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    Our most senior concern in future iterations of this experiment 
would be increased accuracy in our projections for human behavior. 
More specifically, we struggled with the last effect, or lack thereof, 
that changes in mosquito behavior as a result of climate change had on 
the infected human population. It’s possible humans don’t change 
because we changed the parameters to make mosquitos die off. Our 
results show that even if there were a large increase in the number of 
infected mosquitos, the number of infected humans would change 
very little, if at all. This was a surprising outcome of our model as one 
would expect that if there are more infected mosquitos then there 
would be more infected bites which would lead to a higher rate of 
infection in humans. One theory to explain this is that by using a 
scalar term to implement climate change, we were only implementing 
a “fixed” climate-change; as a result, we increase both peak and 
minimum growth rate, but the growth rate itself does not change over 
time.

Our model sought to modify an existing system of differential 
equations to account for the potential of climate change to impact 
mosquito population dynamics, and as a result, the transmission of 
malaria. To do so, we change the mosquito recruitment and death rate 
by introducing sinusoidal terms for rainfall and temperature, which we 
treat as proxies for standing- water and humidity, respectively. 
    We did get expected results on the population of infected mosquitos. 
Going from baseline to moderate climate change saw a substantial 
increase in population size at the peak, which was further accentuated 
by severe climate change. All graphs reflect this fact; level of time, 
humidity, or standing-water, mosquito populations were higher under 
the presence of climate change. 
    Further, while populations were sensitive to both levels of standing 
water and humidity across seasons, we noticed that approaching the 
lower-bound to humidity minimized differences across climate-change 
levels, supporting the theory that a certain level of humidity is required 
for mosquitos to survive (because, by extension, at low levels of 
humidity, it doesn’t matter how much climate change has increased 
standing-water, as mosquitos will struggle to survive regardless). 

    We found that the populations with the greatest influence on the spread of 
malaria were infected humans and infected mosquitoes.  Notably, changes in 
mosquito population did not enact drastic changes to the infected human 
population.  One theory that would support this behavior is that with the higher 
spike in infected human population initially for a severe climate change scenario 
that would suggest that early on there would be a greater recovered human 
population, resulting in fewer people to infect later on, so the baseline and lower 
climate change situations could have a higher infected population near the end of 
year two.  
    In the dry season, with low levels of standing water, humidity and mosquito 
population both decrease across the period. At the beginning of the dry season, 
when mosquito populations are at their peak, under severe climate change there are 
around 72 mosquitos versus 65 under baseline climate change, for a difference of 
7. At the end, when mosquito populations are lowest, the population of mosquitos 
is 27 for severe climate change and 25 for baseline climate change, a difference of 
only 2. Thus, we see again that at higher levels of humidity, mosquitos are more 
sensitive to the effects of climate change.  
    From the beginning of the high humidity season to the end, the levels of 
mosquitos under severe climate change increases from roughly 57 to 76, and under 
baseline climate change the population increases from 47 to 67. Therefore, 
although the population increases with standing water, the gap between the two 
climate change levels does not change significantly. By contrast, from the 
beginning of the low humidity season to the end, under severe climate change the 
population of mosquitos decreases from 87 to 40, versus roughly 72 to 31. This 
suggests there is a convergence across the climate change levels during the low 
humidity period, unlike across the high humidity period. 

    The methods we used to generate and develop our model for 
the transmission of malaria in humans and mosquitos relied 
heavily on MATLAB. First we built Olaniyi and Obabiyi’s 
model in MATLAB, by creating a system of ordinary 
differential equations with parameters to produce the same 
graphs and behavior that we observed in their paper.  Once we 
had our base model, we began to look into modeling standing-
water and humidity levels in Nigeria. This data was unavailable, 
so we looked to two proxies that are highly correlated with the 
behavior of these climate variables: temperature and rainfall. 
We used MATLAB to fit a Fourier Series to rainfall/temperature 
data from the World Bank; we replaced the fixed parameters for 
mosquito recruitment and death rate with these sinusoidal 
functions. 

To ensure the model exhibited realistic long-term behavior, 
we tweaked some of the parameters (as discussed in Model 
Development) and generated time-series graphs displaying the 
behavior of all populations over 5,000 days. Once we were 
satisfied with our long-term behavior, which was discussed in 
Model Analysis, we then generated time-series graphs over 700 
days displaying the behavior of infected mosquitos and infected 
humans, our populations of interest, to examine their short term 
behavior. 

Additional graphs plotted were that of infected mosquito 
population against our proxies for standing water and humidity 
in multiple scenarios, as well as EIR vs. percent infected.

    Our experiment is based on the work put forth by S. Olaniyi 
and O.S. Obabiyi in their 2013 paper, “Mathematical Model 
for Malaria Transmission Dynamics in Human and Mosquito 
Populations with Nonlinear Forces of Infection.”  Their paper 
first develops a model for the population dynamics of humans 
and mosquitos, then varies the proportion of antibodies 
produced by humans and mosquitos to combat malaria, and 
ultimately analyzes this effect on the overall levels of 
susceptible, exposed, infected, and recovered humans.  We aim 
to further these studies by introducing and observing the role of 
climate on mosquito population growth rates.

Modeling the Impact of Climate Change on Malaria in Nigeria  
Liam Morris,  Dylan Burke, Benjamin Hannam, Matthew Hayes, Prof. Dorothy Wallace  

Department of Mathematics, Dartmouth College

RESULTS

METHOD

INTRODUCTION
DIAGRAM OR EXAMPLE OF STIMULI

CONCLUSIONS

FUTURE DIRECTIONS...

ACKNOWLEDGEMENTS

http://www.climaterealityproject.org/blog/climate-101-why-does-climate-change-increase-rainfall
http://www.climaterealityproject.org/blog/climate-101-why-does-climate-change-increase-rainfall
http://climate.nasa.gov/scientific-consensus/

