Light, Housing, and Distance on Rhodnius prolixus Migration Brian Chekal, Franklin Corea-Dilbert, Himanshu Patel

Advisor: Dorothy Wallace Ph.D

Introduction

Trypanosoma cruzi is the cause of Chagas' disease in Central and South America, an illness that is quickly becoming a widespread disease in the region. It is transmitted through triatomines, more commonly referred to as kissing bugs, and can lead to chronic symptoms and heart complications. In its early stages, it displays mild flu-like symptoms. For this study, we examine one of these vectors, Rhodnius prolixus, which was used to model migration of triatomines in a study done by Cordovez and Erazo in a small village in Brazil ${ }^{(1)}$. Typically, Rhodnius prolixus reside in the canopy of jungle trees and rely primarily on blood meals for sustenance and growth. Near rural villages, kissing bugs leave their tree habitats to fly into nearby homes, often spending several days in close proximity to their human hosts before flying back to the jungle to shelter and lay eggs.

The Cordovez and Erazo model took into account the effect of distance and presence of light to look at different migration of bugs to houses. Our model builds upon that and takes into account different wavelengths of light that cause differing attractiveness of bugs ${ }^{(2)}$ as well as the inverse square law of light that mitigates the effect of light at longer distances. Finally, we also took into account the effect of the presence of a house at a patch which greatly increases the
likelihood that a bug will migrate there, to the tune of 5 to 15 times ${ }^{(3)}$. likelihood that a bug will migrate there, to the tune of 5 to 15 times $^{(3)}$

Model Development

The established model for our study looked specifically at a small village in the Casanare department of Colombia called Chavinave, that was encompassed by Gallery Forest. The model used looked at the population of R. prolixus eggs, nymphs and adults to observe migration patterns of R. prolixus between different patches. The study specifically looked at the effect on migration due to the presence or absence of light and how far away the new patch was from the original patch.

The majority of the parameters and parameter values were kept the same between the two models save for one: the α_{ij} term, which represented the attraction of plot i on the migrating bugs from plot j in an adjacency matrix A. The $\alpha_{\text {ij }}$ term in the original model had light as a binary variable that was twice as attractive versus similar non-lighted patches, and distance degradation of light as a linearly decreasing term. The new α_{ij} term has modified L_{ij} and D_{j} light and distance components while applying two new terms: S_{j} and H_{j}, which quantified the effect of migrating to the same patch and migrating to a patch with a house. We examined the veracity of the original model as well as the effects of our changes by creating 8 hypothetical patches with varying distances, light wavelengths, and housing structures.

The new model and parameters is as follows:
The new m

Figure 1. Studied Patch Designations

Relevant Figures
Modified Model:

Figure 2a. Total kissing bug populations per plot

Original Model:

a)

Figure 3a. Total kissing bug populations per plot

Figure 4. Effect of including a House versus Light attractions Figure 5. Effect of varying Distance versus Light attractions

