Iterval-Vector Polytopes
Jessica De Silva, Gabriel Dorfsman-Hopkins, Joseph Pruitt

Advisors: Prof. Matthias Beck and Amanda Ruiz

2012 Mathematical Sciences Research Institute - Undergraduate Program

Background

A convex polytope is formed by taking the convex hull of a set $A=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \subset \mathbb{R}^{d}$ $\operatorname{conv}(A)$, which is defined as

$$
\left\{\lambda_{1} v_{1}+\lambda_{2} v_{2}+\cdots+\lambda_{n} v_{n} \mid \lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \in \mathbb{R}_{\geq 0} \text { and } \sum_{i=1}^{n} \lambda_{i}=1\right\} .
$$

A simplex is an n-dimensional polytope with $n+1$ vertices

Given an n-dimensional polytope \mathcal{P} with f_{k} k-dimensional faces, the \mathbf{f}-vector of \mathcal{P} is written as

$$
f(\mathcal{P}):=\left(f_{0}, f_{1}, \ldots, f_{n-1}\right) .
$$

Example 1. Tetrahedron

Simplex: 3-dimensional polytope, 4 vertices f-vector: $(4,6,4)$
4 vertices, 6 edges, 4 planes

Denote the volume of a polytope \mathcal{P} as $\operatorname{vol}(\mathcal{P})$.
An interval vector [1] is a $(0,1)$-vector $x \in \mathbb{R}^{n}$ such that, if $x_{i}=x_{k}=1$ for $i<k$, then $x_{j}=1$ for every $i \leq j \leq k$.

Example 2. Interval vectors

$$
(1,1,0),(0,0,0,0),(0,0,1,1,1,1,0)
$$

Let $\alpha_{i, j}:=e_{i}+e_{i+1}+\cdots+e_{j}$ for $i \leq j$ where e_{i} is the $i^{\text {th }}$ standard unit vector.

Example 3. For $n=6$

$$
\begin{aligned}
e_{2} & =(0,1,0,0,0,0) \\
e_{5} & =(0,0,0,0,1,0) \\
\alpha_{2,5} & =(0,1,1,1,1,0)
\end{aligned}
$$

Abstract: An interval vector is a $(0,1)$-vector where all the ones appear consecutively. Polytopes whose vertices are among these vectors have some astonishing properties. We present a number of interval-vector polytopes, including one class whose volumes are the Catalan numbers and another class whose volumes are the even numbers and face numbers mirror Pascal's triangle.

1. Complete Interval-Vector Polytope

$$
\text { Let } \mathcal{I}_{n}=\left\{\alpha_{i, j} \mid i, j \in[n], i \leq j\right\} .
$$

The complete interval-vector polytope is

 defined as $\mathcal{P}_{\mathcal{I}_{n}}:=\operatorname{conv}\left(\mathcal{I}_{n}\right)$.We form a lattice-preserving bijection between the complete interval-vector polytope and Postnikov's complete root polytope in [2]. Theorem 1. The volume of the n-dimensional interval-vector polytope is the nth Catalan number.

$$
\operatorname{vol}\left(\mathcal{P}_{\mathcal{I}_{n}}\right)=\frac{1}{n+1}\binom{2 n}{n}
$$

2. Fixed Interval-Vector Polytope Given an interval length i and a dimension n we define the fixed interval-vector polytope $\mathcal{Q}_{n, i}$ as the convex hull of all vectors in \mathbb{R}^{n} with interval length i

$$
\mathcal{Q}_{n, i}:=\operatorname{conv}\left(\left\{\alpha_{j, j+i-1} \mid j \leq n-i+1\right\}\right)
$$

We project $\mathcal{Q}_{n, i}$ down to its ambient dimension and prove using Dahl's flow-dimension graph and the
Cayley-Menger determinant
Theorem 2. $\mathcal{Q}_{n, i}$ is an $(n-i)$-dimensional unimodular simplex.

Example 4. The fixed interval-vector polytope with $n=5, i=3$ is
$\mathcal{Q}_{5,3}=\operatorname{conv}((1,1,1,0,0),(0,1,1,1,0),(0,0,1,1,1))$
Flow-dimension graph of $\mathcal{Q}_{5,3}$

3. Interval Pyramid

Given a dimension n, define $\mathcal{P}_{n, 1}$ to be the convex hull of all vectors in \mathbb{R}^{n} with interval length 1 or $n-1$.

Example 5. For $n=4$,

$$
\mathcal{P}_{4,1}=\operatorname{conv}((1,0,0,0),(0,1,0,0),(0,0,1,0)
$$

$$
(0,0,0,1),(1,1,1,0),(0,1,1,1)) .
$$

Theorem 3. The f-vector for $\mathcal{P}_{n, 1}$ for $n \geq 3$ is the $n^{\text {th }}$ row of the Pascal 3-triangle.

Triangulation of the base of $\mathcal{P}_{n, 1}$:

We apply the Cayley-Menger determinant to each simplex formed by pyramiding over the triangulation of $\mathcal{P}_{n, 1}$ to prove:

Theorem 4. $\operatorname{vol}\left(\mathcal{P}_{n, 1}\right)=2(n-2)$ for $n \geq 3$

4. Generalized Interval Pyramid

Due to the interesting properties of $\mathcal{P}_{n, 1}$, we studied a related class of polytopes
$\mathcal{P}_{n, i}:=\operatorname{conv}\left(e_{1}, \ldots, e_{n}, \alpha_{1, n-i}, \alpha_{2, n-i+1}, \ldots, \alpha_{i+1, n}\right)$
where $n>2$ and $i \leq \frac{n}{2}$.
Example 6. For $n=5$ and $i=2$

$$
\begin{gathered}
\mathcal{P}_{4,2}=\operatorname{conv}((1,0,0,0),(0,1,0,0),(0,0,1,0) \\
(0,0,0,1),(1,1,0,0),(0,1,1,0),(0,0,1,1))
\end{gathered}
$$

Proposition 1. The dimension of $\mathcal{P}_{n, i}$ is n.

Proposition 2. Let

$$
\mathcal{B}=\operatorname{conv}\left(\left\{e_{1}, e_{2}, \ldots, e_{i}, e_{n-i+1}, \ldots, e_{n}\right.\right.
$$

$$
\left.\left.\alpha_{1, n-i}, \alpha_{2, n-i-1} \ldots, \alpha_{i+1, n}\right\}\right) .
$$

Then adding each vector in $\left\{e_{i+1}, e_{i+2}, \ldots, e_{n-i}\right\}$ sequentially pyramids over the previous base.

Finally, we have conjectured the volume of $\mathcal{P}_{n, i}$ and plan to prove it by proving a triangulation of the base of $\mathcal{P}_{n, i}$ contains 2^{i} simplices whose volume as one pyramids over them is $n-(i+1)$.

Conjecture 1.

$$
\operatorname{vol}\left(\mathcal{P}_{n, i}\right)=2^{i}(n-(i+1)) .
$$

References

[1] Geir Dahl. Polytopes related to interval vectors and incidence matrices. Linear Algebra Appl. 435(11):2955-2960, 2011
[2] Alexander Postnikov. Permutohedra, associahedra, and beyond. Int. Math. Res. Not. IMRN, (6):1026-1106, 2009

Acknowledgemen

This work was supported by NSF grant
DMS-1156499 and NSA grant
H98230-11-1-0213.

