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Discussion

Zoonoses are a'majo nde f emers; | | T [susceptoe T “ ' I We have shown that with the capacity to mutate in an intermediate host, emerging

* wildtype infected
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Conclusions

We have met the need for a mathematical framework for an emerging zoonosis
A New Model Practical: public health officials and policymakers should be more concerned about
* Based on traditional SIR framework: here, SIR-SITR-SIR | | wildlife diseases with the capacity to mutate in an intermediate host, because

e Deterministic, with vital dynamics | Avian Influenza these diseases will spread to humans under realistic conditions (spillover/mutation

Domestic

* Intentionally broad parameters to permit future modification . ...but also permits T | | - rates > 0) even if they evade detection under traditional threat classifications

an endemic | ' *' Philosophical: we have quantified and confirmed a key assumption in global health,

equilibria in ~ouscortte | - 1 that human health is inextricably and inexorably linked to that of other species
humanS even |f the 8 ] 0.8 - | * transmissible infected | |

recovered
disease dies out in
both animal hosts.
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Future Research
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With the capacity to model the entire course of an emerging zoonosis introduced
through this project, future researchers can:
) Gather accurate data, especially for wildlife compartment/transmission parameters
influenza data: bad . . . . . :
sews I public | Examine effect of varying [3, Y in domestic animal strains

o | | Model more realistic dynamics such as seasonal variation or migration in wildlife
health officials _ o R , | | ) . .
Model different types of mutations: reassortment, adaptation
Include backward transmission to model stuttering chains
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