In every graphical model, there is an underlying statistical model. For example, many

well known statistical models, such as Kalman filters, hidden Markov models, and

Ising models can be formulated using graphical models [31]. Often, the hardest aspect

of modeling is developing e�cient algorithms for fitting observed data to the proposed

model. In many scenarios, it is common to encode prior beliefs about the structure

of data in the form of unobserved variables, also referred to as latent or hidden. The

goal then is to infer the values of these latent variables, thereby allowing us to learn

something about the unseen structure of our data. For instance, in a simple clustering

model, we might suppose that each observation belongs to some unobserved cluster,

so that every observation has an associated latent variable denoting its cluster assign-

ment. In the realm of Bayesian latent variable modeling, the ultimate goal is to infer

the posterior distribution over model parameters and latent variables, given the ob-

served data. This is accomplished via Bayes’ Theorem. Calculation of the posterior

allows us to make predictions e�ciently about unobserved observations via the predic-

tive distribution, and is also important in uncovering latent structure in our data in an

unsupervised setting.

Suppose we have some general latent variable model, where we denote our data X,

the latent variables z, and the parameters of the model ✓. Bayes’ Theorem tells us

that the posterior distribution p(z,✓|X) over the latent variables and parameters, con-

ditioned on the data, can be expressed as

p(z,✓|X) =
p(X|z,✓)p(z,✓)
R

z

R

✓ p(X, z,✓)
. (1.1)

That is, the posterior is equal to the likelihood of our data given the latent variables and

model parameters p(X|z,✓), multiplied by the prior distribution over latent variables

and parameters p(z,✓), normalized by the evidence, p(X) =
R

z

R

✓ p(X, z,✓).

However, for all but the simplest of models, the posterior distribution is intractable

to compute. This is due to the evidence term (the denominator) in Bayes’ Theorem, as

this requires marginalization over all latent variables and parameters in what generally

is an intractable sum or integral. This has led to a variety of approximate inference

2

1.3 Bayesian Inference

Figure 1.1: Approximating an arbitrary multivariate Gaussian (green) with a product of

two independent Gaussians (red).

techniques that attempt to provide a good approximation to the posterior distribution.

In general, two broad types of posterior inference exist. The first collection of tech-

niques, commonly referred to as sampling methods or Markov Chain Monte Carlo meth-

ods, attempt to draw samples from the posterior distribution. Typically, samples are

drawn via a Markov Chain that provably converges in the limit of infinite samples to

the true posterior [49]. Given a large number of samples, it is then possible to make

Monte Carlo estimates of the posterior distribution to whatever degree of accuracy

required [12].

The second class of inference algorithms are commonly referred to as variational meth-

ods [54]. These techniques o↵er a deterministic alternative to sampling, through the

maximization of a lower bound on the marginal likelihood of the data. Typically, the

main idea is to posit a simpler family of distributions, dependent on some set of vari-

ational parameters, and then to optimize the parameters of that family to be as close

to the true posterior as possible. As a simple example, suppose that we would like to

approximate the distribution of a multivariate normal distribution with unknown mean

and covariance matrix. One possible approach would be to find the closest multivariate

normal with diagonal covariance matrix as an approximation; equivalently, we assume

that the distribution we would like to estimate factorizes as a product of independent

univariate normals (see Figure 1.1 [9]).

3

1. BAYESIAN INFERENCE AND PROBABILISTIC MODELING

Variational methods o↵er better computational e�ciency than MCMC methods, and

this is the main reason they are frequently used [22]. In most applications, variational

methods converge to their final values much faster than the time necessary to draw a

large number of MCMC samples [11]. This comes at a tradeo↵ of a slightly less accurate

approximation, as MCMC methods provably converge to the true distribution in the

limit of infinite samples. However, for many real-world applications involving massive

data sets, MCMC methods are much slower and variational methods o↵er a significant

boost in speed [22]. For the remainder of this thesis, we will be primarily concerned

with variational methods.

1.4 Outline

The remainder of this thesis is structured as follows. In Section 2, we present a survey

of a variety of important network models. We begin with a few historically important

examples before transitioning to more state-of-the-art methods. In Section 3, we focus

exclusively on one particular model of clustering networks, and derive two inference

algorithms for the model, one of which is capable of scaling easily to large datasets. In

Section 4 we present experimental results, and we conclude with a brief discussion in

Section 5.

4

2

Models for Network Data

2.1 Introduction

Networks are commonplace in many aspects of daily life, and mathematical models of

networks are increasingly important in understanding and explaining real world phe-

nomena. Examples of networks permeate the physical, biological and social sciences,

arising in applications such as food webs [6], economic networks [13], social networks

[38], and metabolic and protein interaction networks [16]. Additionally, the Internet

and World Wide Web both form massive networks that play a crucial role in modern

society [45].

One of the most important tasks in network analysis is clustering, commonly referred

to as community detection in this setting. Community detection answers important

questions about many di↵erent types of networks. The goal of clustering is to find

groups of nodes that exhibit similarities in their linking structure, and are more con-

nected to each other than to other nodes, For instance, we may be interested in finding

blocs of countries with similar trading patterns in an economic network, and we would

hope that our results agree with known international treaties [8]. In biology, commu-

nity detection in metabolic networks allows us to determine which genes or proteins

strongly interact with each other [16]. Finally, community detection poses an impor-

tant marketing problem in social media networks, where advertisers are interested in

targeting their advertisements depending on the community membership of the people

in the social network [57]. See Figure 2.1a for an example of a clustered network. See

5

2. MODELS FOR NETWORK DATA

(a) Synthetic network: 80 nodes, 4

clusters.

(b) Erdős-Rényi graph: probability

0.05 of an edge between nodes.

Figure 2.1: Synthetic network examples.

[42] for a thorough introduction to network modeling.

As a result, there exists a seemingly infinite amount of literature devoted to mod-

els of networks. In this section, we present a brief survey of a small selection of models

for networks. This section is by no means comprehensive, and is only intended to give

a flavor of the types of models for networks that exist before we concentrate on one

particular model for the duration of this thesis. We begin with random graph models,

transition to the well-known Stochastic Block Model (SNM), which is the main model

we are interested in, and conclude with several models extending the SBM in important

ways.

2.2 Erdős-Rényi Random Graphs

A network, also known as a graph in the math literature, consists of a set of vertices,

or nodes, and a set of edges specifying links between certain pairs of nodes. A network

may be either directed, where an edge from node i to j does not necessarily imply an

edge in the opposite direction, or it may be undirected where an edge from i to j is

equivalent to an edge from j to i. The degree of a node is defined to be the number of

edges connected to it.

The simplest model for graph construction is the Erdős-Rényi model for random graphs,

6

2.3 Barabási-Albert Model of Preferential Attachment

first studied by P. Erdős and A. Rényi in the 1950s [17]. In this model, a graph on

N vertices is constructed by drawing edges independently between pairs of nodes with

some probability p. Figure 2.1b shows an example of an Erdős-Rényi graph. It is easy

to show that if each of the N vertices in the graph is connected to an average of z

edges, then p = z/(N � 1). Under this model, all graphs with N vertices and M edges

are equally probable, with probability pM (1 � p)(
n
2)�M . This model has been exten-

sively studied, and has many interesting properties. As detailed in [43], random graphs

have proven to be valuable modeling tools in epidemiology. Individuals correspond to

vertices in the graph, and diseases are capable of being transmitted via the edges. In

this setting, a common assumption is that contacts between individuals are random

and uncorrelated, so that they form a random graph. However, random graphs have a

number of shortcomings in most applications. In particular, a considerable weakness

of the random graph model is that it does not exhibit clustering or communities in

most cases. Another limitation of the random graph model is the fact that the degree

distribution of vertices under the model is Poisson distributed, a property atypical of

most real networks, which frequently exhibit a power law in their degree distributions:

the so-called scale-free networks [5]. Random graphs with arbitrary degree distribu-

tions are developed in [43], extending the Poisson degree distribution limitation of the

Erdos-Renyi model.

2.3 Barabási-Albert Model of Preferential Attachment

As mentioned previously, the Poisson degree distribution of random graphs is a major

shortcoming of the model. Since most real networks exhibit power laws in their de-

gree distributions, this is a property desirable in models of networks. The well-known

Barabási-Albert network model extends the random graph model in two important re-

spects, producing a model capable of generating graphs with degree distributions that

exhibit scale-free power laws [5]. This model allows for networks to expand continuously

in time and continue to add new vertices. For instance, in the scenario of the World

Wide Web, more and more websites are continually added every day to the existing

network. The important contribution of the model is the notion of preferential attach-

ment of nodes in the generative process of the network. This formalizes the intuition

that a more connected node is more likely to receive new links in the network. This

7

2. MODELS FOR NETWORK DATA

often makes sense: for example, new web pages generally link preferentially to hubs, or

websites with very high degree like Google or Wikipedia, than to relatively unknown

pages. Under this model, the probability distribution of the degrees or connectivities of

vertices is P (k) / k�� , where typically 2 < � < 4, so that it has a fat tail allowing for

the possibility of vertices with very high degree. This di↵ers from the random graph

model, which exhibits exponential decay in the degree distribution, making vertices

with very high connectivity extremely unlikely.

2.4 Exponential Family Random Graphs

While the Barabási-Albert model allows for scale-free power law distributions in degree,

it is still a relatively simplistic model. An important class of models that extend the

random graph model in a di↵erent direction is the Exponential Family Random Graph

model (ERGM). Also known as p⇤ models, they were originally introduced in [56] as an

extension to the more simplistic p1 model of [27]. Practical MCMC inference methods

for these models are developed in [53].

ERGM models are very useful for creating network models that match certain observed

properties of real networks as closely as possible, but without extensively detailing the

specific generative process that underlies the formation of any individual network. A

large quantity of literature exists that applies these ERGM models to social networks,

and [50] provides a good introduction to this specific application.

In the rest of this section, we briefly highlight the main ideas of ERGM models, follow-

ing from [18] which provides an extensive introduction to the subject. The general goal

is obtain a statistical ensemble of networks, which is the collection of all possible net-

work configurations G = {G} that the given network may be expected to attain, as well

as a probability distribution P (G) over G. Under the ERGM model, the probability of

any particular graph follows P (G) / e�H(G), where H(G) denotes the Hamiltonian of

the graph, which determines the properties of networks in the ensemble. The Hamil-

tonian is an objective function that assigns a score to each graph, and is of the form

H(G) =
P

i ✓ixi(G). The {xi} is the set of graph observables, or specific measurable

properties of the graph in question. The number of edges, the degree sequence of nodes,

8

2.5 Spectral Clustering

and the clustering coe�cient are all examples of graph observables. The {✓i} are en-

semble parameters, which are assigned in such a fashion that the observed value x⇤
i of

a graph observable for the true network is equal to the expectation of xi with respect

to the probability distribution P (G). That is,

E[xi] =
X

G2G
xi(G)P (G) = x⇤

i . (2.1)

The ✓i that appear in the Hamiltonian are then calculated from the constraints imposed

by Eqn. (2.1). Once these are calculated and the probability distribution P (G) has

been computed, it is possible to calculate the expected value of other quantities of

interest in our ensemble that perhaps were not directly measured for our true network.

This is a very powerful yet simple result, and is one of the main reasons ERGMs are

widely used in network analyses. For example, an ERGM model allows us to rigorously

compute an estimate of the clustering coe�cient of a graph given only some simple

statistic such as the average degree of a node. It is interesting to note that the Erdős-

Rényi random graph model may be seen as a specific example of an ERGM model,

where average degree is the graph observable. For this simple example it is possible to

analytically calculate the Hamiltonian and the corresponding probability distribution

it induces, but for most real examples, numerical techniques must be employed.

2.5 Spectral Clustering

We now shift our attention from the more general network models of the previous sec-

tions to models that focus on clustering of networks, as this task is ultimately the one

we are most interested in within this thesis. One of the most popular network cluster-

ing techniques, widespread for its simplicity and e↵ectiveness, is spectral clustering. A

thorough treatment of spectral clustering can be found in [44] and [4]. In what follows

we point out the main steps of the method and leave the details and theoretical justi-

fication to the references.

The main idea of spectral clustering is to use the eigenvectors of a graph Laplacian

of the network to embed the data in a lower-dimensional latent space. The embedded

nodes are then clustered using standard clustering techniques, e.g. k-means [9]. This

is similar in spirit to the method of kernel Principal Components Analysis, a common

9

2. MODELS FOR NETWORK DATA

form of dimensionality reduction in machine learning that relies on the eigenvectors of

a data matrix [7].

Though many variants of the algorithm exist, we highlight the method in [44]. Suppose

we are given the n ⇥ n adjacency matrix Aij for a network, where entry aij denotes

the presence of an edge from vertex i to vertex j (and may or may not be weighted).

Spectral clustering is an easily described procedure for estimating the k community

memberships of the nodes. First, if the network is directed we symmetrize the matrix

A in some fashion to obtain a symmetric matrix Ā. Two common transformations

are Ā = A + A>, and Ā = A>A [36]. Next, a graph Laplacian L is constructed; in

this case we use L = D�1/2ĀD�1/2, where D is a diagonal matrix such that element

dii =
P

j Āij . Next, a partial eigendecomposition is performed on L, to obtain the k

eigenvectors x1, . . . , xk associated with the k largest eigenvalues. From this, an n ⇥ k

matrix X is constructed by putting the eigenvectors into the columns of X, and then

normalizing the rows of X. Finally, treating the rows of X as points in the lower-

dimensional space Rk, a simple clustering algorithm, usually k-means, is applied to the

embedded points. The resulting cluster assignment of row i of X corresponds to the

cluster assignment for node i in our original network represented in A.

Despite the simplicity of spectral clustering and the promising results it can produce, it

is somewhat unsatisfying compared to methods involving statistical modeling in that it

provides no measure of uncertainty as a clustering technique. Each node is assigned a

hard label to a cluster, and there is no method for evaluating the uncertainty in cluster

assignments. Additionally, spectral clustering lacks strong theoretical guarantees that

exist for other methods, although there are interesting connections to the well-studied

field of spectral graph partitioning. It is known that there are certain simple synthetic

examples where spectral clustering fails to provide reasonable answers [40].

2.6 Stochastic Block Model

One of the most widely used models for clustering a network is the Stochastic Block

Model (SBM). First introduced in [26], it has since gained widespread popularity due

to its simplicity and e↵ectiveness. Formulated as a Bayesian latent variable model, the

10

2.6 Stochastic Block Model

SBM posits hidden clustering structure in the network, in the form of a latent cluster

assignment for every node. Then, conditioned on this cluster membership, edges are

drawn i.i.d. from some simple distribution.

We restrict our attention to the case of directed networks, though a similar model exists

for the undirected case. Assume there are N nodes in the network and we specify the

number of clusters to detect, K. The model specifies three sets of latent variables: a

vector of cluster assignments z = {zi}Ni=1, a vector of cluster probabilities ⇡ = {⇡i}Ki=1,

and a K ⇥K matrix of edge probabilities ✓ = {✓kl}Kk,l=1. The full generative process is

given in Algorithm 1, and Figure 2.2 presents the graphical model.

Given a, b, ↵, K.

Draw ⇡ ⇠ DirK(↵).

for i=1:N do
Draw cluster assignment, zi ⇠ Multinomial(⇡).

end

for k,l=1:K do
Draw probability of edge from cluster k to cluster l, ✓kl ⇠ Beta(a, b).

end

for i,j=1:N (i 6= j) do
Draw edge, or non-edge, from node i to node j, yij ⇠ Bernoulli(✓zizj).

end
Algorithm 1: Generative Process for the SBM

In the generative model, we draw ⇡ from a K�dimensional Dirichlet distribution, a

probability distribution on finite probability distributions (equivalently, on K�dimensional

nonnegative vectors that sum to 1). The graphical model provides a visual represen-

tation of the dependencies between the hidden and observed variables in the model as

a directed acyclic graph, but is equivalent in content to the generative process. Small

shaded circles denote hyperparameters, shaded circles denote observed variables, and

unshaded circles denote latent variables. Arrows in the graph denote conditional de-

pendencies. For instance, the observed variable yij denoting the presence of an edge

or non-edge from nodes i to j depends on the cluster assignments of these nodes, zi

and zj , as well as the matrix of link probabilities ✓, hence the arrows in the figure.

11

2. MODELS FOR NETWORK DATA

Figure 2.2: Graphical Model for the SBM

The plate notation denotes replication of iid random variables; in this case, there are

N(N � 1) total iid edges that must be drawn. Conversely, only a single ⇡ and ✓ are

constructed, hence the lack of plates around them.

However, for all its expressive power, the SBM is quite simplistic and makes several

limiting assumptions, which are relaxed in a number of extensions to the model. Al-

though we will focus exclusively on this model in the later sections of this thesis, we

dedicate the rest of this section to a few models which extend the SBM in important

ways.

2.7 The Infinite Relational Model

An obvious limitation of the SBM is the fact that the number of clusters K must be

fixed a priori. In practice, it is common to use some measure of model fit such as

held-out likelihood to determine the optimal number of clusters, but this demands an

expensive cross-validation scheme. The Infinite Relational Model (IRM) [30] relaxes

12

2.8 Mixed Membership Stochastic Blockmodel

this assumption by reformulating the problem as a nonparametric Bayesian model,

where a potentially infinite number of clusters are allowed to be discovered as more

data is observed without the need to specify K. Another important contribution of

the IRM is that it can handle more general data in the form of m relations involving

n types. In contrast, the SBM is typically only applied to networks, which can be

interpreted as a single binary relation R : V ⇥ V ! {0, 1} that maps pairs of nodes to

binary edges.

Restricting ourselves to the network setup, i.e., a single binary relation on a single

type, the problem of clustering can be interpreted as partitioning the set of vertices in

some fashion. The SBM assumes a fixed number K of disjoint subsets in the partition,

and this is seen through the use of the parametric Dirichlet distribution as a prior for

the cluster weights ⇡. The key di↵erence in the generative process of the IRM is its

use of a nonparametric prior distribution that places some probability mass on all pos-

sible partitions. This nonparametric prior is known as the Chinese Restaurant Process

(CRP) [47]. In the generative process specified by the CRP, as each data point is as-

signed to a cluster, each cluster attracts a new member with a probability proportional

to its current size. Since it is always possible for new observations to be assigned to a

new cluster, in theory the CRP allows for a countably infinite number of clusters to be

used. However, the use of the CRP is mainly out of mathematical convenience, and it

may not be the best choice in certain scenarios, for instance if we expect the clusters

to be roughly equal in size [30].

2.8 Mixed Membership Stochastic Blockmodel

The Mixed Membership Stochastic Blockmodel (MMSB) [2] provides an extension of

the SBM in a di↵erent direction. As the name suggests, the MMSB allows for a node

to coexist in multiple clusters simultaneously, and hence its nodes exhibit mixed mem-

bership in multiple communities. Similar to the SBM, however, the MMSB fixes the

number of clusters K, in advance. In the generative process of the model, every node

j in the network is assigned a K-dimensional mixed membership vector ⇡j ⇠ Dir(↵)

drawn from a Dirichlet prior that specifies its community memberships. This is an

important addition to the standard SBM, and allows for a more expressive model. For

13

2. MODELS FOR NETWORK DATA

instance, in a social network application, a person can coexist in several communi-

ties, for instance a community of friends, a community of family, and a community

of coworkers. The rest of the generative process of the MMSB is similar to that of

the SBM, the main contribution being these individual mixed membership vectors per

node, instead of a single cluster assignment.

2.9 Nonparametric Latent Feature Relational Model

As a final example to conclude this section, we introduce the nonparametric latent fea-

ture relational model (LFRM) [37]. Similar to the IRM, it is a Bayesian nonparametric

model, but otherwise presents a di↵erent framework, in which each node in a network

has a set of binary-valued latent features that influence its relations with other entities.

It is nonparametric in that the goal is to infer a binary N ⇥ K matrix Z of entities

and features, where there are N nodes but the number of features K is unspecified a

priori, and is instead learned appropriately by the model. Since K is not specified, a

nonparametric prior distribution on infinite binary matrices, the Indian Bu↵et Process

(IBP), is used. The IBP is a prior distribution on binary matrices with a finite number

of rows and an infinite number of columns [21]. However, with probability one the

feature matrix drawn for a finite number of nodes will have only a finite number of

non-zero features.

Additionally, a K ⇥ K weight matrix W is specified, which influences the probabil-

ity of there being a link between two nodes depending on which features they contain.

In particular, conditioned on Z and W , the links are assumed to be independent, where

the probability of a link existing from node i to node j is

P (yij = 1|Z, W) = �(ZiWZ>
j). (2.2)

The function � : R ! [0, 1] is a squashing function, e.g., the sigmoid or probit. In

the scenario where there is a single feature for every node in the network, this setup

is equivalent to the SBM. However, the LFRM allows nodes to exhibit more than one

feature, which provides a more expressive model than the SBM alone, as there are

many features that may influence the probability of a link between two nodes.

14

2.9 Nonparametric Latent Feature Relational Model

Throughout this section, we have presented a variety of models for networks, with

the focus on models for clustering of networks. In the next section, we return our at-

tention to the simple framework of the SBM, and derive two inference algorithms that

can be used to infer an approximation to the full posterior over the latent variables in

the model.

15

2. MODELS FOR NETWORK DATA

16

3

Inference Algorithms for the

Stochastic Block Model

3.1 Overview

In this section, we derive two algorithms that address the problem of posterior inference

for the stochastic block model. First, we review and then derive mean-field variational

inference applied to the SBM. Then, we derive stochastic variational inference for the

model, a related inference technique that hinges upon stochastic optimization to yield

a scalable inference algorithm. Although variational inference has been applied before

to the SBM [32], stochastic variational inference has never been applied to the SBM.

3.2 Mean Field Variational Inference

As discussed briefly in Section 1, variational inference converts the problem of posterior

inference into an optimization problem. We accomplish this by positing a variational

family of distributions indexed by a set of free parameters, and then optimize these

parameters to find the member of this family that is as close to the true posterior

as possible. Here closeness between distributions is measured in terms of Kullback-

Liebler (KL) Divergence, a non-symmetric metric between probability distributions.

We minimize the KL Divergence from the variational distribution to the posterior

distribution via maximization of the evidence lower bound (ELBO), a lower bound on

the logarithm of the marginal probability of the data, denoted p(Y), where Y is the

adjacency matrix of the network. Following [25], we derive the ELBO and show that it

17

3. INFERENCE ALGORITHMS FOR THE STOCHASTIC BLOCK
MODEL

is equal to the KL divergence up to an additive constant. We accomplish this first by

defining a “variational distribution” over the hidden variables in the stochastic block

model, which we denote q(⇡, z,✓). Then, applying Jensen’s Inequality, we have

log p(Y) = log

Z

⇡,✓

X

z

p(Y,⇡,✓, z) (3.1)

= log

Z

⇡,✓

X

z

p(Y,⇡,✓, z)
q(⇡, z,✓)

q(⇡, z,✓)
(3.2)

= log

✓

Eq



p(Y,⇡,✓, z)

q(⇡, z,✓)

�◆

(3.3)

� Eq[log p(Y,⇡,✓, z)] � Eq[log q(⇡, z,✓)] (3.4)

, L(q). (3.5)

Note that the ELBO consists of two terms, both dependent on the variational distri-

bution q: the expected log probability of the joint distribution, and the entropy of the

variational distribution.

In an equivalent formulation (see [54]) we may write the KL divergence from q to

p as:

KL(q(⇡, z,✓)||p(⇡,✓, z|Y)) ,
Z

⇡,✓

X

z

log

✓

q(⇡, z,✓)

p(⇡,✓, z|Y)

◆

q(⇡, z,✓) (3.6)

= Eq[log q(⇡, z,✓)] � Eq[log p(⇡,✓, z|Y)] (3.7)

= Eq[log q(⇡, z,✓)] � Eq[log p(Y,⇡,✓, z)] + Eq[log p(Y)]
(3.8)

= �L(q) + const (3.9)

where the final term includes a constant factor because log p(Y) does not depend on

the variational distribution q. Hence, maximizing the ELBO is simultaneously equiva-

lent to maximizing the data log-likelihood and minimizing the KL divergence from the

variational distribution to the true posterior.

We restrict the choice of the family of variational distributions q to one that is tractable,

as that is the motivation for this approximation. The most common approach is to take

q to be in the mean-field family, where each latent variable is independent and con-

trolled via its own variational parameter. In particular, the marginals of the variational

18

3.2 Mean Field Variational Inference

distribution for each set of latent variables should belong to the same member of the

exponential family as the complete conditionals in the original model [25]. We define

our variational distribution for the SBM as follows:

q(⇡, z,✓|�,⌫,�, �) = q(⇡|�)
N
Y

i=1

q(zi|⌫i)
K
Y

k,l

q(✓kl|�kl, �kl) (3.10)

q(⇡|�) ⇠ DirK(�) (3.11)

q(zi|⌫i) ⇠ Multinomial(⌫i) (3.12)

q(✓kl|�kl, �kl) ⇠ Beta(�kl, �kl). (3.13)

In particular, � 2 RK
+ , ⌫i 2 [0, 1]K such that

PK
k=1 ⌫ik = 1 for each i 2 {1, . . . , N},

� 2 RK⇥K
+ , and � 2 RK⇥K

+ . Note the normalization constraint on each ⌫i.

Having defined both the generative process for the SBM and our variational distri-

bution q, we may now expand the ELBO in Equation (3.4):

L(q) = Eq[log p(⇡|↵)] + Eq[log p(z|⇡)] + Eq[log p(✓|a, b)] + Eq[log p(Y|z,✓)]

� Eq[log q(⇡|�)] � Eq[log q(z|⌫)] � Eq[log q(✓|�, �)] (3.14)

= (↵ � 1)
K
X

j=1

"

 (�j) �

K
X

k=1

�k

!#

+
N
X

i=1

K
X

j=1

⌫ij

"

 (�j) �

K
X

k=1

�k

!#

+
K
X

k,l=1

(a � 1)((�kl) � (�kl + �kl)) + (b � 1)((�kl) � (�kl + �kl))

+
N
X

i,j=1
i 6=j

K
X

k,l=1

⌫ik⌫jl [yij((�kl) � (�kl)) + (�kl) � (�kl + �kl)]

� log �

K
X

k=1

�k

!

+
K
X

j=1

log �(�j) �
K
X

j=1

(�j � 1)

"

 (�j) �

K
X

k=1

�k

!#

�
N
X

i=1

K
X

j=1

⌫ij log ⌫ij

+
K
X

k,l=1

�log �(�kl + �kl) + log �(�kl) + log �(�kl) � (�kl � 1)((�kl) � (�kl + �kl))

� (�kl � 1)((�kl) � (�kl + �kl)) + const. (3.15)

19

3. INFERENCE ALGORITHMS FOR THE STOCHASTIC BLOCK
MODEL

and combine the terms with no dependence on the variational parameters into an

additive constant. Here denotes the digamma function

 (x) =
d

dx
log �(x) =

�0(x)

�(x)

where � is the gamma function, a real-valued extension of the factorial function. We

make use of the fact that for a Dirichlet distributed random vector, x ⇠ Dir(↵) we

have E[log xi|↵] = (↵i) � (
P

j ↵j). This is easily seen by writing the Dirichlet dis-

tribution in exponential family form, and setting the derivative of the log normalizer

equal to the expected su�cient statistic [10].

We may interpret the entries in � as characterizing the relative weights of the clus-

ters, so that a large value of �i compared to the other entries means that cluster i is

larger than the others. ⌫ characterizes the probability of each node belonging to the set

of K clusters (i.e., ⌫ij is the probability that node i is in cluster j). Note the inherent

normalization constraint this induces, so that each row of the matrix ⌫ (or each vector

⌫i) must be normalized. Finally, together �kl and �kl describe the probability that a

link exists from cluster k to cluster l, via a Beta distribution with these values as its

shape parameters.

3.2.1 Coordinate Ascent Inference Derivation

Having defined the ELBO defined in Equation (3.15) as our objective function, we

optimize via coordinate ascent. We iteratively optimize each variational parameter

while holding the other parameters fixed. Note that it is possible to derive closed form

updates for each parameter for the SBM. More generally, this will always be possible

for models where the complete conditionals and the corresponding variational families

are in the exponential families [25]. The general approach to the derivation is to start

with Equation (3.15) and consider only terms with a dependence on the parameter in

question, then take a derivative, set to zero and solve.

We now derive the updates for each variational parameter. We begin with the up-

date for �. For notational convenience, let � =
PK

k=1 �k. We derive the update for �j ,

20

3.2 Mean Field Variational Inference

j 2 {1, . . . , K}. The appropriate terms of the ELBO are:

L�j =
K
X

k=1

(↵ � 1)[(�k) � (�)] +
K
X

k=1

N
X

i=1

⌫ik[(�k) � (�)]

� log �(�) + log �(�j) �
K
X

k=1

(�k � 1)((�k) � (�)) (3.16)

= log �(�j) � log �(�) +
K
X

k=1

(↵ +
N
X

i=1

⌫ik � �k)((�k) � (�)). (3.17)

Taking the derivative with respect to �j of Equation (3.17) and setting to zero yields

0 = 0(�j)

↵ +
N
X

i=1

⌫ij � �j

!

� 0(�)
K
X

k=1

↵ +
N
X

i=1

⌫ik � �k

!

(3.18)

from which we obtain the update equation:

�j = ↵ +
N
X

i=1

⌫ij . (3.19)

Next, we restrict our attention to updating � and �. We derive the update for �kl, �kl

for k, l 2 {1, . . . , K} simultaneously as they are coupled and both parameterize ✓kl.

The relevant terms from the ELBO are:

L�kl,�kl = (a � 1)((�kl) � (�kl + �kl)) + (b � 1)((�kl) � (�kl + �kl))

+
N
X

i,j=1
i 6=j

⌫ik⌫jl [yij((�kl) � (�kl)) + (�kl) � (�kl + �kl)]

� log �(�kl + �kl) + log �(�kl) + log �(�kl) � (�kl � 1)((�kl) � (�kl + �kl))

� (�kl � 1)((�kl) � (�kl + �kl)). (3.20)

21

3. INFERENCE ALGORITHMS FOR THE STOCHASTIC BLOCK
MODEL

Taking the derivative with respect to �kl and setting to zero yields:

0 = (a � 1)(0(�kl) � 0(�kl + �kl)) � (b � 1) 0(�kl + �kl)

+
N
X

i,j=1
i 6=j

⌫ik⌫jl[yij
0(�kl) � 0(�kl + �kl)]

� (�kl � 1)(0(�kl) � 0(�kl + �kl)) + (�kl � 1) 0(�kl + �kl) (3.21)

= 0(�kl)(a � �kl +
N
X

i,j=1
i 6=j

⌫ik⌫jlyij)

� 0(�kl + �kl)(a + b � �kl � �kl +
N
X

i,j=1
i 6=j

⌫ik⌫jl). (3.22)

From this we acquire the update equations

�kl = a +
N
X

i,j=1
i 6=j

⌫ik⌫jlyij (3.23)

�kl = b +
N
X

i,j=1
i 6=j

⌫ik⌫jl(1 � yij). (3.24)

Note that taking the derivative of Equation (3.20) with respect to �kl results in the

same updates.

Finally, we derive the update for ⌫. The relevant terms from the ELBO are

L⌫ij = ⌫ij((�j) � (�) � log ⌫ij)

+ ⌫ij

N
X

n=1
n 6=i

K
X

l=1

⌫nl
⇥

yin((�jl) � (�jl)) + (�jl) � (�jl + �jl)

+ yni((�lj) � (�lj)) + (�lj) � (�lj + �lj)
⇤

. (3.25)

We are careful to include all the terms from line four of Equation (3.15) that depend

on ⌫ij . Taking the derivative yields

0 = (�j) � (�) � log ⌫ij � 1

+
N
X

n=1
n 6=i

K
X

l=1

⌫nl
⇥

yin((�jl) � (�jl)) + (�jl) � (�jl + �jl)

+ yni((�lj) � (�lj)) + (�lj) � (�lj + �lj)
⇤

(3.26)

22

3.2 Mean Field Variational Inference

which gives the update equation

⌫ij / exp
n

 (�j) � (�) +
N
X

n=1
n 6=i

K
X

l=1

⌫nl
⇥

yin((�jl) � (�jl)) + (�jl) � (�jl + �jl)

+ yni((�lj) � (�lj)) + (�lj) � (�lj + �lj)
⇤

o

. (3.27)

Note the proportionality, since we must enforce the constraint that
PK

j=1 ⌫ij = 1 for

this to be a valid probability.

The procedure for coordinate ascent mean field variational inference for the SBM is

given in Algorithm 2.

Given a, b, ↵, K.

Randomly initialize �,�, �,⌫.

while ELBO not converged do
Local step:

for i=1:N, j=1:K do
Update ⌫ij via Equation (3.27).

end

Global step:

for k,l=1:K do
Update �kl and �kl via Equations (3.23), (3.24).

end

for j=1:K do
Update �k via Equations (3.19).

end

end
Algorithm 2: Coordinate Mean Field Variational Inference for the SBM

However, there exists a glaring ine�ciency in this procedure [25]. Note that we ran-

domly initialize all of our variational parameters. However, each local step of the

algorithm involves iteration over the entire collection of data, continually using what

are likely bad values of the parameters. While tractable for small to medium sized data

sets, this quickly becomes intractable for large networks. Intuitively, it seems that if

we can gain some information about how to update our global variational parameters

from a subset of the data, we should exploit this and avoid iterating over the whole

23

3. INFERENCE ALGORITHMS FOR THE STOCHASTIC BLOCK
MODEL

collection of data for each local step. This is the key insight into the scalable algorithm

we derive in the next section, called stochastic variational inference [25].

3.3 Stochastic Variational Inference

In this section we present the main ideas of stochastic variational inference, and derive

this inference algorithm applied to the Stochastic Blockmodel. We tackle the issues

raised at the end of the previous section via stochastic optimization. Additionally, we

utilize natural gradients to improve the e�ciency.

3.3.1 Natural Gradients

We briefly diverge to discuss natural gradients. The natural gradient of a function is

a generalization of the familiar Euclidean gradient, except that it takes into account

the geometry of the parameter space of the function. As discussed thoroughly in [3],

it can be shown that the use of natural gradients for maximum likelihood estimation

give faster convergence than the Euclidean gradient.

We motivate the use of the natural gradient with a brief example [25]. The prob-

lem with the Euclidean gradient is that the Euclidean distance metric is not the most

natural distance metric for the space of probability distributions. Consider two uni-

variate normal distributions, N(0, 100, 000) and N(100, 100, 000). The distance between

these parameter vectors is 100, yet the two distributions are quite similar, as they are

both di↵use normal distributions centered near the origin. Conversely, consider the dis-

tributions N(0, 0.001) and N(0.01, 0.001). Though they di↵er by only 0.01 in parameter

vectors, these distributions are so strongly peaked that they barely overlap at all. This

motivates the intuition behind using an alternative distance metric in our parameter

space.

The particular distance metric we use is the symmetrized KL Divergence, given by

Dsym
KL (p, q) = DKL(p||q) + DKL(q||p). (3.28)

This choice of distance is more intuitive, and would correct the example mentioned in

the previous paragraph. It depends on the distributions themselves, and not on how

24

3.3 Stochastic Variational Inference

they are parameterized. When we use this as our distance metric in our parameter

space, the gradient it induces is known as the natural gradient, and this is the form

of gradient we use when we develop stochastic variational inference for our model.

Another nice property of the natural gradients is that they actually end up being easier

to compute than traditional Euclidean gradients [25].

3.3.2 Stochastic Optimization

The intuition behind stochastic variational inference is to use stochastic optimization

to obtain noisy estimates of the natural gradient in our optimization of the variational

objective (the ELBO), with a decreasing step size ⇢t. If the step sizes satisfy

X

⇢t = 1 (3.29)
X

⇢2t < 1 (3.30)

then the algorithm provably converges to a local optimum of the objective function [48].

In practice, we set ⇢t ⌘ (⌧0 + t)�. The parameter  2 (0.5, 1] is the learning rate and

determines the speed at which the step sizes decay, and ⌧0 � 0 is a forgetting parameter

that downweights early iterations. This results in a scalable inference algorithm, as

noisy estimates of the gradient (especially the natural gradient) are easy to compute.

An additional nice property is that following noisy estimates of the gradient allows the

learning procedure to escape shallow local optima of complex objective functions that

the true gradient might have been stuck in. For details, refer to [25].

3.3.3 Stochastic Variational Inference Derivation

The full derivation of stochastic variational inference for the general setting of any

exponential family model is given in [25]. However, the important point is that there

are again simple closed form updates for the parameters of our model. As before, we

iterate between a local and global step. However, now in the local step we sample

a subset E of edges and the nodes S they correspond to from the network, and only

update the parts of ⌫ that depend on E and S. For now, we avoid specifying exactly

how we identify such subsets, but the algorithm is general in the sense that we maintain

a correct optimization algorithm as long as the natural gradients estimated from the

subsample are unbiased estimates of the true gradient. In the experimental section to

25

3. INFERENCE ALGORITHMS FOR THE STOCHASTIC BLOCK
MODEL

follow we briefly discuss sampling strategies. A more thorough discussion is given in

[19].

Given a, b, ↵, K.

Randomly initialize �,�, �,⌫.

Set step size schedule ⇢t.

for t = 0 : 1 do
Sample a subset E of edges and corresponding nodes S.

Local step:

Update ⌫i 8 nodes i 2 S via Equation (3.27) (reweighted if necessary).

Global step:

Compute �̂, �̂, and �̂, using only S,E, and ⌫i, 8i 2 S using Equations (3.19),

(3.23), and (3.24), reweighted appropriately.

Update:

�t = �t�1 + ⇢t�̂

�t = �t�1 + ⇢t�̂

�t = �t�1 + ⇢t�̂

end
Algorithm 3: Stochastic Variational Inference for the SBM

In Algorithm 3, we present the pseudocode for Stochastic Variational Inference. Note

the similarity to the previous coordinate ascent algorithm. The only di↵erence is in

the specific update equations, which depend on the sampling method chosen, and we

provide the concrete equations in the Experiments section for the sampling scheme that

we employ.

26

4

Experiments

4.1 Introduction

In this section, we evaluate the e�ciency and accuracy of the stochastic variational in-

ference algorithm derived in Section 3. After much experimentation with initialization

of these methods, it became clear that initialization of these algorithms is a delicate

matter. In the literature, it is common to initialize variational algorithms on the order

of 1,000 times to achieve good results [35]. However, due to limited computational

resources, it was infeasible for us to run this many random restarts for each setting of

the parameters we test, as we are often interested in testing hundreds or thousands of

parameter combinations per experiment. As a result, instead of initializing our meth-

ods entirely randomly, which tended to yield bad results, we instead initialize using a

simpler algorithm run for a brief time (spectral clustering from Section 2). In particu-

lar, we use only a small number of eigenvectors (typically 10) in our spectral embedding

regardless of the chosen K , and we greatly reduce the convergence criterion for the

spectral decomposition methods used so that they converge much faster, trading o↵

accuracy in the eigenvector computation for a huge increase in speed. Finally, instead

of using the traditional k-means algorithm as is standard for spectral clustering, we uti-

lize an online version of kmeans from [52], which runs significantly faster. This kmeans

variant subsamples the data, similar in spirit to the motivation for our methods, and

we only run it for one or two full iterations so that it is never allowed to converge. The

purpose of this nonrandom initialization is to give our algorithm a slight push in the

right direction to quickly move away from the poor local mode we initialize it near, so

27

4. EXPERIMENTS

as to ultimately find a better optimum. Such a strategy of initializing a complicated

model using a few iterations of a simpler one is not uncommon; for instance, in topic

modeling (a class of models usually used for text) it is common to initialize a compli-

cated topic model [41] using Latent Dirichlet Allocation, the simplest topic model [10].

Now we discuss the experiments to be explained in this section. Note that whenever

we utilize the stochastic variational inference algorithm of Section 3.3 we refer to it as

the stochastic algorithm, while the mean field variational inference algorithm of Section

3.2 is referred to as the batch algorithm (as it requires iterating over the entire data

set). First, we evaluate three di↵erent sampling schemes, showing a partial derivation

of their update equations and then showing experimental results verifying their perfor-

mance on synthetic data. Second, we present an experiment with a synthetic network

created with a known structure, and show that our algorithm is capable of correctly

determining the structure of the network, and achieves good accuracy in learning the

true cluster identities of the the nodes and the link probability matrix. Third, we com-

pare the scalability of the stochastic algorithm to the batch version, which utilizes the

entire data set every iteration, on a large synthetic network with 100,000 nodes and on

a massive synthetic network with 1,000,000 nodes. Finally, we conclude with a study

on several large real networks. We show that the algorithm achieves good performance

as measured on held-out log likelihood, and measure sensitivity to K and other param-

eters for these real networks. All algorithms were implemented in Python, using the

NumPy, SciPy, and Scikit-learn modules [46].

4.2 Sampling Schemes

Three di↵erent methods for sampling subsets of node pairs S for use in the inference al-

gorithm were tested. The first sampling scheme involved first sampling a single node of

the N nodes uniformly at random and then considering its 1-neighborhood, or all of the

links and non-links associated with that node, as our subsample. Thus in this scheme,

at every iteration 2(N � 1) node pairs are sampled (we never sample yii as we assume

the network has no self-edges). As a second sampling scheme, a batch of S  N nodes

was sampled uniformly at random. Then, we only consider the S(S � 1) total edges

that link between the S nodes in the sample, which is the induced subgraph containing

28

4.2 Sampling Schemes

S
n

(a) Induced Subgraph.

1
n

(b) Single node,

1�neighborhood.

S
n

(c) Multiple nodes,

1�neighborhood.

Figure 4.1: The three subsampling schemes evaluated.

these nodes. Finally, as a third technique we first sample S  N nodes again uniformly

at random. However, this time, we consider the 1-neighborhood of all of these nodes,

or all 2S(N � S) + S2 � S = S(2N � S � 1) edges associated with these nodes. Figure

4.1 provides an illustration of these sampling schemes. As experimental verification

that these sampling schemes are in fact valid, we ran a simple experiment on a small

synthetic network where we fix the values of the local variational parameters ⌫ to near

their true values, and attempt to learn the global parameters �,�, �. In practice, we

were able to quickly learn accurate values of �,�, � for all strategies, evidence that the

sampling schemes are able to accurately capture enough information in each sample to

learn meaningful values of these global parameters.

Next, we compared the performance of these three sampling schemes on a synthetic

network with 2,000 nodes and 25 true clusters. We measure the performance of the

methods in two ways. First, we track the convergence of the objective function be-

ing optimized, the ELBO. Second, we compute the Adjusted Rand Index (ARI) as

a means of comparing the learned clustering with the ground truth clustering. The

ARI is a continuous measure of similarity between two discrete clusterings and can

take a value in [�1, 1], where 0 denotes no similarity between clusterings and 1 indi-

cates an exact match, up to a permutation of labels. Although our algorithm gives

us a probability estimate of cluster assignments, we take the most likely value for

each node as the learned cluster assignment. Figure 4.2 contains summary plots of

the experiment. We tested a large number of parameter settings ( = [0.5, 0.7, 0.9],

⌧0 = [64, 1024, 16384], K = [50, 100, 200], S = [10, 100, 1000]) on three di↵erent syn-

thetic networks of the same size generated in identical fashion, running five random

restarts per parameter setting on each network. Then, we look at the single synthetic

29

4. EXPERIMENTS

Figure 4.2: S1: Induced subgraph. S2: 1-neighborhood of a node. S3: 1-neighborhood of

S nodes. ELBO vs. time plot on left and ARI vs. time plot on right, for best parameter

settings of each method.

network on which each sampling strategy performed best (it was the same network for

all three strategies). We compare results by averaging the ELBO and ARI results of

the five restarts for each parameter setting to find the best parameters, and use them

to create the plots. Clearly, the strategy of 1-neighborhoods for many nodes proved

most e↵ective, as it quickly converged to a better optimum than the other two strate-

gies. Additionally, it converged to a good ARI score faster than the other methods and

fluctuated less. Although it ended up at a slightly worse score in the end, all three

strategies converge to very good ARI values above 0.95 that indicate very little error

in learning the true clustering. The large jumps in score occur because ARI assigns a

continuous score to a discrete partitioning, causing discontinuities. Since this scheme

of sampling the 1-neighborhood of S nodes proved most e↵ective, it is the strategy that

we employ in later experiments when comparing with the traditional batch version of

the algorithm.

Next, we briefly mention the specific update equations utilized in this third sampling

scheme; those in the first two have a similar flavor. We begin with the local step. For

each i 2 S, observe that ⌫i depends (intuitively) only on the edges/non-edges that are

30

4.3 Synthetic Data Experiment

directed to/from node i, and because we consider all edges to/from each node in this

sampling scheme, we can use Equation 3.27, unmodified. However, we only update the

rows in ⌫ corresponding to nodes in the current sample. The updates for the global

parameters are slightly trickier. Referring to Equation 3.19, when updating �j , we now

use only the rows in ⌫ corresponding to nodes that were sampled. Hence, the new

estimate becomes

�̂k = ↵ +
N

S

X

i2S
⌫ij (4.1)

which is then applied to Algorithm 3. Note the addition of a constant in front of the

summation to maintain an unbiased estimate, because the original summation was over

all N nodes. Next, we consider the updates for � (� is nearly identical, and so omitted).

Only using the S(2N � S � 1) edges available in this sample, the new estimate is

�̂kl = a +
N(N � 1)

S(2N � S � 1)

0

B

@

N
X

i=1
i 6=j

X

j2S

K
X

k,l=1

⌫ik⌫jlyij +
X

i2S

X

j /2S

K
X

k,l=1

⌫ik⌫jlyij

1

C

A

. (4.2)

Again, we re-weight the summation so that we retain an unbiased estimate of the gra-

dient with respect to all the data. And, we are careful with the indices so that each

edge in our sample is used precisely once.

Finally, a similar recalculation must be done to Line 4 of Equation 3.15. This is the

expanded form of the ELBO, and we re-weight the summation appropriately using only

the edges available in that iteration. E↵ectively, at each iteration we are computing the

true gradient of the objective function for that subsample, resulting in a noisy value of

the objective function since we are not following the true gradient with respect to all

of the data.

4.3 Synthetic Data Experiment

As a simple experiment, we create a synthetic network with a known ground truth

structure. In particular, we know the ground truth number of clusters, cluster assign-

ments, and entries in ✓. In Figure 4.3 we show an input adjacency matrix to train on,

as well as a learned clustering. We set N = 5, 000, Ktrue = 25, and assign nodes to

clusters uniformly at random. Additionally, we set the true matrix of cluster linkage

31

4. EXPERIMENTS

Figure 4.3: Synthetic Network, N = 2000, K = 25. Left: Input adjacency matrix. Right:

Learned clustering.

probabilities ✓ to have only two unique values (0.6 and 0.025 respectively) specifying

the global probability of linkages within and between clusters. We try various settings

of the hyperparameters ( = [0.5, 0.6, 0.7, 0.8, 0.9], ⌧0 = [64, 256, 1024, 4096, 16384], K =

[25, 50, 100], S = [100, 1000]). The best settings (in terms of learned ELBO value) were

obtained by  = 0.5, ⌧0 = 16384, K = 100, S = 1000. For these settings, the algorithm

learned the true number of clusters and the true clustering (ARI=1.00), and the learned

variational parameters �, � accurately identified the linkage probabilities as 0.6033 and

0.02497, very close to the actual probabilities used in the network creation. However,

there were a number of parameter settings that also performed quite well in terms of

ARI and accuracy in recovering the true linkage probabilities. In general, the best

results were obtained when K = 100,  = 0.5, and larger values of ⌧0. While smaller

S tended to have worse ELBO values, these runs were still able to recover the true

clustering and accurate estimates of the linkage probabilities.

4.4 Scalability

Next, we compare the scalability and performance of stochastic variational inference

with that of the standard batch inference scheme derived at the beginning of Section

3. To accomplish this, we create a synthetic network as detailed previously but with a

larger number of nodes, setting N = 100, 000. Results are shown in Figure 4.4, where

the rows correspond to di↵erent initial K. Hyperparameters for stochastic were set to

 = 0.5, ⌧0 = 1024. In the plots of ELBO vs time, the blue curve corresponding to

32

4.4 Scalability

Figure 4.4: Testing Scalability of Stochastic vs. Batch

stochastic with a subsample size of S = 10, 000 converges quicker than the other meth-

ods and to a better solution. Additionally, in the plots of ARI vs time, this method

is able to find a solution the fastest. Although not necessarily a better score for all

three values of K, it is noteworthy that it converges much faster and never fluctuates

once it converges, indicating once it learns a good solution it doesn’t move much. The

specific value of the ARI itself is not hugely important as all methods eventually learn

a good clustering with an ARI of greater than 0.90, indicating a clustering very close

to ground truth.

As a second experiment confirming the scalability of the stochastic algorithm, in Figure

4.5 we show the results of an experiment on a synthetic network with N = 1, 000, 000

nodes. In this figure, there is only a single curve as the batch algorithm failed to

compute a single iteration. This is in contrast to the stochastic algorithm, tested with

S = 1000,  = 0.5, ⌧0 = 1024, which was able to learn over the entire 24 hours of

runtime allowed. While the stochastic algorithm is not able to converge in 24 hours,

it is noteworthy that batch fails to compute even a single iteration, while stochastic is

able to begin learning a good clustering. These results indicate that for networks this

size the batch algorithm reaches a breaking point and it is essential to utilize scalable

methods like our stochastic algorithm.

33

4. EXPERIMENTS

Figure 4.5: Testing Scalability of Stochastic vs. Batch

Figure 4.6: Scalability Results for N = 1, 000, 000. There is only one curve as batch

could not finish a single iteration, while for S = 1000 stochastic is able to learn something.

4.5 Real Data Experiments

As an important verification that our algorithms work on real data, we apply them to

two data sets, a citation network of High Energy physicists [33], and a genetic network

of Caenorhabditis elegans, a commonly studied small nematode [55]. The citation net-

work consists of 27,770 authors and 352,807 citations in High Energy Physics over 15

years, and the genetic network contains 18,754 genes and 2.65 million observed inter-

actions. As we have no ground truth clusterings for these examples, we use held-out

data and compute the log likelihood under the model. In particular, for each data set

we set aside a test set of 10% of the links in the network and an equivalent number of

non-links. Then, we create 5 validation sets of the same size, and perform a five fold

cross validation procedure in order to study sensitivity to K and to other hyperparam-

eters.

We approximate the probability that a link exists between nodes using the posterior

expectations of �, �,⌫. We would like to calculate p(ytest|Y), but unfortunately this is

intractable to directly compute. However, we may use our variational approximation

34

4.5 Real Data Experiments

to the true posterior in the predictive distribution as follows:

log p(yij |Y) = log

Z

✓,⇡

X

z

p(yij |⇡, z,✓)p(z,✓,⇡|Y)d✓d⇡ (4.3)

⇡ log Eq[p(yij |z,✓,⇡)] (4.4)

� Eq[log p(yij |z,✓,⇡)] (4.5)

=
X

k,l

⌫ik⌫jl[yij((�kl) � (�kl + �kl)) (4.6)

+ (1 � yij)((�kl) � (�kl + �kl))] (4.7)

where the last term follows straight from the ELBO in Eqn. (3.15). Using this easily

computed lower bound on the log likelihood of held-out observations, we compute the

perplexity, a commonly used measure of model fit, defined to be the exponential of the

average predictive log likelihood of the held out data. Symbolically:

perplexity(ytest,⌫,�, �,�) = exp

(

�
h

X

log p(ytest|⇡, z,✓)
i

/|ytest|
)

(4.8)

where we apply the above approximation to the held-out log likelihood to obtain an

upper bound on perplexity [24]. Note that a lower perplexity score is better, as per-

plexity is inversely proportional to held-out log likelihood. In Figure 4.7 we present

results for the citation network, and Figure 4.8 contains results for the genetic network.

We test a large number of parameter values in experiments on the validation sets,

and show the results on the test set. For both data sets, results were best with the

hyperparameters set to  = 0.5, ⌧0 = 64, and the plots show di↵erent subsample sizes

in di↵erent colors. Although not decisive evidence, the results for the citation net-

work again confirm that stochastic learns a slightly better solution, and a little faster

than batch, as the plots of the ELBO indicate. Interestingly, the larger subsample

size for this network performs considerably worse. Additionally, both stochastic for

the smaller subsample size and batch converge to comparable values of perplexity in a

similar amount of time.

The results on the genetic data set are slightly weaker, probably because this net-

work is a small enough size that batch is still able to perform quite well. The result

35

4. EXPERIMENTS

Figure 4.7: Results for the Citation Network.

plots of the ELBO do not strongly indicate that any one algorithm learned a best so-

lution, although it again seems the largest subsample size performs worse. The plots

of perplexity confirm this, as the S = 1000 curve converges to a worse perplexity. Al-

though batch appears to converge slightly faster to a better perplexity, it appears that

stochastic has not finished converging after 24 hours of runtime, and it seems to even-

tually reach a better perplexity value than batch towards the end of the runtime period.

Finally, as an interesting image we show the learned block structure for the citation

network in Figure 4.9. We use the learned value of � and � from the best run (in

perplexity) for the stochastic algorithm, for initial settings K = 50 and S = 1000. The

image shows the learned 32⇥ 32 matrix ✓, where each entry is colored according to its

probability, and contains interesting structure. Cluster 31 is a strong hub, and upon

inspection contains only 22 authors, so it is likely a small group of famous highly cited

physicists. Similarly, cluster 1 is small with only 44 physicists, and the figure implies

there are many edges within that cluster and from clusters 3 and 26 to it, so it is also

likely a group of highly cited physicists. Finally, a faint block-like shading along the

diagonal indicates evidence of clustering.

36

4.5 Real Data Experiments

Figure 4.8: Results for the Genetic Network.

In conclusion, although these results do not indicate a huge speedup between batch

and stochastic, this is to be expected, as it was still feasible to run batch on a much

larger synthetic network with N = 100, 000 nodes and obtain reasonable performance.

Our experiments make it clear that our stochastic algorithm is able to perform at least

as well as the traditional batch algorithm. In [19], which derives stochastic variational

inference for the MMSB of Section 2, there is a dramatic speedup on networks in

the size range we are considering when utilizing their stochastic variational inference

algorithm. The lack of such a drastic improvement here is likely due to the more com-

plicated model in that work, where at much smaller scales batch variational inference

becomes infeasible. However, inference in the SBM is considerably simpler, and this is

probably why batch still performs quite well on our real networks. For a much larger

real data set we would expect batch to break down, and be forced to use our more

practical stochastic algorithm. Now that we have experimentally verified that both

the batch and stochastic algorithms work, it would be interesting to find a larger net-

work to cluster with both algorithms. We would expect to be able to empirically show

the breaking point of batch on a much larger data set, as we were able to do for the

37

4. EXPERIMENTS

Figure 4.9: Learned Block Structure of citation network.

synthetic networks.

38

5

Discussion

In this thesis, we have introduced a novel inference algorithm for the Stochastic Block

Model, a probabilistic model for clustering networks. In particular, the variational

method that we derive has never before been applied to this model, and it has the ad-

vantage of being able to scale to large networks. This is important, as historically many

other inference algorithms for network models do not scale well to larger data sets. We

have shown experimentally that our method is both more e�cient and more accurate

than an existing fast inference algorithm for the Stochastic Block Model, and we show

that our method is able to uncover known hidden structure in synthetic data very accu-

rately. Finally, applying our framework to real network data provides promising results.

Although this work outlines an important step in creating and testing a scalable clus-

tering algorithm, there are many obvious directions for future research. In particular,

one area that remains relatively unexplored is developing new sampling strategies that

are more e�cient than those mentioned here and in [19]. Additionally, an e�cient

stochastic variational inference scheme has yet to be derived for the IRM and LFRM

models highlighted in Section 2, nonparametric models which extend the SBM. It may

also be worth researching a nonparametric version of the MMSB from Section 2 that

is still scalable to large data via stochastic variational inference. Such a method would

be quite useful in many domains, as it would allow the algorithm to infer the number

of clusters, while still allowing for mixed membership. Finally, [58] presents a novel

approach of accomplishing network clustering through the use of the well known topic

model Latent Dirichlet Allocation (LDA), a model traditionally applied to text data.

39

5. DISCUSSION

It would provide a relatively straightforward application to derive a scalable variational

inference algorithm for this model, and to test experimentally how such results might

compare to other state-of-the-art network clustering methods.

Besides these relatively obvious initial directions for future work from this thesis, there

are still many important unanswered questions regarding statistical modeling of graphs.

One noteworthy problem detailed in [15] involves the notion of exchangeability in graphs

and networks. In short, the famous theorem of de Finetti characterizes an exchange-

able sequence of random variables as being conditionally independent and identically

distributed given some latent variable [14]. A similar theorem of Aldous and Hoover

characterizes exchangeable arrays of random variables in a fashion similar to de Finetti’s

Theorem, provided that they are dense [23]. However, in practice, most real-world net-

works are sparse, and the majority of links are unobserved. For instance, in a large

social friendship network, a lack of edges between certain individuals does not neces-

sarily imply the lack of a relationship, but simply a sparsity in data, as there was no

observed relation. Presently, there is no suitable counterpart to de Finetti’s Theorem

for sparse graphs, which is necessary for eventually constructing Bayesian models for

graph and array-valued data [34]. In general, there is still much future research to be

done in the development of Bayesian nonparametric models for graph data, and such

models will certainly prove useful to a variety of disciplines across the sciences.

40

References

[1] E. M. Airoldi, Getting started in probabilistic graphical models, PLoS Comput Biol

3 (2007), no. 12.

[2] E. M. Airoldi, D. M. Blei, S. E. Fienberg, and E. P. Xing, Mixed membership

stochastic blockmodels, Journal of Machine Learning Research 9 (2008), 1981–2014.

[3] S. Amari, Natural gradient works e�ciently in learning, Neural Computation 10

(1998), no. 2, 251–276.

[4] F. R. Bach and M. I. Jordan, Learning spectral clustering, Advances in Neural

Information Processing Systems, 2004.

[5] A. Barabási and A. Réka, Emergence of scaling in random networks, Science 286

(1999), 509–512.

[6] E. B. Baskerville, A. P. Dobson, T. Bedford, S. Allesina, T. M. Anderson, and

M. Pascual, Spatial guilds in the serengeti food web revealed by a bayesian group

model, PLoS Computational Biology 7 (2011), no. 12.

[7] Y. Bengio, P. Vincent, J. Paiement, O. Delalleau, M. Ouimet, and N. Le Roux,

Spectral clustering and kernel pca are learning eigenfunctions, Tech. Report 1239,

Département d’informatique et recherche opérationnelle, Université de Montréal,

2003.

[8] K. Bhattacharya, G. Mukherjee, J. Saramaki, K. Kaski, and S. S. Manna, The

international trade network: weighted network analysis and modeling, 2008.

[9] C. M. Bishop, Pattern recognition and machine learning (information science and

statistics), Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

41

REFERENCES

[10] D. M. Blei, A. Y. Ng, and M. I. Jordan, Latent dirichlet allocation, Journal of

Machine Learning Research 3 (2003), 993–1022.

[11] M. Braun and J. McAuli↵e, Variational inference for large-scale models of discrete

choice, arXiv ePrints (2007).

[12] S. Brooks, Handbook for markov chain monte carlo, A Chapman & Hall book,

CRC Press/Taylor & Francis, 2011.

[13] T. Dette, S. Pauls, and D. N. Rockmore, Robustness and contagion in the inter-

national financial network, CoRR abs/1104.4249 (2011).

[14] P. Diaconis and D. Freedman, Finite exchangeable sequences, Ann. Probab. 8

(1980), no. 4, 745–764.

[15] P. Diaconis and S. Janson, Graph limits and exchangeable random graphs, Tech.

report, 2007.

[16] P. Durek and D. Walther, The integrated analysis of metabolic and protein interac-

tion networks reveals novel molecular organizing principles, BMC Systems Biology

2 (2008), no. 1, 100.

[17] P. Erdős and A. Rényi, On the evolution of random graphs, Publication of the

Mathematical Institute of the Hungarian Academy of Sciences, 1960, pp. 17–61.

[18] A. Fronczak, Exponential random graph models, ArXiv e-prints (2012).

[19] P. Gopalan, D. M. Mimno, S. Gerrish, M. J. Freedman, and D. M. Blei, Scalable

inference of overlapping communities, Advances in Neural Information Processing

Systems, 2012.

[20] T. Graepel, J. Q. Candela, T. Borchert, and R. Herbrich, Web-Scale Bayesian

ClickThrough rate prediction for sponsored search advertising in Microsoft’s Bing

search engine, International Conference on Machine Learning, 2010, pp. 13–20.

[21] T. L. Gri�ths and Z. Ghahramani, Infinite latent feature models and the indian

bu↵et process, Advances in Neural Information Processing Systems, MIT Press,

2005.

42

REFERENCES

[22] J. Grimmer, An Introduction to Bayesian inference via variational approximations,

Political Analysis 19 (2011), no. 1, 32–47.

[23] P. D. Ho↵, Modeling homophily and stochastic equivalence in symmetric relational

data, Advances in Neural Information Processing Systems, 2007.

[24] M. D. Ho↵man, D. M. Blei, and F. Bach, Online learning for latent dirichlet

allocation, Advances in Neural Information Processing Systems, 2010.

[25] M. D. Ho↵man, D. M. Blei, C. Wang, and J. Paisley, Stochastic variational infer-

ence, Journal of Machine Learning Research (2012).

[26] P. W. Holland, K. B. Laskey, and S. Leinhardt, Stochastic blockmodels: First steps,

Social Networks 5 (1983), no. 2, 109 – 137.

[27] P. W. Holland and S. Leinhardt, An exponential family of probability distributions

for directed graphs, Journal of the American Statistical Association 76 (1981),

no. 373, pp. 33–50.

[28] M. S. Islam, Mahmud A., and M. R. Islam, Machine learning approaches for

modeling spammer behavior, AIRS, 2010, pp. 251–260.

[29] A. Jacobs, The pathologies of big data, Commun. ACM 52 (2009), no. 8, 36–44.

[30] C. Kemp, J. B. Tenenbaum, T. L. Gri�ths, T. Yamada, and N. Ueda, Learning

systems of concepts with an infinite relational model, AAAI, 2006, pp. 381–388.

[31] D. Koller, N. Friedman, L. Getoor, and B. Taskar, Graphical models in a nutshell,

An Introduction to Statistical Relational Learning (L. Getoor and B. Taskar, eds.),

MIT Press, 2007.

[32] P. Latouche, E. Birmelé, and C. Ambroise, Variational Bayesian inference and

complexity control for stochastic block models, Statistical Modeling 12 (2012),

no. 1, 93–115.

[33] J. Leskovec, J. Kleinberg, and C. Faloutsos, Graphs over time: densification laws,

shrinking diameters and possible explanations, International Conference on Knowl-

edge Discovery and Data Mining (New York, NY, USA), KDD ’05, ACM, 2005,

pp. 177–187.

43

REFERENCES

[34] J. Lloyd, P. Orbanz, Z. Ghahramani, and D. M. Roy, Random function priors for

exchangeable arrays with applications to graphs and relational data, Advances in

Neural Information Processing Systems, 2012.

[35] B. A. Logsdon, G. E. Ho↵man, and J. G. Mezey, Mouse obesity network reconstruc-

tion with a variational bayes algorithm to employ aggressive false positive control,

BMC Bioinformatics 13 (2012), 53.

[36] M. Meila and W. Pentney, Clustering by weighted cuts in directed graphs, Proceed-

ings of the SIAM International Conference on Data Mining, 2007.

[37] K. Miller, Bayesian nonparametric latent feature models, Ph.D. thesis, EECS De-

partment, University of California, Berkeley, Jun 2011.

[38] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhattacharjee, Mea-

surement and analysis of online social networks, Proceedings of the 7th ACM

SIGCOMM conference on Internet measurement (New York, NY, USA), IMC ’07,

ACM, 2007, pp. 29–42.

[39] C. L. Myers, D. R. Barrett, M. A. Hibbs, C. Huttenhower, and O. G. Troyanskaya,

Finding function: evaluation methods for functional genomic data., BMC genomics

7 (2006), 187.

[40] B. Nadler and M. Galun, Fundamental limitations of spectral clustering, Advances

in Neural Information Processing Systems, 2007.

[41] D. Newman, E. V. Bonilla, and W. Buntine, Improving topic coherence with reg-

ularized topic models, Advances in Neural Information Processing Systems, 2011.

[42] M. Newman, Networks: An introduction, Oxford University Press, Inc., New York,

NY, USA, 2010.

[43] M. E. J. Newman, S. H. Strogatz, and D. J. Watts, Random graphs with arbitrary

degree distributions and their applications, Phys. Rev. E 64 (2001), 026118.

[44] A. Y. Ng, M. I. Jordan, and Y. Weiss, On spectral clustering: analysis and an

algorithm, Advances in Neural Information Processing Systems, MIT Press, 2001.

44

REFERENCES

[45] H. W. Park, Hyperlink network analysis: A new method for the study of social

structure on the web, Connections 25 (2003), 49–61.

[46] F. Pedregosa and et al, Scikit-learn: Machine learning in Python, Journal of Ma-

chine Learning Research 12 (2011), 2825–2830.

[47] J. Pitman, Combinatorial stochastic processes, Lecture Notes in Mathematics, vol.

1875, Springer-Verlag, Berlin, 2006, Lectures from the 32nd Summer School on

Probability Theory held in Saint-Flour, July 7–24, 2002, With a foreword by Jean

Picard.

[48] H. Robbins and S. Monro, A stochastic approximation method, Annals of Mathe-

matical Statistics 22 (1951), 400–407.

[49] C. P. Robert and G. Casella, Monte carlo statistical methods (springer texts in

statistics), Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005.

[50] G. Robins, P. Pattison, Y. Kalish, and D. Lusher, An introduction to exponential

random graph (p*) models for social networks, Social Networks 29 (2007), no. 2,

173 – 191.

[51] S. M. Ross, Introduction to probability models, ninth edition, Academic Press, Inc.,

Orlando, FL, USA, 2006.

[52] D. Sculley, Web-scale k-means clustering, Proceedings of the 19th international

conference on World wide web (New York, NY, USA), WWW ’10, ACM, 2010,

pp. 1177–1178.

[53] T. A. B. Snijders, Markov chain monte carlo estimation of exponential random

graph models, Journal of Social Structure 3 (2002).

[54] M. J. Wainwright and M. I. Jordan, Graphical models, exponential families, and

variational inference, Foundations and Trends in Machine Learning, vol. 1, 2008,

pp. 1–305.

[55] D. Warde-Farley and et al, The GeneMANIA prediction server: biological network

integration for gene prioritization and predicting gene function., Nucleic acids re-

search 38 (2010), W214–W220.

45

REFERENCES

[56] S. Wasserman and P. Pattison, Logit models and logistic regressions for social

networks: I. an introduction to markov graphs and p⇤, Psychometrika 61 (1996),

no. 3, 401–425.

[57] S. Yu and S. Kak, A survey of prediction using social media, CoRR

abs/1203.1647 (2012).

[58] H. Zhang, B. Qiu, C.L. Giles, H. C. Foley, and J. Yen, An lda-based commu-

nity structure discovery approach for large-scale social networks, Intelligence and

Security Informatics, 2007 IEEE, 2007, pp. 200–207.

46

	List of Figures
	1 Bayesian Inference and Probabilistic Modeling
	1.1 Probabilistic Modeling
	1.2 Graphical Models
	1.3 Bayesian Inference
	1.4 Outline

	2 Models for Network Data
	2.1 Introduction
	2.2 Erdos-Rényi Random Graphs
	2.3 Barabási-Albert Model of Preferential Attachment
	2.4 Exponential Family Random Graphs
	2.5 Spectral Clustering
	2.6 Stochastic Block Model
	2.7 The Infinite Relational Model
	2.8 Mixed Membership Stochastic Blockmodel
	2.9 Nonparametric Latent Feature Relational Model

	3 Inference Algorithms for the Stochastic Block Model
	3.1 Overview
	3.2 Mean Field Variational Inference
	3.2.1 Coordinate Ascent Inference Derivation

	3.3 Stochastic Variational Inference
	3.3.1 Natural Gradients
	3.3.2 Stochastic Optimization
	3.3.3 Stochastic Variational Inference Derivation

	4 Experiments
	4.1 Introduction
	4.2 Sampling Schemes
	4.3 Synthetic Data Experiment
	4.4 Scalability
	4.5 Real Data Experiments

	5 Discussion
	References

