Embedding the Complete Bipartite Graph

Jacob Marchman '18. Advisors: Peter Doyle and Emma Hartman

Department of Mathematics, Dartmouth College

Introduction

Ringer (1974) and later Bouchet (1978) have shown that the orientable genus of the complete bipartite graph $K_{m, n}$ is $[(m-2)(n-2) / 4]$ for $m \geq 2$ and $n \geq 2$ while the nonorientable genus is $\lceil(m-2)(n-2) / 2\rceil$ for $m \geq 3$ and $n \geq 3$. Here we show how $K_{m, n}$ can be drawn on the fundamental domains of heir lowest-genus surfaces when $(m-2)(n-2) / 4$ or
$(m-2)(n-2) / 2$ are integers. We will use Conway's
notation for surfaces where O^{w} is the sphere with w handles and X^{2} is the sphere with z cross-caps.

Orientable (left) and nonorientable (right) genus of $K_{m, n}$ for small m, n. Cells are green if $(m-2)(n-2) / 4$ or $(m-2)(n-2) / 2$ is an integer, blue if the lowest-

of $K_{m, n+1}$, and red if $(m-2)(n-2) / 4$ or $(m-2)(n-2) / 2$ is not an intege.

Gluing up the Surface

We represent $K_{m, n}$ on the fundamental domain of its surface by drawing $m n$-sided regular polygons meeting at a point, with each of the m polygons having a vertex at its center and n distinct vertices on its edge. For example, below is K_{44}. In subsequent pictures, we won't draw the interior vertices.

In order identify the fundamental domain above as O^{1}, we need to specify a way to glue up the edges. An edge will be labelled A if it is glued in the clockwise direction relative to the border of the domain, and A^{-1} if it is to be glued in counterclockwise direction. Hence,

Orientable Embedding of $K_{4,2 n}$ on O^{n-1}

The fundamental domain for $K_{4,2 n}$ on its lowest-genus orientable surface O^{n-1} consists of $42 n$-gons meeting at a central point. In clockwise orientation, the external edges of the $2 n$-gons, P_{1}, \ldots, P_{4} are

$$
\begin{aligned}
& P_{1}: A_{1} A_{2} A_{3} \ldots A_{2 n-2} \\
& P_{2}: A_{2 n-1} A^{-1}{ }_{2 n-3} A_{2 n} A^{-1}{ }_{2 n-5} A_{2 n+1} A^{-1}{ }_{2 n-7} \ldots A_{3 n-3} A^{-1}{ }_{1} \\
& P_{3} A_{3 n-2} A^{-1}{ }_{3 n-3} A_{3 n-1} A^{-1}{ }_{3 n-4}^{2 n+5} A_{3 n} A^{-1}{ }_{3 n-5} \ldots A_{4 n-4} A^{-1}{ }_{2 n-1}
\end{aligned}
$$

Nonorientable Embedding of $K_{4,2 n}$ on $X^{2 n-2}$

The fundamental domain for $K_{4,2 n} X^{2 n-2}$ consists of $42 n$-gons. Its edge gluing turns out to be the same as the orientable case with just three modifications:

1) Swap the $2^{\text {nd }}$ edge of P_{1} with the $2 n-3^{r d}$ edge of P_{2}
and reverse both the directions of their gluing
2) Swap the $2 n-4^{\text {th }}$ edge of P_{2} with the $2 n-4^{\text {th }}$ edge in P_{4}
3) Swap the $4^{\text {th }}$ edge of $P 3$ with the $2 n-6^{\text {th }}$ edge of P_{4}
and reverse both the directions of their gluing
Nonorientable Embedding of $K_{4,2 n+1}$ on $X^{2 n-1}$
The fundamental domain for $K_{4,2 n}$ on $X^{2 n-2}$ consists of $42 n-1$-gons, P_{1}, \ldots, P^{2} whose external edges are
$P_{1}: A_{1} A_{2} A_{3} \ldots A_{2 n-1}$
$P_{2}: A_{2 n} A^{-1}{ }_{2 n-2} A_{2 n+1} A^{-1}{ }_{2 n-4} A_{2 n+2} A^{-1}{ }_{2 n-6} \ldots A_{3 n-1}$ then $A_{3 n} A^{-1}{ }_{1}$.
$P_{3}: A_{3 n+1} A_{2}$ then $A^{-1}{ }_{3 n-1} A_{3 n+2} A^{-1}{ }_{3 n-3} A_{3 n+3} A^{-1} A_{3 n-5} A_{3 n+4} \ldots A_{4 n-2} A^{-1}{ }_{2}$
$P_{4}: A_{2 n-1} A^{-1}{ }_{4 n-2} A^{-1}{ }_{2 n-3} A^{-1}{ }_{4 n-2} \ldots A^{-1}{ }_{3 n+2} A^{-1}$ then $A_{3 n} A^{-1}{ }_{3 n+1}$
Nonorientable Embedding of $K_{3,4 n+2}$ on $X^{2 n}$
The fundamental domain for $K_{3,4 n+2}$ on $\mathrm{X}^{2 n}$ consists of three
4 n -gons, P_{1}, P_{2}, P_{3} with the following edges (listed counterclockwise):
$P_{1}: A_{3}$ then $B_{1} B_{2} B_{3} \ldots B_{4 n-2}$ then A_{1}
$P_{2}: A_{2} A_{3}$ then $D_{1} B^{-1}{ }_{4 n-2} D_{2} B^{-1}{ }_{2} D_{3} B^{-1}{ }_{4 n-4} D_{4} B^{-1}{ }_{4} D_{5} B^{-1}{ }_{4 n-6} \ldots D_{2 n-1} B^{-1}{ }_{2 n}$
$P_{3}: B_{2 n-1} D^{-1}{ }_{n-2} B^{-1}{ }_{2 n+1} D^{-1}{ }_{n-1} B^{-1}{ }_{2 n-3} D^{-1}{ }_{n-4} B^{-1}{ }_{2 n+3} D^{-1}{ }_{2 n-3} B^{-1}{ }_{2 n-3} D^{-1}{ }_{n-6}$
$\ldots B^{-1}{ }_{1} D_{1}$ then $A_{1} A_{2}$.
Orientable Embedding of $\mathrm{K}_{3,4 \mathrm{n}+2}$ on O^{n}
The fundamental domain uses the same gluing as the nonorientable version on $\mathrm{X}^{2 \mathrm{n}}$ except with the following changes:
4) In P_{1}, change the gluing direction of A_{1}
5) In P_{2}, change the gluing direction of and A_{3}
6) $\ln P_{2}$ switch the position of A_{2} with the position of D
7) In P_{4} switch the gluing direction of D_{1}.

Nonorientable Embedding of $K_{4,2 n}$ on X^{n-1}
The fundamental domain for $K_{3,4 n}$ on $X^{2 n}$ consists of three $4 n$-gons, P_{1}, P_{2}, P_{3} with the following edges (listed counterclockwise)
$P_{1}: A_{3}$ then $B_{1} B_{2} B_{3} \ldots B_{4 n-4}$ then A_{1}
${ }_{2}: A_{2} A_{3}$ then $D_{1} B_{4 n-4} D_{2} B_{2} D_{3} B_{4 n-6} D_{4} B_{4} D_{5} B_{4 n-8} \ldots D_{2 n-2} B_{2 n-2}$
$P_{3}: B_{2 n-1} D^{-1}{ }_{2 n-3} B^{-1}{ }_{2 n-3} D^{-1}{ }_{2 n-2} B^{-1}{ }_{2 n+1} D^{-1}{ }_{2 n-5} B^{-1}{ }_{2 n-5} D^{-1}{ }_{2 n-4} B^{-1}{ }_{2 n+3} D^{-1}{ }_{n-6}$
$\cdots B^{-1} D_{2}$ then $A_{1} A_{2}$.

The General Orientable Case

If $(n-2)(m-2) / 4$ is an integer than either 2 divides ($n-2)$ and 2 divides ($m-2$) or 4 divides one of ($n-2$), ($m-2$) but not both.

Case 1: $2 /(n-2)$ and $2 /(m-2)$. Then we know how embed $K_{4, n^{n}}$. Next we select a vertex that sits on the edge of two polygons in this embedding. We add two new n-sided polygons, "splitting" the edge and vertex We assign the two new polygons edge gluings that are mirrored along their common edge. This gives us $K_{6, n}$. For example,

We repeat this process until we reached have K_{m} Case 2: Without loss of generality we assume that $4 \mid(m-2)$ and that $2 \nmid(n-2)$. Then, $m \equiv 2 \bmod 4$, and we know an orientable embedding of K_{3}. As in the case above, we insert two new polygons, mirroring their edges about the line of adjacency. Then we work our way up to $K_{m, n}$

The General Nonorientable Case Luckily, this method works for the nonorientable case as well! If $(m-2)(n-2) / m$ is an integer then either $2 /(m-2)$ and $2 /(n-2)$ or 2 divides one of ($m-2$) or ($n-2$) but not both. In the first case we can work our way up to $K_{m, n}$ from an embedding of the graph $K_{4, n}$ and in the second case we can work out way up from an embedding of the graph K_{3}. That's all folks!

Acknowledgement

Thanks to Trent Shillingford for introducing me to the literature on this subject.

References

crc Pres

