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1. The Fourier Transform on a Semisimple Algebra

We define the Fourier transform on a semisimple algebra A:

Definition 1. Let {ai}i2I be a basis for A and let f =

P
i2I f (ai)ai.

(i) Let ⇢ be a matrix representation of A. Then the Fourier transform of f at ⇢, denoted

ˆf (⇢), is

the matrix sum

ˆf (⇢) =
X

i2I
f (ai)⇢(ai).

(ii) Let R be a set of matrix representations of A. Then the Fourier transform of f on R is the

direct sum

FR(f ) =
M

⇢2R

ˆf (⇢) 2
M

⇢2R
M

dim ⇢(C)

of Fourier transforms of f at the representations in R.

Our main interest will be in the case in which A = C[G], the group algebra for G a finite group.
The group algebra C[G] is the space of all formal complex linear combinations of group ele-
ments under the product
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The Fourier transform of f =

P
s2G f (s)s at a matrix representation ⇢ of C[G] is

X

s2G
f (s)⇢(s).

This is equivalent to the d2⇢ individual Fourier transforms at the corresponding matrix elements

ˆf (⇢ij) =
X

s2G
f (s)⇢ij(s).

When we compute the Fourier transform for a complete set of inequivalent irreducible repre-
sentations R of G we refer to the calculation as the computation of a Fourier transform on G
(with respect to R).

2. Complexity

Given a set of matrix representations ⇢
1

, . . . , ⇢N of a group G of dimensions d
1

, . . . , dN respec-
tively, a direct computation of the Fourier transform would require at most 2|G|

P
i d
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i arithmetic
operations (where an arithmetic operation is a complex addition or multiplication). Fast Fourier
transforms (FFTs) are algorithms for computing Fourier transforms that improve on this up-
per bound. A priori, the number of operations needed to compute the Fourier transform may
depend on the specific representations used.

Definition 2. Let G be a finite group, R any set of matrix representations of G.

(i) The arithmetic complexity of a Fourier transform on R, denoted TG(R), is the minimum

number of arithmetic operations needed to compute the Fourier transform of f on R via a

straight-line program for an arbitrary complex-valued function f defined on G.

(ii) The reduced complexity, denoted tG(R), is defined by

tG(R) =

1

|G|TG(R).

Rewriting the above, we have
|G|� 1  TG(R)  |G|2.

3. Example: The Classical DFT and FFT

For G = Cn a cyclic group, all irreducible representations are 1-dimensional. Let ⇣j(k) =

e2⇡ijk/n. Then the set of representations {⇣j| 0  j  n � 1} forms a complete set of in-
equivalent irreducible representations and the corresponding Fourier transform on Cn at ⇣j(k)
is the usual discrete Fourier transform:

n�1X

k=0

f (k)e2⇡ijk/n

Through the use of a combination of approaches, it is known that TCn
 O(|Cn| log |Cn|).

4. Factoring Through Subgroup Chains; Schur’s Lemma

We compute the Fourier transform efficiently by taking advantage of subalgebra structure: con-
sider a chain of subalgebras:

C[G] = C[Gn] - C[Gn�1] - · · · - C[G1

] = C
The idea of using the coset decompositions of elements in the group to relate a Fourier trans-
form on G to Fourier transforms on a subgroup H generalizes naturally to the group algebra.
To explain: let H be a subgroup of G and let Y ⇢ G be a set of coset representatives for G/H.
Thus G = ty2Y yH. Then

ˆf (⇢) =
X

s2G
f (s)⇢(s) =

X

y2Y
⇢(y)

X

h2H
fy(h)⇢(h),

and so becomes a sum of Fourier transforms on H.
We also use Schur’s lemma to find sparse structure in certain matrix representations:
Schur’s Lemma 1. Let K be a subgroup of G and ⇢ a K-adapted representation of G such that

⇢ = ⌘
1

� · · ·� ⌘
1

� · · ·� ⌘r� · · ·� ⌘r, where ni the inequivalent irreducible representations of K
and ⌘i occurs with multiplicity mi. Then the centralizer of ⇢(K) is

(Mm1(C)⌦ Id⌘1
)� · · ·� (Mmr(C)⌦ Id⌘r).

We take advantage of both subgroup and centralizer algebra structure to compute the Fourier
transform efficiently.

5. Bratteli Diagrams and the Path Algebra

We provide an isomorphism between the chain of group algebras and the chain of path alge-
bras associated to the Bratelli diagram B of the group algebra chain:

C[B] = C[Bn] - C[Bn�1] - · · · - C[B1

] = C,
where C[Bi] is is the C-vector space with basis given by pairs of paths of length i in B which
start at the root of B and end at the same vertex in level i of B.
The path algebra C[Bi] is an algebra under the multiplication
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i.e., linearly extending the multiplication (P,Q) ⇤ (P 0, Q0) = �QP 0(P,Q
0
).

Pictorially, the multiplication corresponds to:
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Further, C[Bi] injects into C[Bi+1] by mapping any pair of paths (P,Q) 2 C[Bi] to the sumP
f (f � P, f � Q), where the sum is over all arrows f such that the tail of f is the head of

P (equivalently, of Q), and � denotes concatenation of paths.

6. Translating to Quiver Operations

We use the isomorphism with the path algebra to represent multiplication of elements in the al-
gebra chain as gluing and summing operations on quivers. After factoring each element in the
algebra through the algebra chain, we have products of elements in subchains. Each element,
h, in these products then corresponds to a quiver Qj,i for j the index of the smallest subalgebra
C[Gj] containing h, and i the index of the largest subalgebra C[Gi] centralizing h:

n
0j i

Qj,i

We ‘glue together’ the quivers Qji for each element in the product by translating multiplication in
the path algebra into operations on quivers. The complexity of the Fourier transform is reduced
to counting morphisms of quivers into the Bratteli diagram of the algebra chain.

7. Example: the Symmetric Group

A complete set of coset representatives for Sn/Sn�1 is

{t
2

· · · tn, t
3

· · · tn, . . . , tn, e},

where ti is the transposition (i� 1 i). Then the Fourier transform of f on Sn reduces to comput-
ing sums of the form

nX

i=1

ti+1 · · · tnFi,

for Fi an element of C[Sn�1]. Note that each ti lies in C[Si] and the centralizer of C[Si�2]. Thus
each ti corresponds to the quiver Qi,i�2, and gluing together we build the quiver G below.
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The complexity of the Fourier transform then comes down to counting the number of morphisms
of the quivers Gi below into the Bratteli diagram for the symmetric group (ie, Young’s diagram).
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Combinatorial results give:

tSn
(R)  3n(n� 1)
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