Construction of the Flag of Nepal in the Conjugate Coordinate System using Mathematica

Pawan Dhakal, Professor Peter Doyle
Mathematics Department, Dartmouth College

Introduction to Nepal's Flas

Interesting Facts:
Nepal's Flag is the only non-quadrilateral flag in the world. Article 5 of the Constitution of Nepal lays out detailed procedures for the construction of the flag. The instructions are all in the language of geometric proportions. See Appendix 1

Different Shapes within the Flag
The flag consists of one inner border and an outer border, one tar on the lower triangle, and a crescent moon attached with another star.
The outer border is colored Blue, the inner border is Crimson, the body of the flag is all Crimson, with the star and the moon body of the fla
colored White.

See Fig (3)

Introduction to the Conjugate Coordinate System

A point (X, Y) in the Cartesian Coordinate System is transformed into (x, y) in the Conjugate Coordinate System as:
(1) $\left\{\begin{array}{l}x=x+i Y \\ y=x-i Y\end{array}\right.$

Inverse transformation is given by:

$$
\text { (2) } \quad\left\{\begin{array}{l}
x=\frac{1}{2}(x+y) \\
Y=\frac{1}{2 i}(x-y)
\end{array} .\right.
$$

Equation of a Straight Line is given by:

$$
\text { (3) } \quad \tau x+y=\pi r
$$

where $r=$ reflex point, is the reflection of origin about the line $t=\bar{r} / r\left(=e^{-2 i t}\right)=$ clinant, gives the orientation of a line in the Conjugat stem in a similar way as he slope he Cartesian system. See Fig (1)
oints ($x 1, y 1$) and ($x 2, y 2$) is given by:
(4) $\tau=-\frac{y_{1}-y_{2}}{x_{1}-x_{2}}$

The following relations describe the relationship between slope m of a line in the Cartesian system (m real) and the clinant τ in the Conjugate system (τ a turn):

$$
\begin{gathered}
\text { (5) } \quad m=\frac{i(\tau+1)}{\tau-1}, \quad \tau=\frac{m+i}{m-i} \\
\tan ^{-1} m=\frac{i}{2} \log (-\tau) .
\end{gathered}
$$

The equation of a line with clinant τ passing through a point (x1

$$
\text { y1) is given by: (6) } \quad \tau x+y=\tau x_{1}+y_{1}
$$

A straight line can also be represented as $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$, where the coefficient of x gives the clinant τ of the line.
The square of distance from a point $(x 1, y 1)$ to a line $a x+b y+c=0$
is then given by

$$
\begin{aligned}
& \text { by: } \quad d^{2}=\frac{\left(a x_{1}+b y_{1}+c\right)^{2}}{4 a b} \\
& \text { (7) }
\end{aligned}
$$

The equation of a circle with center k and radius r such that, $r^{2}=g \bar{g}$.
where k is any complex number and g is another complex number other than 0 , is given by:

$$
\text { (8) }(x-k)(y-\bar{k})=g \bar{g}=r^{2}
$$

which in standard form can be written as:
(9) $a x y+b x+c y+d=0, a \neq 0$

See Fig (2),

My Approach
$\frac{\text { My Approach }}{\text { I referred to the Constitution as guidelines for the geometric }}$ construction, aided by the Construction Sheets at http://www.fotw.us/flags/np\'.html (See Appendix 2).

Procedures:
Borders

1. Find all the points that describe the inner border, using translation of complex numbers, and intersections of lines.
2. Transform the inner border as per the direction of the constitution Translate the points on the inner border edges to points on the outer border edges.

- Use the translated points to get equations of lines. - Intersect required lines to get the vertices of the outer border.
Star and Moon
Find all the points that describe the centers and edges of the moon and the star by intersecting lines and circles guided by the uctions.

2. Use roots of unity, transformed according to constitutional guidelines to get the star shapes.
Coloring
3. Divide the complicated figures into parts and color them separately
4. Bring all the parts together to get the flag

Explanation of Some of the Steps Involved

Transformation of the Inner Border to get the Outer Border

- Translation Factor:

A circle with diameter as the length of the Vector T-N (Fig 4)

- Procedures:

1. Translate some points in the inner border to the points in the outer border and then use intersection of lines to get the vertices of the outer border
2. Horizontal translation for the border lines that are slanted was done by first finding the slope of the inner border edges and finding the horizontal translation factor (Fig 4)

Lower Star
Lower Star and the Star of the Moon
Roots of Unity Involved:

1. 12 for the Outer Vertices
2. 24 for the Inner Vertice

- Procedure

1. Calculate the $12^{\text {th }}$ roots of Unity and transform them to match the required diameter and move the roots to the required center. See Fig (3)
2. Calculate the $24^{\text {th }}$ roots of Unity and transform them
accordingly.
3. Find the alternate roots of the $24^{\text {th }}$ roots. The alternate roots are all the odd roots, e.g. $1^{\text {st }}, 3^{\text {rd }}, 5^{\text {th }}, .$.
4. Join the two lists of roots and Sort them according to the Arguments of the complex roots.
5. Use ListLinePlot in Mathematica to get the required shape See Fig (5).

Star of the Moon

- Roots of Unity Involved and Procedure

1. 32 for the Outer Vertices.
2. 32 for the Inner Vertice

- Procedures:

1. For inner vertices,
. First take the first half of the roots.
2. Then take the alternate roots. The alternate roots are all the even roots, e.g. $2^{\text {nd }}, 4^{\text {th }}, \ldots$
3. For inner vertices,
4. First take the first half of the roots.
5. Then take the alternate roots. The alternate roots are all the odd roots, e.g. $1^{\text {st }}, 3^{\text {rd }}$, ,
6. Next, join the two lists. Sort them according to the Arguments of the complex roots.
7. Use ListLinePlot in Mathematica to get the required shape. See Fig (6).

Completing the Moon

- Procedures

1. Use the "hidden" roots of unity in the star portion, i.e. the ones before the start and the after the end of the star figure, to get points for two lines which intersect with a circle, i.e. the upper circle of the crescent shape. The points of intersection are then joined to give the lines that join the star portion with the crescent portion. (Fig 7)
2. Draw the required circles that describe the crescent shape Lower part is a half circle centered at M and the upper part is a partial circle centered at L. (Fig 8)
fee Fig (9) for the complete shape.

fig 10: Flag of Nepal showing all the points, lines, and circles that describe the Flag

References

The American Mathematical Monthly, Vol. 63, No. 9, Part 2: Th Conjugate Coordinate System for Plane Euclidean Geometry (Nov., 1956)
Published by: Mathematical Association of America Article Stable URL: http://www.jstor.org/stable/2309836

Constitutional Guidelines:
http://www.fotw.us/flags/np-law.html

Construction Sheets:
http://www.fotw.us/flags/np\'.html

